Properties

Label 1472.4.a.u
Level $1472$
Weight $4$
Character orbit 1472.a
Self dual yes
Analytic conductor $86.851$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1472,4,Mod(1,1472)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1472.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1472, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,2,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.8508115285\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.11032.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 14x + 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 736)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{3} + (\beta_{2} + \beta_1) q^{5} + ( - \beta_{2} + 3 \beta_1 + 4) q^{7} + (\beta_{2} - 2 \beta_1 - 16) q^{9} + ( - \beta_{2} + 11 \beta_1 - 2) q^{11} + (\beta_{2} - 14 \beta_1 - 7) q^{13}+ \cdots + (10 \beta_{2} - 124 \beta_1 - 228) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{3} + 16 q^{7} - 51 q^{9} + 6 q^{11} - 36 q^{13} - 32 q^{15} + 142 q^{17} + 94 q^{19} - 72 q^{21} + 69 q^{23} - 211 q^{25} - 34 q^{27} + 168 q^{29} - 18 q^{31} - 308 q^{33} - 36 q^{35} + 504 q^{37}+ \cdots - 818 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 14x + 10 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 10 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.92042
0.703806
−3.62422
0 −2.92042 0 9.29008 0 10.3916 0 −18.4712 0
1.2 0 0.296194 0 −8.80085 0 15.6161 0 −26.9123 0
1.3 0 4.62422 0 −0.489233 0 −10.0077 0 −5.61656 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1472.4.a.u 3
4.b odd 2 1 1472.4.a.r 3
8.b even 2 1 736.4.a.a 3
8.d odd 2 1 736.4.a.b yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
736.4.a.a 3 8.b even 2 1
736.4.a.b yes 3 8.d odd 2 1
1472.4.a.r 3 4.b odd 2 1
1472.4.a.u 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 2T_{3}^{2} - 13T_{3} + 4 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1472))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 2 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$5$ \( T^{3} - 82T - 40 \) Copy content Toggle raw display
$7$ \( T^{3} - 16 T^{2} + \cdots + 1624 \) Copy content Toggle raw display
$11$ \( T^{3} - 6 T^{2} + \cdots + 24532 \) Copy content Toggle raw display
$13$ \( T^{3} + 36 T^{2} + \cdots - 69826 \) Copy content Toggle raw display
$17$ \( T^{3} - 142 T^{2} + \cdots + 535844 \) Copy content Toggle raw display
$19$ \( T^{3} - 94 T^{2} + \cdots - 166744 \) Copy content Toggle raw display
$23$ \( (T - 23)^{3} \) Copy content Toggle raw display
$29$ \( T^{3} - 168 T^{2} + \cdots + 2379442 \) Copy content Toggle raw display
$31$ \( T^{3} + 18 T^{2} + \cdots + 6577160 \) Copy content Toggle raw display
$37$ \( T^{3} - 504 T^{2} + \cdots + 3243368 \) Copy content Toggle raw display
$41$ \( T^{3} + 432 T^{2} + \cdots - 126214 \) Copy content Toggle raw display
$43$ \( T^{3} + 338 T^{2} + \cdots + 399776 \) Copy content Toggle raw display
$47$ \( T^{3} + 386 T^{2} + \cdots - 307136 \) Copy content Toggle raw display
$53$ \( T^{3} - 288 T^{2} + \cdots + 51713072 \) Copy content Toggle raw display
$59$ \( T^{3} + 1312 T^{2} + \cdots + 44115008 \) Copy content Toggle raw display
$61$ \( T^{3} - 84 T^{2} + \cdots - 15287648 \) Copy content Toggle raw display
$67$ \( T^{3} - 410 T^{2} + \cdots + 25079932 \) Copy content Toggle raw display
$71$ \( T^{3} + 1126 T^{2} + \cdots - 247560040 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 1521354982 \) Copy content Toggle raw display
$79$ \( T^{3} + 1656 T^{2} + \cdots + 8938384 \) Copy content Toggle raw display
$83$ \( T^{3} + 1226 T^{2} + \cdots - 235935260 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 1079992640 \) Copy content Toggle raw display
$97$ \( T^{3} + 1106 T^{2} + \cdots - 83924108 \) Copy content Toggle raw display
show more
show less