Properties

Label 1472.4.a.q
Level $1472$
Weight $4$
Character orbit 1472.a
Self dual yes
Analytic conductor $86.851$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1472,4,Mod(1,1472)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1472.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1472, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-3,0,-2,0,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.8508115285\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.761.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 184)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - 1) q^{3} + (\beta_{2} + \beta_1 - 1) q^{5} + (\beta_{2} - 2 \beta_1 + 10) q^{7} + ( - 6 \beta_{2} + \beta_1 + 3) q^{9} + ( - 3 \beta_{2} + 2 \beta_1 - 8) q^{11} + (4 \beta_{2} + 9) q^{13}+ \cdots + ( - 2 \beta_{2} - 40 \beta_1 + 452) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} - 2 q^{5} + 28 q^{7} + 10 q^{9} - 22 q^{11} + 27 q^{13} + 130 q^{15} - 108 q^{17} - 218 q^{19} - 20 q^{21} - 69 q^{23} - 3 q^{25} - 417 q^{27} + 209 q^{29} + 359 q^{31} - 162 q^{33} - 376 q^{35}+ \cdots + 1316 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 6x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 4\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{2} - 2\nu - 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{2} + \beta _1 + 17 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.172480
−1.89195
3.06443
0 −8.59554 0 −10.2855 0 5.78430 0 46.8833 0
1.2 0 1.94289 0 −6.62493 0 30.0785 0 −23.2252 0
1.3 0 3.65265 0 14.9104 0 −7.86283 0 −13.6582 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1472.4.a.q 3
4.b odd 2 1 1472.4.a.v 3
8.b even 2 1 368.4.a.j 3
8.d odd 2 1 184.4.a.c 3
24.f even 2 1 1656.4.a.j 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
184.4.a.c 3 8.d odd 2 1
368.4.a.j 3 8.b even 2 1
1472.4.a.q 3 1.a even 1 1 trivial
1472.4.a.v 3 4.b odd 2 1
1656.4.a.j 3 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 3T_{3}^{2} - 41T_{3} + 61 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1472))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 3 T^{2} + \cdots + 61 \) Copy content Toggle raw display
$5$ \( T^{3} + 2 T^{2} + \cdots - 1016 \) Copy content Toggle raw display
$7$ \( T^{3} - 28 T^{2} + \cdots + 1368 \) Copy content Toggle raw display
$11$ \( T^{3} + 22 T^{2} + \cdots + 216 \) Copy content Toggle raw display
$13$ \( T^{3} - 27 T^{2} + \cdots + 12263 \) Copy content Toggle raw display
$17$ \( T^{3} + 108 T^{2} + \cdots - 364328 \) Copy content Toggle raw display
$19$ \( T^{3} + 218 T^{2} + \cdots + 232184 \) Copy content Toggle raw display
$23$ \( (T + 23)^{3} \) Copy content Toggle raw display
$29$ \( T^{3} - 209 T^{2} + \cdots + 42541 \) Copy content Toggle raw display
$31$ \( T^{3} - 359 T^{2} + \cdots - 142937 \) Copy content Toggle raw display
$37$ \( T^{3} + 230 T^{2} + \cdots + 1435928 \) Copy content Toggle raw display
$41$ \( T^{3} - 53 T^{2} + \cdots - 1259303 \) Copy content Toggle raw display
$43$ \( T^{3} + 248 T^{2} + \cdots + 7906816 \) Copy content Toggle raw display
$47$ \( T^{3} - 667 T^{2} + \cdots - 4301949 \) Copy content Toggle raw display
$53$ \( T^{3} + 742 T^{2} + \cdots + 11295528 \) Copy content Toggle raw display
$59$ \( T^{3} - 400 T^{2} + \cdots - 37423296 \) Copy content Toggle raw display
$61$ \( T^{3} + 562 T^{2} + \cdots - 120065576 \) Copy content Toggle raw display
$67$ \( T^{3} - 190 T^{2} + \cdots + 5217864 \) Copy content Toggle raw display
$71$ \( T^{3} - 575 T^{2} + \cdots + 183391207 \) Copy content Toggle raw display
$73$ \( T^{3} - 671 T^{2} + \cdots + 197534723 \) Copy content Toggle raw display
$79$ \( T^{3} + 138 T^{2} + \cdots + 338243128 \) Copy content Toggle raw display
$83$ \( T^{3} + 408 T^{2} + \cdots - 945084168 \) Copy content Toggle raw display
$89$ \( T^{3} + 1316 T^{2} + \cdots - 470184768 \) Copy content Toggle raw display
$97$ \( T^{3} - 944 T^{2} + \cdots + 37901864 \) Copy content Toggle raw display
show more
show less