Properties

Label 1472.4.a.j.1.1
Level $1472$
Weight $4$
Character 1472.1
Self dual yes
Analytic conductor $86.851$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,4,Mod(1,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.8508115285\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 46)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1472.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{3} +20.0000 q^{5} +2.00000 q^{7} +54.0000 q^{9} +52.0000 q^{11} -43.0000 q^{13} +180.000 q^{15} -50.0000 q^{17} +74.0000 q^{19} +18.0000 q^{21} -23.0000 q^{23} +275.000 q^{25} +243.000 q^{27} +7.00000 q^{29} -273.000 q^{31} +468.000 q^{33} +40.0000 q^{35} +4.00000 q^{37} -387.000 q^{39} +123.000 q^{41} +152.000 q^{43} +1080.00 q^{45} +75.0000 q^{47} -339.000 q^{49} -450.000 q^{51} -86.0000 q^{53} +1040.00 q^{55} +666.000 q^{57} +444.000 q^{59} -262.000 q^{61} +108.000 q^{63} -860.000 q^{65} -764.000 q^{67} -207.000 q^{69} -21.0000 q^{71} +681.000 q^{73} +2475.00 q^{75} +104.000 q^{77} +426.000 q^{79} +729.000 q^{81} -902.000 q^{83} -1000.00 q^{85} +63.0000 q^{87} -1272.00 q^{89} -86.0000 q^{91} -2457.00 q^{93} +1480.00 q^{95} -342.000 q^{97} +2808.00 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(4\) 0 0
\(5\) 20.0000 1.78885 0.894427 0.447214i \(-0.147584\pi\)
0.894427 + 0.447214i \(0.147584\pi\)
\(6\) 0 0
\(7\) 2.00000 0.107990 0.0539949 0.998541i \(-0.482805\pi\)
0.0539949 + 0.998541i \(0.482805\pi\)
\(8\) 0 0
\(9\) 54.0000 2.00000
\(10\) 0 0
\(11\) 52.0000 1.42533 0.712663 0.701506i \(-0.247489\pi\)
0.712663 + 0.701506i \(0.247489\pi\)
\(12\) 0 0
\(13\) −43.0000 −0.917389 −0.458694 0.888594i \(-0.651683\pi\)
−0.458694 + 0.888594i \(0.651683\pi\)
\(14\) 0 0
\(15\) 180.000 3.09839
\(16\) 0 0
\(17\) −50.0000 −0.713340 −0.356670 0.934230i \(-0.616088\pi\)
−0.356670 + 0.934230i \(0.616088\pi\)
\(18\) 0 0
\(19\) 74.0000 0.893514 0.446757 0.894655i \(-0.352579\pi\)
0.446757 + 0.894655i \(0.352579\pi\)
\(20\) 0 0
\(21\) 18.0000 0.187044
\(22\) 0 0
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) 275.000 2.20000
\(26\) 0 0
\(27\) 243.000 1.73205
\(28\) 0 0
\(29\) 7.00000 0.0448230 0.0224115 0.999749i \(-0.492866\pi\)
0.0224115 + 0.999749i \(0.492866\pi\)
\(30\) 0 0
\(31\) −273.000 −1.58169 −0.790843 0.612019i \(-0.790357\pi\)
−0.790843 + 0.612019i \(0.790357\pi\)
\(32\) 0 0
\(33\) 468.000 2.46874
\(34\) 0 0
\(35\) 40.0000 0.193178
\(36\) 0 0
\(37\) 4.00000 0.0177729 0.00888643 0.999961i \(-0.497171\pi\)
0.00888643 + 0.999961i \(0.497171\pi\)
\(38\) 0 0
\(39\) −387.000 −1.58896
\(40\) 0 0
\(41\) 123.000 0.468521 0.234261 0.972174i \(-0.424733\pi\)
0.234261 + 0.972174i \(0.424733\pi\)
\(42\) 0 0
\(43\) 152.000 0.539065 0.269532 0.962991i \(-0.413131\pi\)
0.269532 + 0.962991i \(0.413131\pi\)
\(44\) 0 0
\(45\) 1080.00 3.57771
\(46\) 0 0
\(47\) 75.0000 0.232763 0.116382 0.993205i \(-0.462870\pi\)
0.116382 + 0.993205i \(0.462870\pi\)
\(48\) 0 0
\(49\) −339.000 −0.988338
\(50\) 0 0
\(51\) −450.000 −1.23554
\(52\) 0 0
\(53\) −86.0000 −0.222887 −0.111443 0.993771i \(-0.535547\pi\)
−0.111443 + 0.993771i \(0.535547\pi\)
\(54\) 0 0
\(55\) 1040.00 2.54970
\(56\) 0 0
\(57\) 666.000 1.54761
\(58\) 0 0
\(59\) 444.000 0.979727 0.489863 0.871799i \(-0.337047\pi\)
0.489863 + 0.871799i \(0.337047\pi\)
\(60\) 0 0
\(61\) −262.000 −0.549929 −0.274964 0.961454i \(-0.588666\pi\)
−0.274964 + 0.961454i \(0.588666\pi\)
\(62\) 0 0
\(63\) 108.000 0.215980
\(64\) 0 0
\(65\) −860.000 −1.64107
\(66\) 0 0
\(67\) −764.000 −1.39310 −0.696548 0.717510i \(-0.745282\pi\)
−0.696548 + 0.717510i \(0.745282\pi\)
\(68\) 0 0
\(69\) −207.000 −0.361158
\(70\) 0 0
\(71\) −21.0000 −0.0351020 −0.0175510 0.999846i \(-0.505587\pi\)
−0.0175510 + 0.999846i \(0.505587\pi\)
\(72\) 0 0
\(73\) 681.000 1.09185 0.545925 0.837834i \(-0.316178\pi\)
0.545925 + 0.837834i \(0.316178\pi\)
\(74\) 0 0
\(75\) 2475.00 3.81051
\(76\) 0 0
\(77\) 104.000 0.153921
\(78\) 0 0
\(79\) 426.000 0.606693 0.303346 0.952880i \(-0.401896\pi\)
0.303346 + 0.952880i \(0.401896\pi\)
\(80\) 0 0
\(81\) 729.000 1.00000
\(82\) 0 0
\(83\) −902.000 −1.19286 −0.596430 0.802665i \(-0.703415\pi\)
−0.596430 + 0.802665i \(0.703415\pi\)
\(84\) 0 0
\(85\) −1000.00 −1.27606
\(86\) 0 0
\(87\) 63.0000 0.0776357
\(88\) 0 0
\(89\) −1272.00 −1.51496 −0.757482 0.652856i \(-0.773570\pi\)
−0.757482 + 0.652856i \(0.773570\pi\)
\(90\) 0 0
\(91\) −86.0000 −0.0990687
\(92\) 0 0
\(93\) −2457.00 −2.73956
\(94\) 0 0
\(95\) 1480.00 1.59837
\(96\) 0 0
\(97\) −342.000 −0.357988 −0.178994 0.983850i \(-0.557284\pi\)
−0.178994 + 0.983850i \(0.557284\pi\)
\(98\) 0 0
\(99\) 2808.00 2.85065
\(100\) 0 0
\(101\) 1426.00 1.40487 0.702437 0.711746i \(-0.252095\pi\)
0.702437 + 0.711746i \(0.252095\pi\)
\(102\) 0 0
\(103\) −1190.00 −1.13839 −0.569195 0.822203i \(-0.692745\pi\)
−0.569195 + 0.822203i \(0.692745\pi\)
\(104\) 0 0
\(105\) 360.000 0.334594
\(106\) 0 0
\(107\) 1210.00 1.09323 0.546613 0.837386i \(-0.315917\pi\)
0.546613 + 0.837386i \(0.315917\pi\)
\(108\) 0 0
\(109\) 1680.00 1.47628 0.738141 0.674646i \(-0.235704\pi\)
0.738141 + 0.674646i \(0.235704\pi\)
\(110\) 0 0
\(111\) 36.0000 0.0307835
\(112\) 0 0
\(113\) 1030.00 0.857471 0.428736 0.903430i \(-0.358959\pi\)
0.428736 + 0.903430i \(0.358959\pi\)
\(114\) 0 0
\(115\) −460.000 −0.373002
\(116\) 0 0
\(117\) −2322.00 −1.83478
\(118\) 0 0
\(119\) −100.000 −0.0770335
\(120\) 0 0
\(121\) 1373.00 1.03156
\(122\) 0 0
\(123\) 1107.00 0.811503
\(124\) 0 0
\(125\) 3000.00 2.14663
\(126\) 0 0
\(127\) −2279.00 −1.59235 −0.796175 0.605066i \(-0.793147\pi\)
−0.796175 + 0.605066i \(0.793147\pi\)
\(128\) 0 0
\(129\) 1368.00 0.933687
\(130\) 0 0
\(131\) −987.000 −0.658279 −0.329140 0.944281i \(-0.606759\pi\)
−0.329140 + 0.944281i \(0.606759\pi\)
\(132\) 0 0
\(133\) 148.000 0.0964904
\(134\) 0 0
\(135\) 4860.00 3.09839
\(136\) 0 0
\(137\) −1644.00 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 0 0
\(139\) −2189.00 −1.33575 −0.667873 0.744276i \(-0.732795\pi\)
−0.667873 + 0.744276i \(0.732795\pi\)
\(140\) 0 0
\(141\) 675.000 0.403158
\(142\) 0 0
\(143\) −2236.00 −1.30758
\(144\) 0 0
\(145\) 140.000 0.0801818
\(146\) 0 0
\(147\) −3051.00 −1.71185
\(148\) 0 0
\(149\) 946.000 0.520130 0.260065 0.965591i \(-0.416256\pi\)
0.260065 + 0.965591i \(0.416256\pi\)
\(150\) 0 0
\(151\) −365.000 −0.196710 −0.0983552 0.995151i \(-0.531358\pi\)
−0.0983552 + 0.995151i \(0.531358\pi\)
\(152\) 0 0
\(153\) −2700.00 −1.42668
\(154\) 0 0
\(155\) −5460.00 −2.82940
\(156\) 0 0
\(157\) 108.000 0.0549002 0.0274501 0.999623i \(-0.491261\pi\)
0.0274501 + 0.999623i \(0.491261\pi\)
\(158\) 0 0
\(159\) −774.000 −0.386052
\(160\) 0 0
\(161\) −46.0000 −0.0225174
\(162\) 0 0
\(163\) 1415.00 0.679947 0.339973 0.940435i \(-0.389582\pi\)
0.339973 + 0.940435i \(0.389582\pi\)
\(164\) 0 0
\(165\) 9360.00 4.41621
\(166\) 0 0
\(167\) 1756.00 0.813673 0.406836 0.913501i \(-0.366632\pi\)
0.406836 + 0.913501i \(0.366632\pi\)
\(168\) 0 0
\(169\) −348.000 −0.158398
\(170\) 0 0
\(171\) 3996.00 1.78703
\(172\) 0 0
\(173\) −2358.00 −1.03627 −0.518137 0.855298i \(-0.673374\pi\)
−0.518137 + 0.855298i \(0.673374\pi\)
\(174\) 0 0
\(175\) 550.000 0.237578
\(176\) 0 0
\(177\) 3996.00 1.69694
\(178\) 0 0
\(179\) −1073.00 −0.448043 −0.224022 0.974584i \(-0.571919\pi\)
−0.224022 + 0.974584i \(0.571919\pi\)
\(180\) 0 0
\(181\) −2868.00 −1.17777 −0.588886 0.808216i \(-0.700433\pi\)
−0.588886 + 0.808216i \(0.700433\pi\)
\(182\) 0 0
\(183\) −2358.00 −0.952505
\(184\) 0 0
\(185\) 80.0000 0.0317931
\(186\) 0 0
\(187\) −2600.00 −1.01674
\(188\) 0 0
\(189\) 486.000 0.187044
\(190\) 0 0
\(191\) 332.000 0.125773 0.0628866 0.998021i \(-0.479969\pi\)
0.0628866 + 0.998021i \(0.479969\pi\)
\(192\) 0 0
\(193\) −2143.00 −0.799257 −0.399628 0.916677i \(-0.630861\pi\)
−0.399628 + 0.916677i \(0.630861\pi\)
\(194\) 0 0
\(195\) −7740.00 −2.84243
\(196\) 0 0
\(197\) 2739.00 0.990587 0.495294 0.868726i \(-0.335060\pi\)
0.495294 + 0.868726i \(0.335060\pi\)
\(198\) 0 0
\(199\) 752.000 0.267879 0.133939 0.990990i \(-0.457237\pi\)
0.133939 + 0.990990i \(0.457237\pi\)
\(200\) 0 0
\(201\) −6876.00 −2.41291
\(202\) 0 0
\(203\) 14.0000 0.00484043
\(204\) 0 0
\(205\) 2460.00 0.838116
\(206\) 0 0
\(207\) −1242.00 −0.417029
\(208\) 0 0
\(209\) 3848.00 1.27355
\(210\) 0 0
\(211\) 1016.00 0.331490 0.165745 0.986169i \(-0.446997\pi\)
0.165745 + 0.986169i \(0.446997\pi\)
\(212\) 0 0
\(213\) −189.000 −0.0607984
\(214\) 0 0
\(215\) 3040.00 0.964308
\(216\) 0 0
\(217\) −546.000 −0.170806
\(218\) 0 0
\(219\) 6129.00 1.89114
\(220\) 0 0
\(221\) 2150.00 0.654410
\(222\) 0 0
\(223\) −1120.00 −0.336326 −0.168163 0.985759i \(-0.553784\pi\)
−0.168163 + 0.985759i \(0.553784\pi\)
\(224\) 0 0
\(225\) 14850.0 4.40000
\(226\) 0 0
\(227\) −2706.00 −0.791205 −0.395602 0.918422i \(-0.629464\pi\)
−0.395602 + 0.918422i \(0.629464\pi\)
\(228\) 0 0
\(229\) −6140.00 −1.77180 −0.885901 0.463875i \(-0.846459\pi\)
−0.885901 + 0.463875i \(0.846459\pi\)
\(230\) 0 0
\(231\) 936.000 0.266599
\(232\) 0 0
\(233\) 6567.00 1.84643 0.923216 0.384282i \(-0.125551\pi\)
0.923216 + 0.384282i \(0.125551\pi\)
\(234\) 0 0
\(235\) 1500.00 0.416380
\(236\) 0 0
\(237\) 3834.00 1.05082
\(238\) 0 0
\(239\) −729.000 −0.197302 −0.0986508 0.995122i \(-0.531453\pi\)
−0.0986508 + 0.995122i \(0.531453\pi\)
\(240\) 0 0
\(241\) −2912.00 −0.778334 −0.389167 0.921167i \(-0.627237\pi\)
−0.389167 + 0.921167i \(0.627237\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6780.00 −1.76799
\(246\) 0 0
\(247\) −3182.00 −0.819700
\(248\) 0 0
\(249\) −8118.00 −2.06609
\(250\) 0 0
\(251\) −398.000 −0.100086 −0.0500429 0.998747i \(-0.515936\pi\)
−0.0500429 + 0.998747i \(0.515936\pi\)
\(252\) 0 0
\(253\) −1196.00 −0.297201
\(254\) 0 0
\(255\) −9000.00 −2.21020
\(256\) 0 0
\(257\) 8131.00 1.97353 0.986766 0.162149i \(-0.0518426\pi\)
0.986766 + 0.162149i \(0.0518426\pi\)
\(258\) 0 0
\(259\) 8.00000 0.00191929
\(260\) 0 0
\(261\) 378.000 0.0896460
\(262\) 0 0
\(263\) −1978.00 −0.463759 −0.231880 0.972744i \(-0.574488\pi\)
−0.231880 + 0.972744i \(0.574488\pi\)
\(264\) 0 0
\(265\) −1720.00 −0.398712
\(266\) 0 0
\(267\) −11448.0 −2.62399
\(268\) 0 0
\(269\) 8459.00 1.91730 0.958651 0.284584i \(-0.0918554\pi\)
0.958651 + 0.284584i \(0.0918554\pi\)
\(270\) 0 0
\(271\) −7240.00 −1.62287 −0.811437 0.584440i \(-0.801314\pi\)
−0.811437 + 0.584440i \(0.801314\pi\)
\(272\) 0 0
\(273\) −774.000 −0.171592
\(274\) 0 0
\(275\) 14300.0 3.13572
\(276\) 0 0
\(277\) 1319.00 0.286105 0.143052 0.989715i \(-0.454308\pi\)
0.143052 + 0.989715i \(0.454308\pi\)
\(278\) 0 0
\(279\) −14742.0 −3.16337
\(280\) 0 0
\(281\) 1770.00 0.375763 0.187881 0.982192i \(-0.439838\pi\)
0.187881 + 0.982192i \(0.439838\pi\)
\(282\) 0 0
\(283\) −4144.00 −0.870443 −0.435221 0.900324i \(-0.643330\pi\)
−0.435221 + 0.900324i \(0.643330\pi\)
\(284\) 0 0
\(285\) 13320.0 2.76845
\(286\) 0 0
\(287\) 246.000 0.0505955
\(288\) 0 0
\(289\) −2413.00 −0.491146
\(290\) 0 0
\(291\) −3078.00 −0.620053
\(292\) 0 0
\(293\) 6812.00 1.35823 0.679115 0.734032i \(-0.262364\pi\)
0.679115 + 0.734032i \(0.262364\pi\)
\(294\) 0 0
\(295\) 8880.00 1.75259
\(296\) 0 0
\(297\) 12636.0 2.46874
\(298\) 0 0
\(299\) 989.000 0.191289
\(300\) 0 0
\(301\) 304.000 0.0582135
\(302\) 0 0
\(303\) 12834.0 2.43331
\(304\) 0 0
\(305\) −5240.00 −0.983743
\(306\) 0 0
\(307\) 5692.00 1.05817 0.529087 0.848567i \(-0.322534\pi\)
0.529087 + 0.848567i \(0.322534\pi\)
\(308\) 0 0
\(309\) −10710.0 −1.97175
\(310\) 0 0
\(311\) 5267.00 0.960335 0.480167 0.877177i \(-0.340576\pi\)
0.480167 + 0.877177i \(0.340576\pi\)
\(312\) 0 0
\(313\) 6340.00 1.14491 0.572457 0.819935i \(-0.305990\pi\)
0.572457 + 0.819935i \(0.305990\pi\)
\(314\) 0 0
\(315\) 2160.00 0.386356
\(316\) 0 0
\(317\) 8794.00 1.55811 0.779054 0.626957i \(-0.215700\pi\)
0.779054 + 0.626957i \(0.215700\pi\)
\(318\) 0 0
\(319\) 364.000 0.0638874
\(320\) 0 0
\(321\) 10890.0 1.89352
\(322\) 0 0
\(323\) −3700.00 −0.637379
\(324\) 0 0
\(325\) −11825.0 −2.01826
\(326\) 0 0
\(327\) 15120.0 2.55700
\(328\) 0 0
\(329\) 150.000 0.0251361
\(330\) 0 0
\(331\) −8225.00 −1.36582 −0.682911 0.730502i \(-0.739286\pi\)
−0.682911 + 0.730502i \(0.739286\pi\)
\(332\) 0 0
\(333\) 216.000 0.0355457
\(334\) 0 0
\(335\) −15280.0 −2.49205
\(336\) 0 0
\(337\) −2576.00 −0.416391 −0.208195 0.978087i \(-0.566759\pi\)
−0.208195 + 0.978087i \(0.566759\pi\)
\(338\) 0 0
\(339\) 9270.00 1.48518
\(340\) 0 0
\(341\) −14196.0 −2.25442
\(342\) 0 0
\(343\) −1364.00 −0.214720
\(344\) 0 0
\(345\) −4140.00 −0.646058
\(346\) 0 0
\(347\) −596.000 −0.0922045 −0.0461022 0.998937i \(-0.514680\pi\)
−0.0461022 + 0.998937i \(0.514680\pi\)
\(348\) 0 0
\(349\) 9271.00 1.42196 0.710982 0.703210i \(-0.248251\pi\)
0.710982 + 0.703210i \(0.248251\pi\)
\(350\) 0 0
\(351\) −10449.0 −1.58896
\(352\) 0 0
\(353\) 8141.00 1.22748 0.613742 0.789507i \(-0.289664\pi\)
0.613742 + 0.789507i \(0.289664\pi\)
\(354\) 0 0
\(355\) −420.000 −0.0627924
\(356\) 0 0
\(357\) −900.000 −0.133426
\(358\) 0 0
\(359\) −2130.00 −0.313140 −0.156570 0.987667i \(-0.550044\pi\)
−0.156570 + 0.987667i \(0.550044\pi\)
\(360\) 0 0
\(361\) −1383.00 −0.201633
\(362\) 0 0
\(363\) 12357.0 1.78671
\(364\) 0 0
\(365\) 13620.0 1.95316
\(366\) 0 0
\(367\) −2574.00 −0.366108 −0.183054 0.983103i \(-0.558598\pi\)
−0.183054 + 0.983103i \(0.558598\pi\)
\(368\) 0 0
\(369\) 6642.00 0.937043
\(370\) 0 0
\(371\) −172.000 −0.0240695
\(372\) 0 0
\(373\) 4504.00 0.625223 0.312612 0.949881i \(-0.398796\pi\)
0.312612 + 0.949881i \(0.398796\pi\)
\(374\) 0 0
\(375\) 27000.0 3.71806
\(376\) 0 0
\(377\) −301.000 −0.0411201
\(378\) 0 0
\(379\) −2740.00 −0.371357 −0.185679 0.982611i \(-0.559448\pi\)
−0.185679 + 0.982611i \(0.559448\pi\)
\(380\) 0 0
\(381\) −20511.0 −2.75803
\(382\) 0 0
\(383\) 6948.00 0.926961 0.463481 0.886107i \(-0.346600\pi\)
0.463481 + 0.886107i \(0.346600\pi\)
\(384\) 0 0
\(385\) 2080.00 0.275342
\(386\) 0 0
\(387\) 8208.00 1.07813
\(388\) 0 0
\(389\) 1404.00 0.182996 0.0914982 0.995805i \(-0.470834\pi\)
0.0914982 + 0.995805i \(0.470834\pi\)
\(390\) 0 0
\(391\) 1150.00 0.148742
\(392\) 0 0
\(393\) −8883.00 −1.14017
\(394\) 0 0
\(395\) 8520.00 1.08529
\(396\) 0 0
\(397\) 8641.00 1.09239 0.546196 0.837658i \(-0.316076\pi\)
0.546196 + 0.837658i \(0.316076\pi\)
\(398\) 0 0
\(399\) 1332.00 0.167126
\(400\) 0 0
\(401\) −1140.00 −0.141967 −0.0709836 0.997477i \(-0.522614\pi\)
−0.0709836 + 0.997477i \(0.522614\pi\)
\(402\) 0 0
\(403\) 11739.0 1.45102
\(404\) 0 0
\(405\) 14580.0 1.78885
\(406\) 0 0
\(407\) 208.000 0.0253321
\(408\) 0 0
\(409\) 12529.0 1.51472 0.757358 0.652999i \(-0.226490\pi\)
0.757358 + 0.652999i \(0.226490\pi\)
\(410\) 0 0
\(411\) −14796.0 −1.77575
\(412\) 0 0
\(413\) 888.000 0.105801
\(414\) 0 0
\(415\) −18040.0 −2.13385
\(416\) 0 0
\(417\) −19701.0 −2.31358
\(418\) 0 0
\(419\) −3252.00 −0.379166 −0.189583 0.981865i \(-0.560714\pi\)
−0.189583 + 0.981865i \(0.560714\pi\)
\(420\) 0 0
\(421\) −2206.00 −0.255377 −0.127689 0.991814i \(-0.540756\pi\)
−0.127689 + 0.991814i \(0.540756\pi\)
\(422\) 0 0
\(423\) 4050.00 0.465527
\(424\) 0 0
\(425\) −13750.0 −1.56935
\(426\) 0 0
\(427\) −524.000 −0.0593867
\(428\) 0 0
\(429\) −20124.0 −2.26479
\(430\) 0 0
\(431\) 14316.0 1.59995 0.799974 0.600035i \(-0.204847\pi\)
0.799974 + 0.600035i \(0.204847\pi\)
\(432\) 0 0
\(433\) 7828.00 0.868798 0.434399 0.900720i \(-0.356961\pi\)
0.434399 + 0.900720i \(0.356961\pi\)
\(434\) 0 0
\(435\) 1260.00 0.138879
\(436\) 0 0
\(437\) −1702.00 −0.186311
\(438\) 0 0
\(439\) −16039.0 −1.74374 −0.871868 0.489742i \(-0.837091\pi\)
−0.871868 + 0.489742i \(0.837091\pi\)
\(440\) 0 0
\(441\) −18306.0 −1.97668
\(442\) 0 0
\(443\) −11747.0 −1.25986 −0.629929 0.776653i \(-0.716916\pi\)
−0.629929 + 0.776653i \(0.716916\pi\)
\(444\) 0 0
\(445\) −25440.0 −2.71005
\(446\) 0 0
\(447\) 8514.00 0.900891
\(448\) 0 0
\(449\) −2890.00 −0.303758 −0.151879 0.988399i \(-0.548532\pi\)
−0.151879 + 0.988399i \(0.548532\pi\)
\(450\) 0 0
\(451\) 6396.00 0.667796
\(452\) 0 0
\(453\) −3285.00 −0.340713
\(454\) 0 0
\(455\) −1720.00 −0.177219
\(456\) 0 0
\(457\) −13126.0 −1.34356 −0.671782 0.740749i \(-0.734471\pi\)
−0.671782 + 0.740749i \(0.734471\pi\)
\(458\) 0 0
\(459\) −12150.0 −1.23554
\(460\) 0 0
\(461\) −14481.0 −1.46301 −0.731505 0.681836i \(-0.761182\pi\)
−0.731505 + 0.681836i \(0.761182\pi\)
\(462\) 0 0
\(463\) 5272.00 0.529181 0.264590 0.964361i \(-0.414763\pi\)
0.264590 + 0.964361i \(0.414763\pi\)
\(464\) 0 0
\(465\) −49140.0 −4.90067
\(466\) 0 0
\(467\) 13466.0 1.33433 0.667165 0.744910i \(-0.267508\pi\)
0.667165 + 0.744910i \(0.267508\pi\)
\(468\) 0 0
\(469\) −1528.00 −0.150440
\(470\) 0 0
\(471\) 972.000 0.0950900
\(472\) 0 0
\(473\) 7904.00 0.768343
\(474\) 0 0
\(475\) 20350.0 1.96573
\(476\) 0 0
\(477\) −4644.00 −0.445774
\(478\) 0 0
\(479\) −4526.00 −0.431729 −0.215865 0.976423i \(-0.569257\pi\)
−0.215865 + 0.976423i \(0.569257\pi\)
\(480\) 0 0
\(481\) −172.000 −0.0163046
\(482\) 0 0
\(483\) −414.000 −0.0390014
\(484\) 0 0
\(485\) −6840.00 −0.640388
\(486\) 0 0
\(487\) −8795.00 −0.818356 −0.409178 0.912455i \(-0.634185\pi\)
−0.409178 + 0.912455i \(0.634185\pi\)
\(488\) 0 0
\(489\) 12735.0 1.17770
\(490\) 0 0
\(491\) 1275.00 0.117189 0.0585946 0.998282i \(-0.481338\pi\)
0.0585946 + 0.998282i \(0.481338\pi\)
\(492\) 0 0
\(493\) −350.000 −0.0319741
\(494\) 0 0
\(495\) 56160.0 5.09940
\(496\) 0 0
\(497\) −42.0000 −0.00379066
\(498\) 0 0
\(499\) 9533.00 0.855222 0.427611 0.903963i \(-0.359355\pi\)
0.427611 + 0.903963i \(0.359355\pi\)
\(500\) 0 0
\(501\) 15804.0 1.40932
\(502\) 0 0
\(503\) −13398.0 −1.18765 −0.593824 0.804595i \(-0.702383\pi\)
−0.593824 + 0.804595i \(0.702383\pi\)
\(504\) 0 0
\(505\) 28520.0 2.51312
\(506\) 0 0
\(507\) −3132.00 −0.274353
\(508\) 0 0
\(509\) 8031.00 0.699347 0.349674 0.936872i \(-0.386292\pi\)
0.349674 + 0.936872i \(0.386292\pi\)
\(510\) 0 0
\(511\) 1362.00 0.117909
\(512\) 0 0
\(513\) 17982.0 1.54761
\(514\) 0 0
\(515\) −23800.0 −2.03641
\(516\) 0 0
\(517\) 3900.00 0.331764
\(518\) 0 0
\(519\) −21222.0 −1.79488
\(520\) 0 0
\(521\) −21184.0 −1.78136 −0.890679 0.454632i \(-0.849771\pi\)
−0.890679 + 0.454632i \(0.849771\pi\)
\(522\) 0 0
\(523\) 21706.0 1.81479 0.907397 0.420275i \(-0.138066\pi\)
0.907397 + 0.420275i \(0.138066\pi\)
\(524\) 0 0
\(525\) 4950.00 0.411497
\(526\) 0 0
\(527\) 13650.0 1.12828
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 23976.0 1.95945
\(532\) 0 0
\(533\) −5289.00 −0.429816
\(534\) 0 0
\(535\) 24200.0 1.95562
\(536\) 0 0
\(537\) −9657.00 −0.776034
\(538\) 0 0
\(539\) −17628.0 −1.40870
\(540\) 0 0
\(541\) −5781.00 −0.459417 −0.229709 0.973259i \(-0.573777\pi\)
−0.229709 + 0.973259i \(0.573777\pi\)
\(542\) 0 0
\(543\) −25812.0 −2.03996
\(544\) 0 0
\(545\) 33600.0 2.64085
\(546\) 0 0
\(547\) −7809.00 −0.610400 −0.305200 0.952288i \(-0.598723\pi\)
−0.305200 + 0.952288i \(0.598723\pi\)
\(548\) 0 0
\(549\) −14148.0 −1.09986
\(550\) 0 0
\(551\) 518.000 0.0400500
\(552\) 0 0
\(553\) 852.000 0.0655167
\(554\) 0 0
\(555\) 720.000 0.0550672
\(556\) 0 0
\(557\) 20240.0 1.53967 0.769835 0.638243i \(-0.220338\pi\)
0.769835 + 0.638243i \(0.220338\pi\)
\(558\) 0 0
\(559\) −6536.00 −0.494532
\(560\) 0 0
\(561\) −23400.0 −1.76105
\(562\) 0 0
\(563\) −7612.00 −0.569818 −0.284909 0.958555i \(-0.591963\pi\)
−0.284909 + 0.958555i \(0.591963\pi\)
\(564\) 0 0
\(565\) 20600.0 1.53389
\(566\) 0 0
\(567\) 1458.00 0.107990
\(568\) 0 0
\(569\) 19484.0 1.43552 0.717761 0.696290i \(-0.245167\pi\)
0.717761 + 0.696290i \(0.245167\pi\)
\(570\) 0 0
\(571\) −6614.00 −0.484741 −0.242371 0.970184i \(-0.577925\pi\)
−0.242371 + 0.970184i \(0.577925\pi\)
\(572\) 0 0
\(573\) 2988.00 0.217846
\(574\) 0 0
\(575\) −6325.00 −0.458732
\(576\) 0 0
\(577\) −639.000 −0.0461038 −0.0230519 0.999734i \(-0.507338\pi\)
−0.0230519 + 0.999734i \(0.507338\pi\)
\(578\) 0 0
\(579\) −19287.0 −1.38435
\(580\) 0 0
\(581\) −1804.00 −0.128817
\(582\) 0 0
\(583\) −4472.00 −0.317687
\(584\) 0 0
\(585\) −46440.0 −3.28215
\(586\) 0 0
\(587\) 829.000 0.0582904 0.0291452 0.999575i \(-0.490721\pi\)
0.0291452 + 0.999575i \(0.490721\pi\)
\(588\) 0 0
\(589\) −20202.0 −1.41326
\(590\) 0 0
\(591\) 24651.0 1.71575
\(592\) 0 0
\(593\) −20610.0 −1.42724 −0.713618 0.700535i \(-0.752945\pi\)
−0.713618 + 0.700535i \(0.752945\pi\)
\(594\) 0 0
\(595\) −2000.00 −0.137802
\(596\) 0 0
\(597\) 6768.00 0.463980
\(598\) 0 0
\(599\) −17240.0 −1.17597 −0.587986 0.808871i \(-0.700079\pi\)
−0.587986 + 0.808871i \(0.700079\pi\)
\(600\) 0 0
\(601\) −8459.00 −0.574126 −0.287063 0.957912i \(-0.592679\pi\)
−0.287063 + 0.957912i \(0.592679\pi\)
\(602\) 0 0
\(603\) −41256.0 −2.78619
\(604\) 0 0
\(605\) 27460.0 1.84530
\(606\) 0 0
\(607\) 17840.0 1.19292 0.596461 0.802642i \(-0.296573\pi\)
0.596461 + 0.802642i \(0.296573\pi\)
\(608\) 0 0
\(609\) 126.000 0.00838387
\(610\) 0 0
\(611\) −3225.00 −0.213534
\(612\) 0 0
\(613\) −2534.00 −0.166961 −0.0834807 0.996509i \(-0.526604\pi\)
−0.0834807 + 0.996509i \(0.526604\pi\)
\(614\) 0 0
\(615\) 22140.0 1.45166
\(616\) 0 0
\(617\) −5610.00 −0.366046 −0.183023 0.983109i \(-0.558588\pi\)
−0.183023 + 0.983109i \(0.558588\pi\)
\(618\) 0 0
\(619\) 11948.0 0.775817 0.387908 0.921698i \(-0.373198\pi\)
0.387908 + 0.921698i \(0.373198\pi\)
\(620\) 0 0
\(621\) −5589.00 −0.361158
\(622\) 0 0
\(623\) −2544.00 −0.163601
\(624\) 0 0
\(625\) 25625.0 1.64000
\(626\) 0 0
\(627\) 34632.0 2.20585
\(628\) 0 0
\(629\) −200.000 −0.0126781
\(630\) 0 0
\(631\) −7840.00 −0.494620 −0.247310 0.968936i \(-0.579547\pi\)
−0.247310 + 0.968936i \(0.579547\pi\)
\(632\) 0 0
\(633\) 9144.00 0.574157
\(634\) 0 0
\(635\) −45580.0 −2.84848
\(636\) 0 0
\(637\) 14577.0 0.906690
\(638\) 0 0
\(639\) −1134.00 −0.0702040
\(640\) 0 0
\(641\) −2320.00 −0.142956 −0.0714778 0.997442i \(-0.522771\pi\)
−0.0714778 + 0.997442i \(0.522771\pi\)
\(642\) 0 0
\(643\) −1864.00 −0.114322 −0.0571610 0.998365i \(-0.518205\pi\)
−0.0571610 + 0.998365i \(0.518205\pi\)
\(644\) 0 0
\(645\) 27360.0 1.67023
\(646\) 0 0
\(647\) 11939.0 0.725457 0.362728 0.931895i \(-0.381845\pi\)
0.362728 + 0.931895i \(0.381845\pi\)
\(648\) 0 0
\(649\) 23088.0 1.39643
\(650\) 0 0
\(651\) −4914.00 −0.295845
\(652\) 0 0
\(653\) −10503.0 −0.629424 −0.314712 0.949187i \(-0.601908\pi\)
−0.314712 + 0.949187i \(0.601908\pi\)
\(654\) 0 0
\(655\) −19740.0 −1.17757
\(656\) 0 0
\(657\) 36774.0 2.18370
\(658\) 0 0
\(659\) −10950.0 −0.647271 −0.323635 0.946182i \(-0.604905\pi\)
−0.323635 + 0.946182i \(0.604905\pi\)
\(660\) 0 0
\(661\) 3210.00 0.188887 0.0944437 0.995530i \(-0.469893\pi\)
0.0944437 + 0.995530i \(0.469893\pi\)
\(662\) 0 0
\(663\) 19350.0 1.13347
\(664\) 0 0
\(665\) 2960.00 0.172607
\(666\) 0 0
\(667\) −161.000 −0.00934624
\(668\) 0 0
\(669\) −10080.0 −0.582534
\(670\) 0 0
\(671\) −13624.0 −0.783828
\(672\) 0 0
\(673\) −13517.0 −0.774208 −0.387104 0.922036i \(-0.626525\pi\)
−0.387104 + 0.922036i \(0.626525\pi\)
\(674\) 0 0
\(675\) 66825.0 3.81051
\(676\) 0 0
\(677\) 7494.00 0.425433 0.212716 0.977114i \(-0.431769\pi\)
0.212716 + 0.977114i \(0.431769\pi\)
\(678\) 0 0
\(679\) −684.000 −0.0386591
\(680\) 0 0
\(681\) −24354.0 −1.37041
\(682\) 0 0
\(683\) −17865.0 −1.00086 −0.500428 0.865778i \(-0.666824\pi\)
−0.500428 + 0.865778i \(0.666824\pi\)
\(684\) 0 0
\(685\) −32880.0 −1.83399
\(686\) 0 0
\(687\) −55260.0 −3.06885
\(688\) 0 0
\(689\) 3698.00 0.204474
\(690\) 0 0
\(691\) −22364.0 −1.23121 −0.615605 0.788055i \(-0.711088\pi\)
−0.615605 + 0.788055i \(0.711088\pi\)
\(692\) 0 0
\(693\) 5616.00 0.307842
\(694\) 0 0
\(695\) −43780.0 −2.38945
\(696\) 0 0
\(697\) −6150.00 −0.334215
\(698\) 0 0
\(699\) 59103.0 3.19811
\(700\) 0 0
\(701\) −7842.00 −0.422522 −0.211261 0.977430i \(-0.567757\pi\)
−0.211261 + 0.977430i \(0.567757\pi\)
\(702\) 0 0
\(703\) 296.000 0.0158803
\(704\) 0 0
\(705\) 13500.0 0.721191
\(706\) 0 0
\(707\) 2852.00 0.151712
\(708\) 0 0
\(709\) −11234.0 −0.595066 −0.297533 0.954712i \(-0.596164\pi\)
−0.297533 + 0.954712i \(0.596164\pi\)
\(710\) 0 0
\(711\) 23004.0 1.21339
\(712\) 0 0
\(713\) 6279.00 0.329804
\(714\) 0 0
\(715\) −44720.0 −2.33907
\(716\) 0 0
\(717\) −6561.00 −0.341736
\(718\) 0 0
\(719\) −17568.0 −0.911232 −0.455616 0.890176i \(-0.650581\pi\)
−0.455616 + 0.890176i \(0.650581\pi\)
\(720\) 0 0
\(721\) −2380.00 −0.122935
\(722\) 0 0
\(723\) −26208.0 −1.34811
\(724\) 0 0
\(725\) 1925.00 0.0986106
\(726\) 0 0
\(727\) −35664.0 −1.81940 −0.909701 0.415265i \(-0.863689\pi\)
−0.909701 + 0.415265i \(0.863689\pi\)
\(728\) 0 0
\(729\) −19683.0 −1.00000
\(730\) 0 0
\(731\) −7600.00 −0.384536
\(732\) 0 0
\(733\) 27914.0 1.40659 0.703293 0.710900i \(-0.251712\pi\)
0.703293 + 0.710900i \(0.251712\pi\)
\(734\) 0 0
\(735\) −61020.0 −3.06225
\(736\) 0 0
\(737\) −39728.0 −1.98562
\(738\) 0 0
\(739\) −39529.0 −1.96766 −0.983828 0.179116i \(-0.942676\pi\)
−0.983828 + 0.179116i \(0.942676\pi\)
\(740\) 0 0
\(741\) −28638.0 −1.41976
\(742\) 0 0
\(743\) 10062.0 0.496822 0.248411 0.968655i \(-0.420092\pi\)
0.248411 + 0.968655i \(0.420092\pi\)
\(744\) 0 0
\(745\) 18920.0 0.930436
\(746\) 0 0
\(747\) −48708.0 −2.38572
\(748\) 0 0
\(749\) 2420.00 0.118057
\(750\) 0 0
\(751\) 25644.0 1.24602 0.623011 0.782213i \(-0.285909\pi\)
0.623011 + 0.782213i \(0.285909\pi\)
\(752\) 0 0
\(753\) −3582.00 −0.173354
\(754\) 0 0
\(755\) −7300.00 −0.351886
\(756\) 0 0
\(757\) −37368.0 −1.79414 −0.897069 0.441890i \(-0.854308\pi\)
−0.897069 + 0.441890i \(0.854308\pi\)
\(758\) 0 0
\(759\) −10764.0 −0.514767
\(760\) 0 0
\(761\) 105.000 0.00500164 0.00250082 0.999997i \(-0.499204\pi\)
0.00250082 + 0.999997i \(0.499204\pi\)
\(762\) 0 0
\(763\) 3360.00 0.159424
\(764\) 0 0
\(765\) −54000.0 −2.55212
\(766\) 0 0
\(767\) −19092.0 −0.898790
\(768\) 0 0
\(769\) −15464.0 −0.725157 −0.362579 0.931953i \(-0.618104\pi\)
−0.362579 + 0.931953i \(0.618104\pi\)
\(770\) 0 0
\(771\) 73179.0 3.41826
\(772\) 0 0
\(773\) −35168.0 −1.63636 −0.818179 0.574963i \(-0.805016\pi\)
−0.818179 + 0.574963i \(0.805016\pi\)
\(774\) 0 0
\(775\) −75075.0 −3.47971
\(776\) 0 0
\(777\) 72.0000 0.00332431
\(778\) 0 0
\(779\) 9102.00 0.418630
\(780\) 0 0
\(781\) −1092.00 −0.0500318
\(782\) 0 0
\(783\) 1701.00 0.0776357
\(784\) 0 0
\(785\) 2160.00 0.0982085
\(786\) 0 0
\(787\) 21216.0 0.960951 0.480476 0.877008i \(-0.340464\pi\)
0.480476 + 0.877008i \(0.340464\pi\)
\(788\) 0 0
\(789\) −17802.0 −0.803255
\(790\) 0 0
\(791\) 2060.00 0.0925982
\(792\) 0 0
\(793\) 11266.0 0.504499
\(794\) 0 0
\(795\) −15480.0 −0.690590
\(796\) 0 0
\(797\) −9506.00 −0.422484 −0.211242 0.977434i \(-0.567751\pi\)
−0.211242 + 0.977434i \(0.567751\pi\)
\(798\) 0 0
\(799\) −3750.00 −0.166039
\(800\) 0 0
\(801\) −68688.0 −3.02993
\(802\) 0 0
\(803\) 35412.0 1.55624
\(804\) 0 0
\(805\) −920.000 −0.0402804
\(806\) 0 0
\(807\) 76131.0 3.32087
\(808\) 0 0
\(809\) −20550.0 −0.893077 −0.446539 0.894764i \(-0.647343\pi\)
−0.446539 + 0.894764i \(0.647343\pi\)
\(810\) 0 0
\(811\) 5161.00 0.223461 0.111731 0.993739i \(-0.464361\pi\)
0.111731 + 0.993739i \(0.464361\pi\)
\(812\) 0 0
\(813\) −65160.0 −2.81090
\(814\) 0 0
\(815\) 28300.0 1.21633
\(816\) 0 0
\(817\) 11248.0 0.481662
\(818\) 0 0
\(819\) −4644.00 −0.198137
\(820\) 0 0
\(821\) −7866.00 −0.334379 −0.167190 0.985925i \(-0.553469\pi\)
−0.167190 + 0.985925i \(0.553469\pi\)
\(822\) 0 0
\(823\) −22317.0 −0.945227 −0.472613 0.881270i \(-0.656689\pi\)
−0.472613 + 0.881270i \(0.656689\pi\)
\(824\) 0 0
\(825\) 128700. 5.43122
\(826\) 0 0
\(827\) 26196.0 1.10148 0.550740 0.834677i \(-0.314346\pi\)
0.550740 + 0.834677i \(0.314346\pi\)
\(828\) 0 0
\(829\) −5886.00 −0.246597 −0.123299 0.992370i \(-0.539347\pi\)
−0.123299 + 0.992370i \(0.539347\pi\)
\(830\) 0 0
\(831\) 11871.0 0.495548
\(832\) 0 0
\(833\) 16950.0 0.705021
\(834\) 0 0
\(835\) 35120.0 1.45554
\(836\) 0 0
\(837\) −66339.0 −2.73956
\(838\) 0 0
\(839\) 32394.0 1.33297 0.666487 0.745517i \(-0.267797\pi\)
0.666487 + 0.745517i \(0.267797\pi\)
\(840\) 0 0
\(841\) −24340.0 −0.997991
\(842\) 0 0
\(843\) 15930.0 0.650840
\(844\) 0 0
\(845\) −6960.00 −0.283351
\(846\) 0 0
\(847\) 2746.00 0.111397
\(848\) 0 0
\(849\) −37296.0 −1.50765
\(850\) 0 0
\(851\) −92.0000 −0.00370590
\(852\) 0 0
\(853\) 31286.0 1.25582 0.627909 0.778287i \(-0.283911\pi\)
0.627909 + 0.778287i \(0.283911\pi\)
\(854\) 0 0
\(855\) 79920.0 3.19673
\(856\) 0 0
\(857\) −2913.00 −0.116110 −0.0580550 0.998313i \(-0.518490\pi\)
−0.0580550 + 0.998313i \(0.518490\pi\)
\(858\) 0 0
\(859\) −15451.0 −0.613715 −0.306858 0.951755i \(-0.599278\pi\)
−0.306858 + 0.951755i \(0.599278\pi\)
\(860\) 0 0
\(861\) 2214.00 0.0876341
\(862\) 0 0
\(863\) −20627.0 −0.813617 −0.406808 0.913514i \(-0.633358\pi\)
−0.406808 + 0.913514i \(0.633358\pi\)
\(864\) 0 0
\(865\) −47160.0 −1.85374
\(866\) 0 0
\(867\) −21717.0 −0.850690
\(868\) 0 0
\(869\) 22152.0 0.864735
\(870\) 0 0
\(871\) 32852.0 1.27801
\(872\) 0 0
\(873\) −18468.0 −0.715976
\(874\) 0 0
\(875\) 6000.00 0.231814
\(876\) 0 0
\(877\) 6966.00 0.268216 0.134108 0.990967i \(-0.457183\pi\)
0.134108 + 0.990967i \(0.457183\pi\)
\(878\) 0 0
\(879\) 61308.0 2.35252
\(880\) 0 0
\(881\) −37590.0 −1.43750 −0.718751 0.695268i \(-0.755286\pi\)
−0.718751 + 0.695268i \(0.755286\pi\)
\(882\) 0 0
\(883\) −27876.0 −1.06240 −0.531202 0.847245i \(-0.678259\pi\)
−0.531202 + 0.847245i \(0.678259\pi\)
\(884\) 0 0
\(885\) 79920.0 3.03557
\(886\) 0 0
\(887\) 9471.00 0.358518 0.179259 0.983802i \(-0.442630\pi\)
0.179259 + 0.983802i \(0.442630\pi\)
\(888\) 0 0
\(889\) −4558.00 −0.171958
\(890\) 0 0
\(891\) 37908.0 1.42533
\(892\) 0 0
\(893\) 5550.00 0.207977
\(894\) 0 0
\(895\) −21460.0 −0.801485
\(896\) 0 0
\(897\) 8901.00 0.331322
\(898\) 0 0
\(899\) −1911.00 −0.0708959
\(900\) 0 0
\(901\) 4300.00 0.158994
\(902\) 0 0
\(903\) 2736.00 0.100829
\(904\) 0 0
\(905\) −57360.0 −2.10686
\(906\) 0 0
\(907\) −28366.0 −1.03845 −0.519227 0.854636i \(-0.673780\pi\)
−0.519227 + 0.854636i \(0.673780\pi\)
\(908\) 0 0
\(909\) 77004.0 2.80975
\(910\) 0 0
\(911\) −7210.00 −0.262215 −0.131108 0.991368i \(-0.541853\pi\)
−0.131108 + 0.991368i \(0.541853\pi\)
\(912\) 0 0
\(913\) −46904.0 −1.70021
\(914\) 0 0
\(915\) −47160.0 −1.70389
\(916\) 0 0
\(917\) −1974.00 −0.0710875
\(918\) 0 0
\(919\) 17198.0 0.617312 0.308656 0.951174i \(-0.400121\pi\)
0.308656 + 0.951174i \(0.400121\pi\)
\(920\) 0 0
\(921\) 51228.0 1.83281
\(922\) 0 0
\(923\) 903.000 0.0322022
\(924\) 0 0
\(925\) 1100.00 0.0391003
\(926\) 0 0
\(927\) −64260.0 −2.27678
\(928\) 0 0
\(929\) −51033.0 −1.80230 −0.901151 0.433505i \(-0.857276\pi\)
−0.901151 + 0.433505i \(0.857276\pi\)
\(930\) 0 0
\(931\) −25086.0 −0.883094
\(932\) 0 0
\(933\) 47403.0 1.66335
\(934\) 0 0
\(935\) −52000.0 −1.81880
\(936\) 0 0
\(937\) 33328.0 1.16198 0.580992 0.813910i \(-0.302665\pi\)
0.580992 + 0.813910i \(0.302665\pi\)
\(938\) 0 0
\(939\) 57060.0 1.98305
\(940\) 0 0
\(941\) 20166.0 0.698611 0.349305 0.937009i \(-0.386418\pi\)
0.349305 + 0.937009i \(0.386418\pi\)
\(942\) 0 0
\(943\) −2829.00 −0.0976934
\(944\) 0 0
\(945\) 9720.00 0.334594
\(946\) 0 0
\(947\) 28629.0 0.982384 0.491192 0.871051i \(-0.336561\pi\)
0.491192 + 0.871051i \(0.336561\pi\)
\(948\) 0 0
\(949\) −29283.0 −1.00165
\(950\) 0 0
\(951\) 79146.0 2.69872
\(952\) 0 0
\(953\) 38146.0 1.29661 0.648305 0.761380i \(-0.275478\pi\)
0.648305 + 0.761380i \(0.275478\pi\)
\(954\) 0 0
\(955\) 6640.00 0.224990
\(956\) 0 0
\(957\) 3276.00 0.110656
\(958\) 0 0
\(959\) −3288.00 −0.110714
\(960\) 0 0
\(961\) 44738.0 1.50173
\(962\) 0 0
\(963\) 65340.0 2.18645
\(964\) 0 0
\(965\) −42860.0 −1.42975
\(966\) 0 0
\(967\) 44621.0 1.48388 0.741941 0.670465i \(-0.233905\pi\)
0.741941 + 0.670465i \(0.233905\pi\)
\(968\) 0 0
\(969\) −33300.0 −1.10397
\(970\) 0 0
\(971\) −5950.00 −0.196647 −0.0983237 0.995154i \(-0.531348\pi\)
−0.0983237 + 0.995154i \(0.531348\pi\)
\(972\) 0 0
\(973\) −4378.00 −0.144247
\(974\) 0 0
\(975\) −106425. −3.49572
\(976\) 0 0
\(977\) 40836.0 1.33722 0.668608 0.743615i \(-0.266891\pi\)
0.668608 + 0.743615i \(0.266891\pi\)
\(978\) 0 0
\(979\) −66144.0 −2.15932
\(980\) 0 0
\(981\) 90720.0 2.95257
\(982\) 0 0
\(983\) 26874.0 0.871971 0.435985 0.899954i \(-0.356400\pi\)
0.435985 + 0.899954i \(0.356400\pi\)
\(984\) 0 0
\(985\) 54780.0 1.77202
\(986\) 0 0
\(987\) 1350.00 0.0435370
\(988\) 0 0
\(989\) −3496.00 −0.112403
\(990\) 0 0
\(991\) 21472.0 0.688275 0.344138 0.938919i \(-0.388171\pi\)
0.344138 + 0.938919i \(0.388171\pi\)
\(992\) 0 0
\(993\) −74025.0 −2.36567
\(994\) 0 0
\(995\) 15040.0 0.479196
\(996\) 0 0
\(997\) −6286.00 −0.199679 −0.0998393 0.995004i \(-0.531833\pi\)
−0.0998393 + 0.995004i \(0.531833\pi\)
\(998\) 0 0
\(999\) 972.000 0.0307835
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.4.a.j.1.1 1
4.3 odd 2 1472.4.a.a.1.1 1
8.3 odd 2 368.4.a.e.1.1 1
8.5 even 2 46.4.a.b.1.1 1
24.5 odd 2 414.4.a.b.1.1 1
40.13 odd 4 1150.4.b.a.599.1 2
40.29 even 2 1150.4.a.d.1.1 1
40.37 odd 4 1150.4.b.a.599.2 2
56.13 odd 2 2254.4.a.b.1.1 1
184.45 odd 2 1058.4.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
46.4.a.b.1.1 1 8.5 even 2
368.4.a.e.1.1 1 8.3 odd 2
414.4.a.b.1.1 1 24.5 odd 2
1058.4.a.b.1.1 1 184.45 odd 2
1150.4.a.d.1.1 1 40.29 even 2
1150.4.b.a.599.1 2 40.13 odd 4
1150.4.b.a.599.2 2 40.37 odd 4
1472.4.a.a.1.1 1 4.3 odd 2
1472.4.a.j.1.1 1 1.1 even 1 trivial
2254.4.a.b.1.1 1 56.13 odd 2