Properties

Label 1472.4.a.h.1.1
Level $1472$
Weight $4$
Character 1472.1
Self dual yes
Analytic conductor $86.851$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,4,Mod(1,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.8508115285\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1472.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00000 q^{3} +6.00000 q^{5} -8.00000 q^{7} -2.00000 q^{9} +O(q^{10})\) \(q+5.00000 q^{3} +6.00000 q^{5} -8.00000 q^{7} -2.00000 q^{9} -34.0000 q^{11} +57.0000 q^{13} +30.0000 q^{15} -80.0000 q^{17} +70.0000 q^{19} -40.0000 q^{21} +23.0000 q^{23} -89.0000 q^{25} -145.000 q^{27} -245.000 q^{29} +103.000 q^{31} -170.000 q^{33} -48.0000 q^{35} +298.000 q^{37} +285.000 q^{39} +95.0000 q^{41} -88.0000 q^{43} -12.0000 q^{45} -357.000 q^{47} -279.000 q^{49} -400.000 q^{51} +414.000 q^{53} -204.000 q^{55} +350.000 q^{57} +408.000 q^{59} -822.000 q^{61} +16.0000 q^{63} +342.000 q^{65} -926.000 q^{67} +115.000 q^{69} +335.000 q^{71} -899.000 q^{73} -445.000 q^{75} +272.000 q^{77} -1322.00 q^{79} -671.000 q^{81} +36.0000 q^{83} -480.000 q^{85} -1225.00 q^{87} -460.000 q^{89} -456.000 q^{91} +515.000 q^{93} +420.000 q^{95} -964.000 q^{97} +68.0000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.00000 0.962250 0.481125 0.876652i \(-0.340228\pi\)
0.481125 + 0.876652i \(0.340228\pi\)
\(4\) 0 0
\(5\) 6.00000 0.536656 0.268328 0.963328i \(-0.413529\pi\)
0.268328 + 0.963328i \(0.413529\pi\)
\(6\) 0 0
\(7\) −8.00000 −0.431959 −0.215980 0.976398i \(-0.569295\pi\)
−0.215980 + 0.976398i \(0.569295\pi\)
\(8\) 0 0
\(9\) −2.00000 −0.0740741
\(10\) 0 0
\(11\) −34.0000 −0.931944 −0.465972 0.884799i \(-0.654295\pi\)
−0.465972 + 0.884799i \(0.654295\pi\)
\(12\) 0 0
\(13\) 57.0000 1.21607 0.608037 0.793909i \(-0.291957\pi\)
0.608037 + 0.793909i \(0.291957\pi\)
\(14\) 0 0
\(15\) 30.0000 0.516398
\(16\) 0 0
\(17\) −80.0000 −1.14134 −0.570672 0.821178i \(-0.693317\pi\)
−0.570672 + 0.821178i \(0.693317\pi\)
\(18\) 0 0
\(19\) 70.0000 0.845216 0.422608 0.906313i \(-0.361115\pi\)
0.422608 + 0.906313i \(0.361115\pi\)
\(20\) 0 0
\(21\) −40.0000 −0.415653
\(22\) 0 0
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) −89.0000 −0.712000
\(26\) 0 0
\(27\) −145.000 −1.03353
\(28\) 0 0
\(29\) −245.000 −1.56881 −0.784403 0.620252i \(-0.787030\pi\)
−0.784403 + 0.620252i \(0.787030\pi\)
\(30\) 0 0
\(31\) 103.000 0.596753 0.298377 0.954448i \(-0.403555\pi\)
0.298377 + 0.954448i \(0.403555\pi\)
\(32\) 0 0
\(33\) −170.000 −0.896764
\(34\) 0 0
\(35\) −48.0000 −0.231814
\(36\) 0 0
\(37\) 298.000 1.32408 0.662039 0.749469i \(-0.269691\pi\)
0.662039 + 0.749469i \(0.269691\pi\)
\(38\) 0 0
\(39\) 285.000 1.17017
\(40\) 0 0
\(41\) 95.0000 0.361866 0.180933 0.983495i \(-0.442088\pi\)
0.180933 + 0.983495i \(0.442088\pi\)
\(42\) 0 0
\(43\) −88.0000 −0.312090 −0.156045 0.987750i \(-0.549875\pi\)
−0.156045 + 0.987750i \(0.549875\pi\)
\(44\) 0 0
\(45\) −12.0000 −0.0397523
\(46\) 0 0
\(47\) −357.000 −1.10795 −0.553977 0.832532i \(-0.686890\pi\)
−0.553977 + 0.832532i \(0.686890\pi\)
\(48\) 0 0
\(49\) −279.000 −0.813411
\(50\) 0 0
\(51\) −400.000 −1.09826
\(52\) 0 0
\(53\) 414.000 1.07297 0.536484 0.843911i \(-0.319752\pi\)
0.536484 + 0.843911i \(0.319752\pi\)
\(54\) 0 0
\(55\) −204.000 −0.500134
\(56\) 0 0
\(57\) 350.000 0.813309
\(58\) 0 0
\(59\) 408.000 0.900289 0.450145 0.892956i \(-0.351372\pi\)
0.450145 + 0.892956i \(0.351372\pi\)
\(60\) 0 0
\(61\) −822.000 −1.72535 −0.862675 0.505759i \(-0.831212\pi\)
−0.862675 + 0.505759i \(0.831212\pi\)
\(62\) 0 0
\(63\) 16.0000 0.0319970
\(64\) 0 0
\(65\) 342.000 0.652614
\(66\) 0 0
\(67\) −926.000 −1.68849 −0.844246 0.535957i \(-0.819951\pi\)
−0.844246 + 0.535957i \(0.819951\pi\)
\(68\) 0 0
\(69\) 115.000 0.200643
\(70\) 0 0
\(71\) 335.000 0.559960 0.279980 0.960006i \(-0.409672\pi\)
0.279980 + 0.960006i \(0.409672\pi\)
\(72\) 0 0
\(73\) −899.000 −1.44137 −0.720685 0.693263i \(-0.756173\pi\)
−0.720685 + 0.693263i \(0.756173\pi\)
\(74\) 0 0
\(75\) −445.000 −0.685122
\(76\) 0 0
\(77\) 272.000 0.402562
\(78\) 0 0
\(79\) −1322.00 −1.88274 −0.941371 0.337373i \(-0.890462\pi\)
−0.941371 + 0.337373i \(0.890462\pi\)
\(80\) 0 0
\(81\) −671.000 −0.920439
\(82\) 0 0
\(83\) 36.0000 0.0476086 0.0238043 0.999717i \(-0.492422\pi\)
0.0238043 + 0.999717i \(0.492422\pi\)
\(84\) 0 0
\(85\) −480.000 −0.612510
\(86\) 0 0
\(87\) −1225.00 −1.50958
\(88\) 0 0
\(89\) −460.000 −0.547864 −0.273932 0.961749i \(-0.588324\pi\)
−0.273932 + 0.961749i \(0.588324\pi\)
\(90\) 0 0
\(91\) −456.000 −0.525294
\(92\) 0 0
\(93\) 515.000 0.574226
\(94\) 0 0
\(95\) 420.000 0.453590
\(96\) 0 0
\(97\) −964.000 −1.00907 −0.504533 0.863393i \(-0.668335\pi\)
−0.504533 + 0.863393i \(0.668335\pi\)
\(98\) 0 0
\(99\) 68.0000 0.0690329
\(100\) 0 0
\(101\) 310.000 0.305407 0.152704 0.988272i \(-0.451202\pi\)
0.152704 + 0.988272i \(0.451202\pi\)
\(102\) 0 0
\(103\) 1044.00 0.998722 0.499361 0.866394i \(-0.333568\pi\)
0.499361 + 0.866394i \(0.333568\pi\)
\(104\) 0 0
\(105\) −240.000 −0.223063
\(106\) 0 0
\(107\) −414.000 −0.374046 −0.187023 0.982356i \(-0.559884\pi\)
−0.187023 + 0.982356i \(0.559884\pi\)
\(108\) 0 0
\(109\) −704.000 −0.618633 −0.309316 0.950959i \(-0.600100\pi\)
−0.309316 + 0.950959i \(0.600100\pi\)
\(110\) 0 0
\(111\) 1490.00 1.27409
\(112\) 0 0
\(113\) 952.000 0.792537 0.396268 0.918135i \(-0.370305\pi\)
0.396268 + 0.918135i \(0.370305\pi\)
\(114\) 0 0
\(115\) 138.000 0.111901
\(116\) 0 0
\(117\) −114.000 −0.0900795
\(118\) 0 0
\(119\) 640.000 0.493014
\(120\) 0 0
\(121\) −175.000 −0.131480
\(122\) 0 0
\(123\) 475.000 0.348206
\(124\) 0 0
\(125\) −1284.00 −0.918756
\(126\) 0 0
\(127\) 261.000 0.182362 0.0911811 0.995834i \(-0.470936\pi\)
0.0911811 + 0.995834i \(0.470936\pi\)
\(128\) 0 0
\(129\) −440.000 −0.300309
\(130\) 0 0
\(131\) 1441.00 0.961074 0.480537 0.876974i \(-0.340442\pi\)
0.480537 + 0.876974i \(0.340442\pi\)
\(132\) 0 0
\(133\) −560.000 −0.365099
\(134\) 0 0
\(135\) −870.000 −0.554649
\(136\) 0 0
\(137\) 1556.00 0.970351 0.485175 0.874417i \(-0.338756\pi\)
0.485175 + 0.874417i \(0.338756\pi\)
\(138\) 0 0
\(139\) −25.0000 −0.0152552 −0.00762760 0.999971i \(-0.502428\pi\)
−0.00762760 + 0.999971i \(0.502428\pi\)
\(140\) 0 0
\(141\) −1785.00 −1.06613
\(142\) 0 0
\(143\) −1938.00 −1.13331
\(144\) 0 0
\(145\) −1470.00 −0.841909
\(146\) 0 0
\(147\) −1395.00 −0.782705
\(148\) 0 0
\(149\) −822.000 −0.451952 −0.225976 0.974133i \(-0.572557\pi\)
−0.225976 + 0.974133i \(0.572557\pi\)
\(150\) 0 0
\(151\) −1489.00 −0.802471 −0.401235 0.915975i \(-0.631419\pi\)
−0.401235 + 0.915975i \(0.631419\pi\)
\(152\) 0 0
\(153\) 160.000 0.0845440
\(154\) 0 0
\(155\) 618.000 0.320251
\(156\) 0 0
\(157\) 632.000 0.321268 0.160634 0.987014i \(-0.448646\pi\)
0.160634 + 0.987014i \(0.448646\pi\)
\(158\) 0 0
\(159\) 2070.00 1.03246
\(160\) 0 0
\(161\) −184.000 −0.0900698
\(162\) 0 0
\(163\) 3043.00 1.46225 0.731123 0.682245i \(-0.238996\pi\)
0.731123 + 0.682245i \(0.238996\pi\)
\(164\) 0 0
\(165\) −1020.00 −0.481254
\(166\) 0 0
\(167\) −2224.00 −1.03053 −0.515264 0.857031i \(-0.672306\pi\)
−0.515264 + 0.857031i \(0.672306\pi\)
\(168\) 0 0
\(169\) 1052.00 0.478835
\(170\) 0 0
\(171\) −140.000 −0.0626086
\(172\) 0 0
\(173\) −3230.00 −1.41949 −0.709747 0.704457i \(-0.751191\pi\)
−0.709747 + 0.704457i \(0.751191\pi\)
\(174\) 0 0
\(175\) 712.000 0.307555
\(176\) 0 0
\(177\) 2040.00 0.866304
\(178\) 0 0
\(179\) −369.000 −0.154080 −0.0770401 0.997028i \(-0.524547\pi\)
−0.0770401 + 0.997028i \(0.524547\pi\)
\(180\) 0 0
\(181\) 1370.00 0.562604 0.281302 0.959619i \(-0.409234\pi\)
0.281302 + 0.959619i \(0.409234\pi\)
\(182\) 0 0
\(183\) −4110.00 −1.66022
\(184\) 0 0
\(185\) 1788.00 0.710575
\(186\) 0 0
\(187\) 2720.00 1.06367
\(188\) 0 0
\(189\) 1160.00 0.446442
\(190\) 0 0
\(191\) 4410.00 1.67066 0.835331 0.549747i \(-0.185276\pi\)
0.835331 + 0.549747i \(0.185276\pi\)
\(192\) 0 0
\(193\) −135.000 −0.0503498 −0.0251749 0.999683i \(-0.508014\pi\)
−0.0251749 + 0.999683i \(0.508014\pi\)
\(194\) 0 0
\(195\) 1710.00 0.627978
\(196\) 0 0
\(197\) −1221.00 −0.441587 −0.220794 0.975321i \(-0.570865\pi\)
−0.220794 + 0.975321i \(0.570865\pi\)
\(198\) 0 0
\(199\) −1098.00 −0.391131 −0.195566 0.980691i \(-0.562654\pi\)
−0.195566 + 0.980691i \(0.562654\pi\)
\(200\) 0 0
\(201\) −4630.00 −1.62475
\(202\) 0 0
\(203\) 1960.00 0.677660
\(204\) 0 0
\(205\) 570.000 0.194198
\(206\) 0 0
\(207\) −46.0000 −0.0154455
\(208\) 0 0
\(209\) −2380.00 −0.787694
\(210\) 0 0
\(211\) 3676.00 1.19937 0.599683 0.800238i \(-0.295293\pi\)
0.599683 + 0.800238i \(0.295293\pi\)
\(212\) 0 0
\(213\) 1675.00 0.538822
\(214\) 0 0
\(215\) −528.000 −0.167485
\(216\) 0 0
\(217\) −824.000 −0.257773
\(218\) 0 0
\(219\) −4495.00 −1.38696
\(220\) 0 0
\(221\) −4560.00 −1.38796
\(222\) 0 0
\(223\) 1656.00 0.497282 0.248641 0.968596i \(-0.420016\pi\)
0.248641 + 0.968596i \(0.420016\pi\)
\(224\) 0 0
\(225\) 178.000 0.0527407
\(226\) 0 0
\(227\) −2940.00 −0.859624 −0.429812 0.902918i \(-0.641420\pi\)
−0.429812 + 0.902918i \(0.641420\pi\)
\(228\) 0 0
\(229\) −3612.00 −1.04230 −0.521152 0.853464i \(-0.674498\pi\)
−0.521152 + 0.853464i \(0.674498\pi\)
\(230\) 0 0
\(231\) 1360.00 0.387366
\(232\) 0 0
\(233\) −4325.00 −1.21605 −0.608026 0.793917i \(-0.708038\pi\)
−0.608026 + 0.793917i \(0.708038\pi\)
\(234\) 0 0
\(235\) −2142.00 −0.594590
\(236\) 0 0
\(237\) −6610.00 −1.81167
\(238\) 0 0
\(239\) 2735.00 0.740219 0.370110 0.928988i \(-0.379320\pi\)
0.370110 + 0.928988i \(0.379320\pi\)
\(240\) 0 0
\(241\) −6710.00 −1.79348 −0.896741 0.442556i \(-0.854072\pi\)
−0.896741 + 0.442556i \(0.854072\pi\)
\(242\) 0 0
\(243\) 560.000 0.147835
\(244\) 0 0
\(245\) −1674.00 −0.436522
\(246\) 0 0
\(247\) 3990.00 1.02784
\(248\) 0 0
\(249\) 180.000 0.0458114
\(250\) 0 0
\(251\) 6948.00 1.74723 0.873613 0.486621i \(-0.161771\pi\)
0.873613 + 0.486621i \(0.161771\pi\)
\(252\) 0 0
\(253\) −782.000 −0.194324
\(254\) 0 0
\(255\) −2400.00 −0.589388
\(256\) 0 0
\(257\) −4929.00 −1.19635 −0.598176 0.801365i \(-0.704108\pi\)
−0.598176 + 0.801365i \(0.704108\pi\)
\(258\) 0 0
\(259\) −2384.00 −0.571948
\(260\) 0 0
\(261\) 490.000 0.116208
\(262\) 0 0
\(263\) 6138.00 1.43911 0.719554 0.694437i \(-0.244346\pi\)
0.719554 + 0.694437i \(0.244346\pi\)
\(264\) 0 0
\(265\) 2484.00 0.575815
\(266\) 0 0
\(267\) −2300.00 −0.527182
\(268\) 0 0
\(269\) 2063.00 0.467596 0.233798 0.972285i \(-0.424885\pi\)
0.233798 + 0.972285i \(0.424885\pi\)
\(270\) 0 0
\(271\) −1064.00 −0.238500 −0.119250 0.992864i \(-0.538049\pi\)
−0.119250 + 0.992864i \(0.538049\pi\)
\(272\) 0 0
\(273\) −2280.00 −0.505465
\(274\) 0 0
\(275\) 3026.00 0.663544
\(276\) 0 0
\(277\) −5729.00 −1.24268 −0.621340 0.783541i \(-0.713411\pi\)
−0.621340 + 0.783541i \(0.713411\pi\)
\(278\) 0 0
\(279\) −206.000 −0.0442039
\(280\) 0 0
\(281\) −960.000 −0.203804 −0.101902 0.994794i \(-0.532493\pi\)
−0.101902 + 0.994794i \(0.532493\pi\)
\(282\) 0 0
\(283\) 114.000 0.0239456 0.0119728 0.999928i \(-0.496189\pi\)
0.0119728 + 0.999928i \(0.496189\pi\)
\(284\) 0 0
\(285\) 2100.00 0.436468
\(286\) 0 0
\(287\) −760.000 −0.156311
\(288\) 0 0
\(289\) 1487.00 0.302666
\(290\) 0 0
\(291\) −4820.00 −0.970974
\(292\) 0 0
\(293\) 7048.00 1.40529 0.702643 0.711543i \(-0.252003\pi\)
0.702643 + 0.711543i \(0.252003\pi\)
\(294\) 0 0
\(295\) 2448.00 0.483146
\(296\) 0 0
\(297\) 4930.00 0.963191
\(298\) 0 0
\(299\) 1311.00 0.253569
\(300\) 0 0
\(301\) 704.000 0.134810
\(302\) 0 0
\(303\) 1550.00 0.293878
\(304\) 0 0
\(305\) −4932.00 −0.925920
\(306\) 0 0
\(307\) −3872.00 −0.719826 −0.359913 0.932986i \(-0.617194\pi\)
−0.359913 + 0.932986i \(0.617194\pi\)
\(308\) 0 0
\(309\) 5220.00 0.961021
\(310\) 0 0
\(311\) −4977.00 −0.907459 −0.453730 0.891139i \(-0.649907\pi\)
−0.453730 + 0.891139i \(0.649907\pi\)
\(312\) 0 0
\(313\) −2536.00 −0.457965 −0.228983 0.973430i \(-0.573540\pi\)
−0.228983 + 0.973430i \(0.573540\pi\)
\(314\) 0 0
\(315\) 96.0000 0.0171714
\(316\) 0 0
\(317\) −1434.00 −0.254074 −0.127037 0.991898i \(-0.540547\pi\)
−0.127037 + 0.991898i \(0.540547\pi\)
\(318\) 0 0
\(319\) 8330.00 1.46204
\(320\) 0 0
\(321\) −2070.00 −0.359926
\(322\) 0 0
\(323\) −5600.00 −0.964682
\(324\) 0 0
\(325\) −5073.00 −0.865844
\(326\) 0 0
\(327\) −3520.00 −0.595280
\(328\) 0 0
\(329\) 2856.00 0.478591
\(330\) 0 0
\(331\) −5469.00 −0.908167 −0.454084 0.890959i \(-0.650033\pi\)
−0.454084 + 0.890959i \(0.650033\pi\)
\(332\) 0 0
\(333\) −596.000 −0.0980799
\(334\) 0 0
\(335\) −5556.00 −0.906139
\(336\) 0 0
\(337\) −7796.00 −1.26016 −0.630082 0.776529i \(-0.716979\pi\)
−0.630082 + 0.776529i \(0.716979\pi\)
\(338\) 0 0
\(339\) 4760.00 0.762619
\(340\) 0 0
\(341\) −3502.00 −0.556141
\(342\) 0 0
\(343\) 4976.00 0.783320
\(344\) 0 0
\(345\) 690.000 0.107676
\(346\) 0 0
\(347\) 10068.0 1.55758 0.778788 0.627288i \(-0.215835\pi\)
0.778788 + 0.627288i \(0.215835\pi\)
\(348\) 0 0
\(349\) 7495.00 1.14956 0.574782 0.818306i \(-0.305087\pi\)
0.574782 + 0.818306i \(0.305087\pi\)
\(350\) 0 0
\(351\) −8265.00 −1.25685
\(352\) 0 0
\(353\) 10617.0 1.60081 0.800405 0.599460i \(-0.204618\pi\)
0.800405 + 0.599460i \(0.204618\pi\)
\(354\) 0 0
\(355\) 2010.00 0.300506
\(356\) 0 0
\(357\) 3200.00 0.474403
\(358\) 0 0
\(359\) 2522.00 0.370769 0.185384 0.982666i \(-0.440647\pi\)
0.185384 + 0.982666i \(0.440647\pi\)
\(360\) 0 0
\(361\) −1959.00 −0.285610
\(362\) 0 0
\(363\) −875.000 −0.126517
\(364\) 0 0
\(365\) −5394.00 −0.773520
\(366\) 0 0
\(367\) 7204.00 1.02465 0.512324 0.858792i \(-0.328785\pi\)
0.512324 + 0.858792i \(0.328785\pi\)
\(368\) 0 0
\(369\) −190.000 −0.0268049
\(370\) 0 0
\(371\) −3312.00 −0.463478
\(372\) 0 0
\(373\) 13310.0 1.84763 0.923815 0.382840i \(-0.125054\pi\)
0.923815 + 0.382840i \(0.125054\pi\)
\(374\) 0 0
\(375\) −6420.00 −0.884073
\(376\) 0 0
\(377\) −13965.0 −1.90778
\(378\) 0 0
\(379\) −12952.0 −1.75541 −0.877704 0.479203i \(-0.840926\pi\)
−0.877704 + 0.479203i \(0.840926\pi\)
\(380\) 0 0
\(381\) 1305.00 0.175478
\(382\) 0 0
\(383\) −2812.00 −0.375161 −0.187580 0.982249i \(-0.560064\pi\)
−0.187580 + 0.982249i \(0.560064\pi\)
\(384\) 0 0
\(385\) 1632.00 0.216037
\(386\) 0 0
\(387\) 176.000 0.0231178
\(388\) 0 0
\(389\) −1264.00 −0.164749 −0.0823745 0.996601i \(-0.526250\pi\)
−0.0823745 + 0.996601i \(0.526250\pi\)
\(390\) 0 0
\(391\) −1840.00 −0.237987
\(392\) 0 0
\(393\) 7205.00 0.924794
\(394\) 0 0
\(395\) −7932.00 −1.01039
\(396\) 0 0
\(397\) −7119.00 −0.899981 −0.449990 0.893033i \(-0.648573\pi\)
−0.449990 + 0.893033i \(0.648573\pi\)
\(398\) 0 0
\(399\) −2800.00 −0.351317
\(400\) 0 0
\(401\) 4262.00 0.530758 0.265379 0.964144i \(-0.414503\pi\)
0.265379 + 0.964144i \(0.414503\pi\)
\(402\) 0 0
\(403\) 5871.00 0.725696
\(404\) 0 0
\(405\) −4026.00 −0.493959
\(406\) 0 0
\(407\) −10132.0 −1.23397
\(408\) 0 0
\(409\) 229.000 0.0276854 0.0138427 0.999904i \(-0.495594\pi\)
0.0138427 + 0.999904i \(0.495594\pi\)
\(410\) 0 0
\(411\) 7780.00 0.933720
\(412\) 0 0
\(413\) −3264.00 −0.388888
\(414\) 0 0
\(415\) 216.000 0.0255495
\(416\) 0 0
\(417\) −125.000 −0.0146793
\(418\) 0 0
\(419\) −15776.0 −1.83940 −0.919699 0.392623i \(-0.871568\pi\)
−0.919699 + 0.392623i \(0.871568\pi\)
\(420\) 0 0
\(421\) 8728.00 1.01040 0.505198 0.863003i \(-0.331419\pi\)
0.505198 + 0.863003i \(0.331419\pi\)
\(422\) 0 0
\(423\) 714.000 0.0820706
\(424\) 0 0
\(425\) 7120.00 0.812637
\(426\) 0 0
\(427\) 6576.00 0.745281
\(428\) 0 0
\(429\) −9690.00 −1.09053
\(430\) 0 0
\(431\) −2928.00 −0.327232 −0.163616 0.986524i \(-0.552316\pi\)
−0.163616 + 0.986524i \(0.552316\pi\)
\(432\) 0 0
\(433\) −5314.00 −0.589780 −0.294890 0.955531i \(-0.595283\pi\)
−0.294890 + 0.955531i \(0.595283\pi\)
\(434\) 0 0
\(435\) −7350.00 −0.810128
\(436\) 0 0
\(437\) 1610.00 0.176240
\(438\) 0 0
\(439\) 2585.00 0.281037 0.140519 0.990078i \(-0.455123\pi\)
0.140519 + 0.990078i \(0.455123\pi\)
\(440\) 0 0
\(441\) 558.000 0.0602527
\(442\) 0 0
\(443\) 2997.00 0.321426 0.160713 0.987001i \(-0.448621\pi\)
0.160713 + 0.987001i \(0.448621\pi\)
\(444\) 0 0
\(445\) −2760.00 −0.294015
\(446\) 0 0
\(447\) −4110.00 −0.434891
\(448\) 0 0
\(449\) −16562.0 −1.74078 −0.870389 0.492365i \(-0.836132\pi\)
−0.870389 + 0.492365i \(0.836132\pi\)
\(450\) 0 0
\(451\) −3230.00 −0.337239
\(452\) 0 0
\(453\) −7445.00 −0.772178
\(454\) 0 0
\(455\) −2736.00 −0.281903
\(456\) 0 0
\(457\) 3924.00 0.401656 0.200828 0.979626i \(-0.435637\pi\)
0.200828 + 0.979626i \(0.435637\pi\)
\(458\) 0 0
\(459\) 11600.0 1.17961
\(460\) 0 0
\(461\) 4543.00 0.458977 0.229489 0.973311i \(-0.426295\pi\)
0.229489 + 0.973311i \(0.426295\pi\)
\(462\) 0 0
\(463\) 9616.00 0.965213 0.482606 0.875837i \(-0.339690\pi\)
0.482606 + 0.875837i \(0.339690\pi\)
\(464\) 0 0
\(465\) 3090.00 0.308162
\(466\) 0 0
\(467\) −7826.00 −0.775469 −0.387735 0.921771i \(-0.626742\pi\)
−0.387735 + 0.921771i \(0.626742\pi\)
\(468\) 0 0
\(469\) 7408.00 0.729360
\(470\) 0 0
\(471\) 3160.00 0.309140
\(472\) 0 0
\(473\) 2992.00 0.290851
\(474\) 0 0
\(475\) −6230.00 −0.601794
\(476\) 0 0
\(477\) −828.000 −0.0794791
\(478\) 0 0
\(479\) 11404.0 1.08781 0.543906 0.839146i \(-0.316945\pi\)
0.543906 + 0.839146i \(0.316945\pi\)
\(480\) 0 0
\(481\) 16986.0 1.61018
\(482\) 0 0
\(483\) −920.000 −0.0866697
\(484\) 0 0
\(485\) −5784.00 −0.541521
\(486\) 0 0
\(487\) −9267.00 −0.862275 −0.431137 0.902286i \(-0.641888\pi\)
−0.431137 + 0.902286i \(0.641888\pi\)
\(488\) 0 0
\(489\) 15215.0 1.40705
\(490\) 0 0
\(491\) 18191.0 1.67199 0.835996 0.548735i \(-0.184890\pi\)
0.835996 + 0.548735i \(0.184890\pi\)
\(492\) 0 0
\(493\) 19600.0 1.79055
\(494\) 0 0
\(495\) 408.000 0.0370469
\(496\) 0 0
\(497\) −2680.00 −0.241880
\(498\) 0 0
\(499\) −19315.0 −1.73278 −0.866391 0.499366i \(-0.833566\pi\)
−0.866391 + 0.499366i \(0.833566\pi\)
\(500\) 0 0
\(501\) −11120.0 −0.991627
\(502\) 0 0
\(503\) 8422.00 0.746557 0.373279 0.927719i \(-0.378234\pi\)
0.373279 + 0.927719i \(0.378234\pi\)
\(504\) 0 0
\(505\) 1860.00 0.163899
\(506\) 0 0
\(507\) 5260.00 0.460759
\(508\) 0 0
\(509\) 863.000 0.0751509 0.0375754 0.999294i \(-0.488037\pi\)
0.0375754 + 0.999294i \(0.488037\pi\)
\(510\) 0 0
\(511\) 7192.00 0.622613
\(512\) 0 0
\(513\) −10150.0 −0.873554
\(514\) 0 0
\(515\) 6264.00 0.535971
\(516\) 0 0
\(517\) 12138.0 1.03255
\(518\) 0 0
\(519\) −16150.0 −1.36591
\(520\) 0 0
\(521\) 19260.0 1.61957 0.809785 0.586727i \(-0.199584\pi\)
0.809785 + 0.586727i \(0.199584\pi\)
\(522\) 0 0
\(523\) 11740.0 0.981557 0.490779 0.871284i \(-0.336712\pi\)
0.490779 + 0.871284i \(0.336712\pi\)
\(524\) 0 0
\(525\) 3560.00 0.295945
\(526\) 0 0
\(527\) −8240.00 −0.681101
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −816.000 −0.0666881
\(532\) 0 0
\(533\) 5415.00 0.440056
\(534\) 0 0
\(535\) −2484.00 −0.200734
\(536\) 0 0
\(537\) −1845.00 −0.148264
\(538\) 0 0
\(539\) 9486.00 0.758054
\(540\) 0 0
\(541\) −17741.0 −1.40988 −0.704940 0.709267i \(-0.749026\pi\)
−0.704940 + 0.709267i \(0.749026\pi\)
\(542\) 0 0
\(543\) 6850.00 0.541366
\(544\) 0 0
\(545\) −4224.00 −0.331993
\(546\) 0 0
\(547\) 6571.00 0.513630 0.256815 0.966461i \(-0.417327\pi\)
0.256815 + 0.966461i \(0.417327\pi\)
\(548\) 0 0
\(549\) 1644.00 0.127804
\(550\) 0 0
\(551\) −17150.0 −1.32598
\(552\) 0 0
\(553\) 10576.0 0.813268
\(554\) 0 0
\(555\) 8940.00 0.683751
\(556\) 0 0
\(557\) 1372.00 0.104369 0.0521845 0.998637i \(-0.483382\pi\)
0.0521845 + 0.998637i \(0.483382\pi\)
\(558\) 0 0
\(559\) −5016.00 −0.379524
\(560\) 0 0
\(561\) 13600.0 1.02352
\(562\) 0 0
\(563\) −4332.00 −0.324284 −0.162142 0.986767i \(-0.551840\pi\)
−0.162142 + 0.986767i \(0.551840\pi\)
\(564\) 0 0
\(565\) 5712.00 0.425320
\(566\) 0 0
\(567\) 5368.00 0.397592
\(568\) 0 0
\(569\) −3546.00 −0.261258 −0.130629 0.991431i \(-0.541700\pi\)
−0.130629 + 0.991431i \(0.541700\pi\)
\(570\) 0 0
\(571\) 6160.00 0.451468 0.225734 0.974189i \(-0.427522\pi\)
0.225734 + 0.974189i \(0.427522\pi\)
\(572\) 0 0
\(573\) 22050.0 1.60760
\(574\) 0 0
\(575\) −2047.00 −0.148462
\(576\) 0 0
\(577\) 2953.00 0.213059 0.106529 0.994310i \(-0.466026\pi\)
0.106529 + 0.994310i \(0.466026\pi\)
\(578\) 0 0
\(579\) −675.000 −0.0484491
\(580\) 0 0
\(581\) −288.000 −0.0205650
\(582\) 0 0
\(583\) −14076.0 −0.999946
\(584\) 0 0
\(585\) −684.000 −0.0483417
\(586\) 0 0
\(587\) 2949.00 0.207356 0.103678 0.994611i \(-0.466939\pi\)
0.103678 + 0.994611i \(0.466939\pi\)
\(588\) 0 0
\(589\) 7210.00 0.504385
\(590\) 0 0
\(591\) −6105.00 −0.424917
\(592\) 0 0
\(593\) 16390.0 1.13500 0.567501 0.823372i \(-0.307910\pi\)
0.567501 + 0.823372i \(0.307910\pi\)
\(594\) 0 0
\(595\) 3840.00 0.264579
\(596\) 0 0
\(597\) −5490.00 −0.376366
\(598\) 0 0
\(599\) −12920.0 −0.881297 −0.440648 0.897680i \(-0.645251\pi\)
−0.440648 + 0.897680i \(0.645251\pi\)
\(600\) 0 0
\(601\) −13835.0 −0.939004 −0.469502 0.882931i \(-0.655567\pi\)
−0.469502 + 0.882931i \(0.655567\pi\)
\(602\) 0 0
\(603\) 1852.00 0.125073
\(604\) 0 0
\(605\) −1050.00 −0.0705596
\(606\) 0 0
\(607\) 6004.00 0.401474 0.200737 0.979645i \(-0.435666\pi\)
0.200737 + 0.979645i \(0.435666\pi\)
\(608\) 0 0
\(609\) 9800.00 0.652079
\(610\) 0 0
\(611\) −20349.0 −1.34735
\(612\) 0 0
\(613\) 16416.0 1.08162 0.540812 0.841143i \(-0.318117\pi\)
0.540812 + 0.841143i \(0.318117\pi\)
\(614\) 0 0
\(615\) 2850.00 0.186867
\(616\) 0 0
\(617\) 3786.00 0.247032 0.123516 0.992343i \(-0.460583\pi\)
0.123516 + 0.992343i \(0.460583\pi\)
\(618\) 0 0
\(619\) −15824.0 −1.02750 −0.513748 0.857941i \(-0.671743\pi\)
−0.513748 + 0.857941i \(0.671743\pi\)
\(620\) 0 0
\(621\) −3335.00 −0.215506
\(622\) 0 0
\(623\) 3680.00 0.236655
\(624\) 0 0
\(625\) 3421.00 0.218944
\(626\) 0 0
\(627\) −11900.0 −0.757959
\(628\) 0 0
\(629\) −23840.0 −1.51123
\(630\) 0 0
\(631\) 17852.0 1.12627 0.563135 0.826365i \(-0.309595\pi\)
0.563135 + 0.826365i \(0.309595\pi\)
\(632\) 0 0
\(633\) 18380.0 1.15409
\(634\) 0 0
\(635\) 1566.00 0.0978658
\(636\) 0 0
\(637\) −15903.0 −0.989168
\(638\) 0 0
\(639\) −670.000 −0.0414785
\(640\) 0 0
\(641\) 10324.0 0.636152 0.318076 0.948065i \(-0.396963\pi\)
0.318076 + 0.948065i \(0.396963\pi\)
\(642\) 0 0
\(643\) 14702.0 0.901696 0.450848 0.892601i \(-0.351122\pi\)
0.450848 + 0.892601i \(0.351122\pi\)
\(644\) 0 0
\(645\) −2640.00 −0.161163
\(646\) 0 0
\(647\) 11939.0 0.725457 0.362728 0.931895i \(-0.381845\pi\)
0.362728 + 0.931895i \(0.381845\pi\)
\(648\) 0 0
\(649\) −13872.0 −0.839019
\(650\) 0 0
\(651\) −4120.00 −0.248042
\(652\) 0 0
\(653\) −6159.00 −0.369097 −0.184548 0.982823i \(-0.559082\pi\)
−0.184548 + 0.982823i \(0.559082\pi\)
\(654\) 0 0
\(655\) 8646.00 0.515767
\(656\) 0 0
\(657\) 1798.00 0.106768
\(658\) 0 0
\(659\) 21692.0 1.28225 0.641123 0.767438i \(-0.278469\pi\)
0.641123 + 0.767438i \(0.278469\pi\)
\(660\) 0 0
\(661\) −16502.0 −0.971034 −0.485517 0.874227i \(-0.661369\pi\)
−0.485517 + 0.874227i \(0.661369\pi\)
\(662\) 0 0
\(663\) −22800.0 −1.33556
\(664\) 0 0
\(665\) −3360.00 −0.195933
\(666\) 0 0
\(667\) −5635.00 −0.327119
\(668\) 0 0
\(669\) 8280.00 0.478510
\(670\) 0 0
\(671\) 27948.0 1.60793
\(672\) 0 0
\(673\) −27733.0 −1.58845 −0.794226 0.607622i \(-0.792124\pi\)
−0.794226 + 0.607622i \(0.792124\pi\)
\(674\) 0 0
\(675\) 12905.0 0.735872
\(676\) 0 0
\(677\) 8814.00 0.500369 0.250184 0.968198i \(-0.419509\pi\)
0.250184 + 0.968198i \(0.419509\pi\)
\(678\) 0 0
\(679\) 7712.00 0.435875
\(680\) 0 0
\(681\) −14700.0 −0.827174
\(682\) 0 0
\(683\) 22999.0 1.28848 0.644240 0.764823i \(-0.277174\pi\)
0.644240 + 0.764823i \(0.277174\pi\)
\(684\) 0 0
\(685\) 9336.00 0.520745
\(686\) 0 0
\(687\) −18060.0 −1.00296
\(688\) 0 0
\(689\) 23598.0 1.30481
\(690\) 0 0
\(691\) 12140.0 0.668346 0.334173 0.942512i \(-0.391543\pi\)
0.334173 + 0.942512i \(0.391543\pi\)
\(692\) 0 0
\(693\) −544.000 −0.0298194
\(694\) 0 0
\(695\) −150.000 −0.00818680
\(696\) 0 0
\(697\) −7600.00 −0.413014
\(698\) 0 0
\(699\) −21625.0 −1.17015
\(700\) 0 0
\(701\) 20024.0 1.07888 0.539441 0.842024i \(-0.318636\pi\)
0.539441 + 0.842024i \(0.318636\pi\)
\(702\) 0 0
\(703\) 20860.0 1.11913
\(704\) 0 0
\(705\) −10710.0 −0.572145
\(706\) 0 0
\(707\) −2480.00 −0.131924
\(708\) 0 0
\(709\) 4956.00 0.262520 0.131260 0.991348i \(-0.458098\pi\)
0.131260 + 0.991348i \(0.458098\pi\)
\(710\) 0 0
\(711\) 2644.00 0.139462
\(712\) 0 0
\(713\) 2369.00 0.124432
\(714\) 0 0
\(715\) −11628.0 −0.608199
\(716\) 0 0
\(717\) 13675.0 0.712276
\(718\) 0 0
\(719\) 2760.00 0.143158 0.0715790 0.997435i \(-0.477196\pi\)
0.0715790 + 0.997435i \(0.477196\pi\)
\(720\) 0 0
\(721\) −8352.00 −0.431407
\(722\) 0 0
\(723\) −33550.0 −1.72578
\(724\) 0 0
\(725\) 21805.0 1.11699
\(726\) 0 0
\(727\) 7746.00 0.395163 0.197581 0.980287i \(-0.436691\pi\)
0.197581 + 0.980287i \(0.436691\pi\)
\(728\) 0 0
\(729\) 20917.0 1.06269
\(730\) 0 0
\(731\) 7040.00 0.356202
\(732\) 0 0
\(733\) 11976.0 0.603470 0.301735 0.953392i \(-0.402434\pi\)
0.301735 + 0.953392i \(0.402434\pi\)
\(734\) 0 0
\(735\) −8370.00 −0.420044
\(736\) 0 0
\(737\) 31484.0 1.57358
\(738\) 0 0
\(739\) −15057.0 −0.749500 −0.374750 0.927126i \(-0.622272\pi\)
−0.374750 + 0.927126i \(0.622272\pi\)
\(740\) 0 0
\(741\) 19950.0 0.989044
\(742\) 0 0
\(743\) 18532.0 0.915038 0.457519 0.889200i \(-0.348738\pi\)
0.457519 + 0.889200i \(0.348738\pi\)
\(744\) 0 0
\(745\) −4932.00 −0.242543
\(746\) 0 0
\(747\) −72.0000 −0.00352656
\(748\) 0 0
\(749\) 3312.00 0.161573
\(750\) 0 0
\(751\) −192.000 −0.00932913 −0.00466457 0.999989i \(-0.501485\pi\)
−0.00466457 + 0.999989i \(0.501485\pi\)
\(752\) 0 0
\(753\) 34740.0 1.68127
\(754\) 0 0
\(755\) −8934.00 −0.430651
\(756\) 0 0
\(757\) 9830.00 0.471965 0.235982 0.971757i \(-0.424169\pi\)
0.235982 + 0.971757i \(0.424169\pi\)
\(758\) 0 0
\(759\) −3910.00 −0.186988
\(760\) 0 0
\(761\) −30219.0 −1.43947 −0.719736 0.694248i \(-0.755737\pi\)
−0.719736 + 0.694248i \(0.755737\pi\)
\(762\) 0 0
\(763\) 5632.00 0.267224
\(764\) 0 0
\(765\) 960.000 0.0453711
\(766\) 0 0
\(767\) 23256.0 1.09482
\(768\) 0 0
\(769\) 1122.00 0.0526142 0.0263071 0.999654i \(-0.491625\pi\)
0.0263071 + 0.999654i \(0.491625\pi\)
\(770\) 0 0
\(771\) −24645.0 −1.15119
\(772\) 0 0
\(773\) −19300.0 −0.898024 −0.449012 0.893526i \(-0.648224\pi\)
−0.449012 + 0.893526i \(0.648224\pi\)
\(774\) 0 0
\(775\) −9167.00 −0.424888
\(776\) 0 0
\(777\) −11920.0 −0.550357
\(778\) 0 0
\(779\) 6650.00 0.305855
\(780\) 0 0
\(781\) −11390.0 −0.521852
\(782\) 0 0
\(783\) 35525.0 1.62140
\(784\) 0 0
\(785\) 3792.00 0.172411
\(786\) 0 0
\(787\) 19396.0 0.878517 0.439258 0.898361i \(-0.355241\pi\)
0.439258 + 0.898361i \(0.355241\pi\)
\(788\) 0 0
\(789\) 30690.0 1.38478
\(790\) 0 0
\(791\) −7616.00 −0.342344
\(792\) 0 0
\(793\) −46854.0 −2.09815
\(794\) 0 0
\(795\) 12420.0 0.554078
\(796\) 0 0
\(797\) 39034.0 1.73482 0.867412 0.497590i \(-0.165782\pi\)
0.867412 + 0.497590i \(0.165782\pi\)
\(798\) 0 0
\(799\) 28560.0 1.26456
\(800\) 0 0
\(801\) 920.000 0.0405825
\(802\) 0 0
\(803\) 30566.0 1.34328
\(804\) 0 0
\(805\) −1104.00 −0.0483365
\(806\) 0 0
\(807\) 10315.0 0.449944
\(808\) 0 0
\(809\) −10310.0 −0.448060 −0.224030 0.974582i \(-0.571921\pi\)
−0.224030 + 0.974582i \(0.571921\pi\)
\(810\) 0 0
\(811\) 40693.0 1.76193 0.880965 0.473182i \(-0.156895\pi\)
0.880965 + 0.473182i \(0.156895\pi\)
\(812\) 0 0
\(813\) −5320.00 −0.229496
\(814\) 0 0
\(815\) 18258.0 0.784724
\(816\) 0 0
\(817\) −6160.00 −0.263784
\(818\) 0 0
\(819\) 912.000 0.0389107
\(820\) 0 0
\(821\) 13934.0 0.592326 0.296163 0.955137i \(-0.404293\pi\)
0.296163 + 0.955137i \(0.404293\pi\)
\(822\) 0 0
\(823\) 6175.00 0.261539 0.130770 0.991413i \(-0.458255\pi\)
0.130770 + 0.991413i \(0.458255\pi\)
\(824\) 0 0
\(825\) 15130.0 0.638496
\(826\) 0 0
\(827\) −28664.0 −1.20525 −0.602627 0.798023i \(-0.705879\pi\)
−0.602627 + 0.798023i \(0.705879\pi\)
\(828\) 0 0
\(829\) 39590.0 1.65865 0.829323 0.558770i \(-0.188726\pi\)
0.829323 + 0.558770i \(0.188726\pi\)
\(830\) 0 0
\(831\) −28645.0 −1.19577
\(832\) 0 0
\(833\) 22320.0 0.928382
\(834\) 0 0
\(835\) −13344.0 −0.553040
\(836\) 0 0
\(837\) −14935.0 −0.616761
\(838\) 0 0
\(839\) −14316.0 −0.589086 −0.294543 0.955638i \(-0.595167\pi\)
−0.294543 + 0.955638i \(0.595167\pi\)
\(840\) 0 0
\(841\) 35636.0 1.46115
\(842\) 0 0
\(843\) −4800.00 −0.196110
\(844\) 0 0
\(845\) 6312.00 0.256970
\(846\) 0 0
\(847\) 1400.00 0.0567941
\(848\) 0 0
\(849\) 570.000 0.0230416
\(850\) 0 0
\(851\) 6854.00 0.276089
\(852\) 0 0
\(853\) −28366.0 −1.13861 −0.569304 0.822127i \(-0.692787\pi\)
−0.569304 + 0.822127i \(0.692787\pi\)
\(854\) 0 0
\(855\) −840.000 −0.0335993
\(856\) 0 0
\(857\) 19283.0 0.768605 0.384303 0.923207i \(-0.374442\pi\)
0.384303 + 0.923207i \(0.374442\pi\)
\(858\) 0 0
\(859\) 26101.0 1.03673 0.518367 0.855158i \(-0.326540\pi\)
0.518367 + 0.855158i \(0.326540\pi\)
\(860\) 0 0
\(861\) −3800.00 −0.150411
\(862\) 0 0
\(863\) 973.000 0.0383793 0.0191896 0.999816i \(-0.493891\pi\)
0.0191896 + 0.999816i \(0.493891\pi\)
\(864\) 0 0
\(865\) −19380.0 −0.761780
\(866\) 0 0
\(867\) 7435.00 0.291241
\(868\) 0 0
\(869\) 44948.0 1.75461
\(870\) 0 0
\(871\) −52782.0 −2.05333
\(872\) 0 0
\(873\) 1928.00 0.0747456
\(874\) 0 0
\(875\) 10272.0 0.396865
\(876\) 0 0
\(877\) −5694.00 −0.219239 −0.109620 0.993974i \(-0.534963\pi\)
−0.109620 + 0.993974i \(0.534963\pi\)
\(878\) 0 0
\(879\) 35240.0 1.35224
\(880\) 0 0
\(881\) 45960.0 1.75758 0.878792 0.477205i \(-0.158350\pi\)
0.878792 + 0.477205i \(0.158350\pi\)
\(882\) 0 0
\(883\) −17188.0 −0.655065 −0.327532 0.944840i \(-0.606217\pi\)
−0.327532 + 0.944840i \(0.606217\pi\)
\(884\) 0 0
\(885\) 12240.0 0.464907
\(886\) 0 0
\(887\) 8451.00 0.319906 0.159953 0.987125i \(-0.448866\pi\)
0.159953 + 0.987125i \(0.448866\pi\)
\(888\) 0 0
\(889\) −2088.00 −0.0787731
\(890\) 0 0
\(891\) 22814.0 0.857798
\(892\) 0 0
\(893\) −24990.0 −0.936460
\(894\) 0 0
\(895\) −2214.00 −0.0826881
\(896\) 0 0
\(897\) 6555.00 0.243997
\(898\) 0 0
\(899\) −25235.0 −0.936190
\(900\) 0 0
\(901\) −33120.0 −1.22463
\(902\) 0 0
\(903\) 3520.00 0.129721
\(904\) 0 0
\(905\) 8220.00 0.301925
\(906\) 0 0
\(907\) −32774.0 −1.19983 −0.599913 0.800065i \(-0.704798\pi\)
−0.599913 + 0.800065i \(0.704798\pi\)
\(908\) 0 0
\(909\) −620.000 −0.0226228
\(910\) 0 0
\(911\) −23690.0 −0.861564 −0.430782 0.902456i \(-0.641762\pi\)
−0.430782 + 0.902456i \(0.641762\pi\)
\(912\) 0 0
\(913\) −1224.00 −0.0443686
\(914\) 0 0
\(915\) −24660.0 −0.890967
\(916\) 0 0
\(917\) −11528.0 −0.415145
\(918\) 0 0
\(919\) −30044.0 −1.07841 −0.539206 0.842174i \(-0.681275\pi\)
−0.539206 + 0.842174i \(0.681275\pi\)
\(920\) 0 0
\(921\) −19360.0 −0.692653
\(922\) 0 0
\(923\) 19095.0 0.680953
\(924\) 0 0
\(925\) −26522.0 −0.942744
\(926\) 0 0
\(927\) −2088.00 −0.0739794
\(928\) 0 0
\(929\) −39705.0 −1.40224 −0.701119 0.713044i \(-0.747316\pi\)
−0.701119 + 0.713044i \(0.747316\pi\)
\(930\) 0 0
\(931\) −19530.0 −0.687508
\(932\) 0 0
\(933\) −24885.0 −0.873203
\(934\) 0 0
\(935\) 16320.0 0.570825
\(936\) 0 0
\(937\) 17422.0 0.607419 0.303710 0.952765i \(-0.401775\pi\)
0.303710 + 0.952765i \(0.401775\pi\)
\(938\) 0 0
\(939\) −12680.0 −0.440677
\(940\) 0 0
\(941\) 25292.0 0.876191 0.438095 0.898928i \(-0.355653\pi\)
0.438095 + 0.898928i \(0.355653\pi\)
\(942\) 0 0
\(943\) 2185.00 0.0754543
\(944\) 0 0
\(945\) 6960.00 0.239586
\(946\) 0 0
\(947\) −33211.0 −1.13961 −0.569806 0.821779i \(-0.692982\pi\)
−0.569806 + 0.821779i \(0.692982\pi\)
\(948\) 0 0
\(949\) −51243.0 −1.75281
\(950\) 0 0
\(951\) −7170.00 −0.244483
\(952\) 0 0
\(953\) −14154.0 −0.481105 −0.240552 0.970636i \(-0.577329\pi\)
−0.240552 + 0.970636i \(0.577329\pi\)
\(954\) 0 0
\(955\) 26460.0 0.896571
\(956\) 0 0
\(957\) 41650.0 1.40685
\(958\) 0 0
\(959\) −12448.0 −0.419152
\(960\) 0 0
\(961\) −19182.0 −0.643886
\(962\) 0 0
\(963\) 828.000 0.0277071
\(964\) 0 0
\(965\) −810.000 −0.0270205
\(966\) 0 0
\(967\) −46343.0 −1.54115 −0.770574 0.637350i \(-0.780030\pi\)
−0.770574 + 0.637350i \(0.780030\pi\)
\(968\) 0 0
\(969\) −28000.0 −0.928266
\(970\) 0 0
\(971\) −11710.0 −0.387015 −0.193508 0.981099i \(-0.561986\pi\)
−0.193508 + 0.981099i \(0.561986\pi\)
\(972\) 0 0
\(973\) 200.000 0.00658963
\(974\) 0 0
\(975\) −25365.0 −0.833159
\(976\) 0 0
\(977\) 47854.0 1.56703 0.783513 0.621375i \(-0.213426\pi\)
0.783513 + 0.621375i \(0.213426\pi\)
\(978\) 0 0
\(979\) 15640.0 0.510579
\(980\) 0 0
\(981\) 1408.00 0.0458246
\(982\) 0 0
\(983\) −22078.0 −0.716357 −0.358178 0.933653i \(-0.616602\pi\)
−0.358178 + 0.933653i \(0.616602\pi\)
\(984\) 0 0
\(985\) −7326.00 −0.236980
\(986\) 0 0
\(987\) 14280.0 0.460524
\(988\) 0 0
\(989\) −2024.00 −0.0650753
\(990\) 0 0
\(991\) −4288.00 −0.137450 −0.0687249 0.997636i \(-0.521893\pi\)
−0.0687249 + 0.997636i \(0.521893\pi\)
\(992\) 0 0
\(993\) −27345.0 −0.873885
\(994\) 0 0
\(995\) −6588.00 −0.209903
\(996\) 0 0
\(997\) −28966.0 −0.920123 −0.460061 0.887887i \(-0.652173\pi\)
−0.460061 + 0.887887i \(0.652173\pi\)
\(998\) 0 0
\(999\) −43210.0 −1.36847
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.4.a.h.1.1 1
4.3 odd 2 1472.4.a.c.1.1 1
8.3 odd 2 368.4.a.d.1.1 1
8.5 even 2 23.4.a.a.1.1 1
24.5 odd 2 207.4.a.a.1.1 1
40.13 odd 4 575.4.b.b.24.2 2
40.29 even 2 575.4.a.g.1.1 1
40.37 odd 4 575.4.b.b.24.1 2
56.13 odd 2 1127.4.a.a.1.1 1
184.45 odd 2 529.4.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.a.a.1.1 1 8.5 even 2
207.4.a.a.1.1 1 24.5 odd 2
368.4.a.d.1.1 1 8.3 odd 2
529.4.a.a.1.1 1 184.45 odd 2
575.4.a.g.1.1 1 40.29 even 2
575.4.b.b.24.1 2 40.37 odd 4
575.4.b.b.24.2 2 40.13 odd 4
1127.4.a.a.1.1 1 56.13 odd 2
1472.4.a.c.1.1 1 4.3 odd 2
1472.4.a.h.1.1 1 1.1 even 1 trivial