Properties

Label 1472.4.a.bk.1.6
Level $1472$
Weight $4$
Character 1472.1
Self dual yes
Analytic conductor $86.851$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1472,4,Mod(1,1472)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1472.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1472, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,0,0,0,0,0,42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.8508115285\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 3x^{8} - 147x^{7} - 97x^{6} + 4561x^{5} + 7383x^{4} - 31427x^{3} - 43981x^{2} + 17596x + 12306 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 736)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(5.55395\) of defining polynomial
Character \(\chi\) \(=\) 1472.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.02965 q^{3} +0.275790 q^{5} -36.2914 q^{7} -17.8212 q^{9} -58.7296 q^{11} +11.0440 q^{13} +0.835548 q^{15} -133.818 q^{17} +74.5690 q^{19} -109.950 q^{21} +23.0000 q^{23} -124.924 q^{25} -135.793 q^{27} +153.539 q^{29} +211.443 q^{31} -177.930 q^{33} -10.0088 q^{35} -124.725 q^{37} +33.4594 q^{39} -238.404 q^{41} +355.165 q^{43} -4.91492 q^{45} +138.046 q^{47} +974.063 q^{49} -405.421 q^{51} -563.486 q^{53} -16.1971 q^{55} +225.918 q^{57} -238.749 q^{59} +419.333 q^{61} +646.756 q^{63} +3.04582 q^{65} -1.30367 q^{67} +69.6820 q^{69} +20.8426 q^{71} +730.873 q^{73} -378.476 q^{75} +2131.38 q^{77} +331.744 q^{79} +69.7684 q^{81} -321.794 q^{83} -36.9056 q^{85} +465.170 q^{87} -360.677 q^{89} -400.801 q^{91} +640.600 q^{93} +20.5654 q^{95} -87.8723 q^{97} +1046.63 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 42 q^{7} + 71 q^{9} - 66 q^{11} - 48 q^{13} + 90 q^{15} - 32 q^{17} - 6 q^{21} + 207 q^{23} + 135 q^{25} + 88 q^{29} + 556 q^{31} - 230 q^{33} - 368 q^{35} + 368 q^{37} + 468 q^{39} - 216 q^{41} + 552 q^{43}+ \cdots - 552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.02965 0.583057 0.291528 0.956562i \(-0.405836\pi\)
0.291528 + 0.956562i \(0.405836\pi\)
\(4\) 0 0
\(5\) 0.275790 0.0246674 0.0123337 0.999924i \(-0.496074\pi\)
0.0123337 + 0.999924i \(0.496074\pi\)
\(6\) 0 0
\(7\) −36.2914 −1.95955 −0.979775 0.200105i \(-0.935872\pi\)
−0.979775 + 0.200105i \(0.935872\pi\)
\(8\) 0 0
\(9\) −17.8212 −0.660045
\(10\) 0 0
\(11\) −58.7296 −1.60979 −0.804893 0.593420i \(-0.797777\pi\)
−0.804893 + 0.593420i \(0.797777\pi\)
\(12\) 0 0
\(13\) 11.0440 0.235619 0.117810 0.993036i \(-0.462413\pi\)
0.117810 + 0.993036i \(0.462413\pi\)
\(14\) 0 0
\(15\) 0.835548 0.0143825
\(16\) 0 0
\(17\) −133.818 −1.90915 −0.954575 0.297971i \(-0.903690\pi\)
−0.954575 + 0.297971i \(0.903690\pi\)
\(18\) 0 0
\(19\) 74.5690 0.900384 0.450192 0.892932i \(-0.351356\pi\)
0.450192 + 0.892932i \(0.351356\pi\)
\(20\) 0 0
\(21\) −109.950 −1.14253
\(22\) 0 0
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) −124.924 −0.999392
\(26\) 0 0
\(27\) −135.793 −0.967900
\(28\) 0 0
\(29\) 153.539 0.983156 0.491578 0.870834i \(-0.336420\pi\)
0.491578 + 0.870834i \(0.336420\pi\)
\(30\) 0 0
\(31\) 211.443 1.22504 0.612522 0.790454i \(-0.290155\pi\)
0.612522 + 0.790454i \(0.290155\pi\)
\(32\) 0 0
\(33\) −177.930 −0.938597
\(34\) 0 0
\(35\) −10.0088 −0.0483370
\(36\) 0 0
\(37\) −124.725 −0.554179 −0.277089 0.960844i \(-0.589370\pi\)
−0.277089 + 0.960844i \(0.589370\pi\)
\(38\) 0 0
\(39\) 33.4594 0.137379
\(40\) 0 0
\(41\) −238.404 −0.908110 −0.454055 0.890974i \(-0.650023\pi\)
−0.454055 + 0.890974i \(0.650023\pi\)
\(42\) 0 0
\(43\) 355.165 1.25958 0.629792 0.776764i \(-0.283140\pi\)
0.629792 + 0.776764i \(0.283140\pi\)
\(44\) 0 0
\(45\) −4.91492 −0.0162816
\(46\) 0 0
\(47\) 138.046 0.428429 0.214214 0.976787i \(-0.431281\pi\)
0.214214 + 0.976787i \(0.431281\pi\)
\(48\) 0 0
\(49\) 974.063 2.83983
\(50\) 0 0
\(51\) −405.421 −1.11314
\(52\) 0 0
\(53\) −563.486 −1.46039 −0.730196 0.683238i \(-0.760571\pi\)
−0.730196 + 0.683238i \(0.760571\pi\)
\(54\) 0 0
\(55\) −16.1971 −0.0397093
\(56\) 0 0
\(57\) 225.918 0.524975
\(58\) 0 0
\(59\) −238.749 −0.526822 −0.263411 0.964684i \(-0.584848\pi\)
−0.263411 + 0.964684i \(0.584848\pi\)
\(60\) 0 0
\(61\) 419.333 0.880166 0.440083 0.897957i \(-0.354949\pi\)
0.440083 + 0.897957i \(0.354949\pi\)
\(62\) 0 0
\(63\) 646.756 1.29339
\(64\) 0 0
\(65\) 3.04582 0.00581212
\(66\) 0 0
\(67\) −1.30367 −0.00237715 −0.00118857 0.999999i \(-0.500378\pi\)
−0.00118857 + 0.999999i \(0.500378\pi\)
\(68\) 0 0
\(69\) 69.6820 0.121576
\(70\) 0 0
\(71\) 20.8426 0.0348390 0.0174195 0.999848i \(-0.494455\pi\)
0.0174195 + 0.999848i \(0.494455\pi\)
\(72\) 0 0
\(73\) 730.873 1.17181 0.585905 0.810380i \(-0.300739\pi\)
0.585905 + 0.810380i \(0.300739\pi\)
\(74\) 0 0
\(75\) −378.476 −0.582702
\(76\) 0 0
\(77\) 2131.38 3.15445
\(78\) 0 0
\(79\) 331.744 0.472458 0.236229 0.971697i \(-0.424089\pi\)
0.236229 + 0.971697i \(0.424089\pi\)
\(80\) 0 0
\(81\) 69.7684 0.0957042
\(82\) 0 0
\(83\) −321.794 −0.425560 −0.212780 0.977100i \(-0.568252\pi\)
−0.212780 + 0.977100i \(0.568252\pi\)
\(84\) 0 0
\(85\) −36.9056 −0.0470938
\(86\) 0 0
\(87\) 465.170 0.573236
\(88\) 0 0
\(89\) −360.677 −0.429569 −0.214785 0.976661i \(-0.568905\pi\)
−0.214785 + 0.976661i \(0.568905\pi\)
\(90\) 0 0
\(91\) −400.801 −0.461707
\(92\) 0 0
\(93\) 640.600 0.714270
\(94\) 0 0
\(95\) 20.5654 0.0222102
\(96\) 0 0
\(97\) −87.8723 −0.0919802 −0.0459901 0.998942i \(-0.514644\pi\)
−0.0459901 + 0.998942i \(0.514644\pi\)
\(98\) 0 0
\(99\) 1046.63 1.06253
\(100\) 0 0
\(101\) 652.719 0.643049 0.321525 0.946901i \(-0.395805\pi\)
0.321525 + 0.946901i \(0.395805\pi\)
\(102\) 0 0
\(103\) 1249.22 1.19504 0.597521 0.801854i \(-0.296153\pi\)
0.597521 + 0.801854i \(0.296153\pi\)
\(104\) 0 0
\(105\) −30.3232 −0.0281832
\(106\) 0 0
\(107\) 1179.09 1.06530 0.532648 0.846337i \(-0.321197\pi\)
0.532648 + 0.846337i \(0.321197\pi\)
\(108\) 0 0
\(109\) −1518.41 −1.33429 −0.667143 0.744930i \(-0.732483\pi\)
−0.667143 + 0.744930i \(0.732483\pi\)
\(110\) 0 0
\(111\) −377.872 −0.323118
\(112\) 0 0
\(113\) −1806.94 −1.50428 −0.752138 0.659006i \(-0.770977\pi\)
−0.752138 + 0.659006i \(0.770977\pi\)
\(114\) 0 0
\(115\) 6.34318 0.00514352
\(116\) 0 0
\(117\) −196.817 −0.155519
\(118\) 0 0
\(119\) 4856.42 3.74107
\(120\) 0 0
\(121\) 2118.17 1.59141
\(122\) 0 0
\(123\) −722.282 −0.529479
\(124\) 0 0
\(125\) −68.9266 −0.0493199
\(126\) 0 0
\(127\) 1251.01 0.874086 0.437043 0.899441i \(-0.356026\pi\)
0.437043 + 0.899441i \(0.356026\pi\)
\(128\) 0 0
\(129\) 1076.03 0.734409
\(130\) 0 0
\(131\) −2190.58 −1.46100 −0.730502 0.682910i \(-0.760714\pi\)
−0.730502 + 0.682910i \(0.760714\pi\)
\(132\) 0 0
\(133\) −2706.21 −1.76435
\(134\) 0 0
\(135\) −37.4503 −0.0238756
\(136\) 0 0
\(137\) 72.8940 0.0454580 0.0227290 0.999742i \(-0.492765\pi\)
0.0227290 + 0.999742i \(0.492765\pi\)
\(138\) 0 0
\(139\) −2432.82 −1.48453 −0.742264 0.670108i \(-0.766248\pi\)
−0.742264 + 0.670108i \(0.766248\pi\)
\(140\) 0 0
\(141\) 418.233 0.249798
\(142\) 0 0
\(143\) −648.609 −0.379296
\(144\) 0 0
\(145\) 42.3446 0.0242519
\(146\) 0 0
\(147\) 2951.07 1.65578
\(148\) 0 0
\(149\) −2580.10 −1.41859 −0.709295 0.704912i \(-0.750987\pi\)
−0.709295 + 0.704912i \(0.750987\pi\)
\(150\) 0 0
\(151\) −1335.90 −0.719960 −0.359980 0.932960i \(-0.617216\pi\)
−0.359980 + 0.932960i \(0.617216\pi\)
\(152\) 0 0
\(153\) 2384.79 1.26012
\(154\) 0 0
\(155\) 58.3140 0.0302187
\(156\) 0 0
\(157\) 1331.65 0.676925 0.338462 0.940980i \(-0.390093\pi\)
0.338462 + 0.940980i \(0.390093\pi\)
\(158\) 0 0
\(159\) −1707.17 −0.851491
\(160\) 0 0
\(161\) −834.701 −0.408594
\(162\) 0 0
\(163\) −41.7783 −0.0200756 −0.0100378 0.999950i \(-0.503195\pi\)
−0.0100378 + 0.999950i \(0.503195\pi\)
\(164\) 0 0
\(165\) −49.0714 −0.0231528
\(166\) 0 0
\(167\) −743.454 −0.344492 −0.172246 0.985054i \(-0.555102\pi\)
−0.172246 + 0.985054i \(0.555102\pi\)
\(168\) 0 0
\(169\) −2075.03 −0.944484
\(170\) 0 0
\(171\) −1328.91 −0.594294
\(172\) 0 0
\(173\) −1975.08 −0.867993 −0.433997 0.900914i \(-0.642897\pi\)
−0.433997 + 0.900914i \(0.642897\pi\)
\(174\) 0 0
\(175\) 4533.66 1.95836
\(176\) 0 0
\(177\) −723.327 −0.307167
\(178\) 0 0
\(179\) 1367.19 0.570885 0.285443 0.958396i \(-0.407859\pi\)
0.285443 + 0.958396i \(0.407859\pi\)
\(180\) 0 0
\(181\) −3138.15 −1.28871 −0.644356 0.764726i \(-0.722874\pi\)
−0.644356 + 0.764726i \(0.722874\pi\)
\(182\) 0 0
\(183\) 1270.43 0.513186
\(184\) 0 0
\(185\) −34.3979 −0.0136702
\(186\) 0 0
\(187\) 7859.06 3.07332
\(188\) 0 0
\(189\) 4928.10 1.89665
\(190\) 0 0
\(191\) −301.122 −0.114076 −0.0570378 0.998372i \(-0.518166\pi\)
−0.0570378 + 0.998372i \(0.518166\pi\)
\(192\) 0 0
\(193\) −1789.03 −0.667239 −0.333619 0.942708i \(-0.608270\pi\)
−0.333619 + 0.942708i \(0.608270\pi\)
\(194\) 0 0
\(195\) 9.22778 0.00338879
\(196\) 0 0
\(197\) 4543.96 1.64337 0.821684 0.569943i \(-0.193035\pi\)
0.821684 + 0.569943i \(0.193035\pi\)
\(198\) 0 0
\(199\) 2342.65 0.834504 0.417252 0.908791i \(-0.362993\pi\)
0.417252 + 0.908791i \(0.362993\pi\)
\(200\) 0 0
\(201\) −3.94967 −0.00138601
\(202\) 0 0
\(203\) −5572.15 −1.92654
\(204\) 0 0
\(205\) −65.7496 −0.0224007
\(206\) 0 0
\(207\) −409.888 −0.137629
\(208\) 0 0
\(209\) −4379.41 −1.44943
\(210\) 0 0
\(211\) −757.113 −0.247023 −0.123511 0.992343i \(-0.539416\pi\)
−0.123511 + 0.992343i \(0.539416\pi\)
\(212\) 0 0
\(213\) 63.1460 0.0203131
\(214\) 0 0
\(215\) 97.9510 0.0310707
\(216\) 0 0
\(217\) −7673.57 −2.40053
\(218\) 0 0
\(219\) 2214.29 0.683232
\(220\) 0 0
\(221\) −1477.88 −0.449832
\(222\) 0 0
\(223\) 4913.72 1.47555 0.737773 0.675049i \(-0.235878\pi\)
0.737773 + 0.675049i \(0.235878\pi\)
\(224\) 0 0
\(225\) 2226.30 0.659643
\(226\) 0 0
\(227\) 4162.00 1.21692 0.608462 0.793583i \(-0.291787\pi\)
0.608462 + 0.793583i \(0.291787\pi\)
\(228\) 0 0
\(229\) −1523.65 −0.439674 −0.219837 0.975537i \(-0.570553\pi\)
−0.219837 + 0.975537i \(0.570553\pi\)
\(230\) 0 0
\(231\) 6457.33 1.83923
\(232\) 0 0
\(233\) 738.594 0.207669 0.103834 0.994595i \(-0.466889\pi\)
0.103834 + 0.994595i \(0.466889\pi\)
\(234\) 0 0
\(235\) 38.0719 0.0105682
\(236\) 0 0
\(237\) 1005.07 0.275470
\(238\) 0 0
\(239\) −5561.08 −1.50509 −0.752545 0.658540i \(-0.771174\pi\)
−0.752545 + 0.658540i \(0.771174\pi\)
\(240\) 0 0
\(241\) −3194.91 −0.853952 −0.426976 0.904263i \(-0.640421\pi\)
−0.426976 + 0.904263i \(0.640421\pi\)
\(242\) 0 0
\(243\) 3877.78 1.02370
\(244\) 0 0
\(245\) 268.637 0.0700514
\(246\) 0 0
\(247\) 823.538 0.212148
\(248\) 0 0
\(249\) −974.924 −0.248126
\(250\) 0 0
\(251\) 1224.38 0.307898 0.153949 0.988079i \(-0.450801\pi\)
0.153949 + 0.988079i \(0.450801\pi\)
\(252\) 0 0
\(253\) −1350.78 −0.335664
\(254\) 0 0
\(255\) −111.811 −0.0274584
\(256\) 0 0
\(257\) 2333.45 0.566369 0.283185 0.959065i \(-0.408609\pi\)
0.283185 + 0.959065i \(0.408609\pi\)
\(258\) 0 0
\(259\) 4526.43 1.08594
\(260\) 0 0
\(261\) −2736.26 −0.648927
\(262\) 0 0
\(263\) −4321.81 −1.01329 −0.506643 0.862156i \(-0.669114\pi\)
−0.506643 + 0.862156i \(0.669114\pi\)
\(264\) 0 0
\(265\) −155.404 −0.0360241
\(266\) 0 0
\(267\) −1092.72 −0.250463
\(268\) 0 0
\(269\) −4535.26 −1.02795 −0.513977 0.857804i \(-0.671828\pi\)
−0.513977 + 0.857804i \(0.671828\pi\)
\(270\) 0 0
\(271\) −2711.86 −0.607874 −0.303937 0.952692i \(-0.598301\pi\)
−0.303937 + 0.952692i \(0.598301\pi\)
\(272\) 0 0
\(273\) −1214.29 −0.269201
\(274\) 0 0
\(275\) 7336.74 1.60881
\(276\) 0 0
\(277\) 8317.49 1.80415 0.902075 0.431578i \(-0.142043\pi\)
0.902075 + 0.431578i \(0.142043\pi\)
\(278\) 0 0
\(279\) −3768.18 −0.808584
\(280\) 0 0
\(281\) 6004.12 1.27465 0.637324 0.770596i \(-0.280041\pi\)
0.637324 + 0.770596i \(0.280041\pi\)
\(282\) 0 0
\(283\) 8202.04 1.72283 0.861415 0.507902i \(-0.169579\pi\)
0.861415 + 0.507902i \(0.169579\pi\)
\(284\) 0 0
\(285\) 62.3060 0.0129498
\(286\) 0 0
\(287\) 8652.02 1.77949
\(288\) 0 0
\(289\) 12994.2 2.64485
\(290\) 0 0
\(291\) −266.222 −0.0536296
\(292\) 0 0
\(293\) 2324.09 0.463395 0.231698 0.972788i \(-0.425572\pi\)
0.231698 + 0.972788i \(0.425572\pi\)
\(294\) 0 0
\(295\) −65.8447 −0.0129954
\(296\) 0 0
\(297\) 7975.05 1.55811
\(298\) 0 0
\(299\) 254.011 0.0491300
\(300\) 0 0
\(301\) −12889.4 −2.46822
\(302\) 0 0
\(303\) 1977.51 0.374934
\(304\) 0 0
\(305\) 115.648 0.0217114
\(306\) 0 0
\(307\) −3462.82 −0.643758 −0.321879 0.946781i \(-0.604314\pi\)
−0.321879 + 0.946781i \(0.604314\pi\)
\(308\) 0 0
\(309\) 3784.70 0.696777
\(310\) 0 0
\(311\) 6510.92 1.18714 0.593570 0.804782i \(-0.297718\pi\)
0.593570 + 0.804782i \(0.297718\pi\)
\(312\) 0 0
\(313\) −9089.42 −1.64142 −0.820710 0.571345i \(-0.806422\pi\)
−0.820710 + 0.571345i \(0.806422\pi\)
\(314\) 0 0
\(315\) 178.369 0.0319046
\(316\) 0 0
\(317\) 7467.44 1.32307 0.661535 0.749914i \(-0.269905\pi\)
0.661535 + 0.749914i \(0.269905\pi\)
\(318\) 0 0
\(319\) −9017.30 −1.58267
\(320\) 0 0
\(321\) 3572.22 0.621128
\(322\) 0 0
\(323\) −9978.64 −1.71897
\(324\) 0 0
\(325\) −1379.66 −0.235476
\(326\) 0 0
\(327\) −4600.25 −0.777964
\(328\) 0 0
\(329\) −5009.89 −0.839527
\(330\) 0 0
\(331\) 11210.4 1.86157 0.930785 0.365568i \(-0.119125\pi\)
0.930785 + 0.365568i \(0.119125\pi\)
\(332\) 0 0
\(333\) 2222.75 0.365783
\(334\) 0 0
\(335\) −0.359540 −5.86381e−5 0
\(336\) 0 0
\(337\) −4895.19 −0.791271 −0.395635 0.918408i \(-0.629476\pi\)
−0.395635 + 0.918408i \(0.629476\pi\)
\(338\) 0 0
\(339\) −5474.41 −0.877078
\(340\) 0 0
\(341\) −12418.0 −1.97206
\(342\) 0 0
\(343\) −22902.1 −3.60524
\(344\) 0 0
\(345\) 19.2176 0.00299896
\(346\) 0 0
\(347\) 4287.33 0.663274 0.331637 0.943407i \(-0.392399\pi\)
0.331637 + 0.943407i \(0.392399\pi\)
\(348\) 0 0
\(349\) 1058.89 0.162409 0.0812047 0.996697i \(-0.474123\pi\)
0.0812047 + 0.996697i \(0.474123\pi\)
\(350\) 0 0
\(351\) −1499.69 −0.228056
\(352\) 0 0
\(353\) 8788.65 1.32514 0.662568 0.749002i \(-0.269467\pi\)
0.662568 + 0.749002i \(0.269467\pi\)
\(354\) 0 0
\(355\) 5.74820 0.000859388 0
\(356\) 0 0
\(357\) 14713.3 2.18126
\(358\) 0 0
\(359\) 9208.23 1.35374 0.676869 0.736104i \(-0.263336\pi\)
0.676869 + 0.736104i \(0.263336\pi\)
\(360\) 0 0
\(361\) −1298.47 −0.189309
\(362\) 0 0
\(363\) 6417.31 0.927883
\(364\) 0 0
\(365\) 201.568 0.0289056
\(366\) 0 0
\(367\) 429.163 0.0610413 0.0305206 0.999534i \(-0.490283\pi\)
0.0305206 + 0.999534i \(0.490283\pi\)
\(368\) 0 0
\(369\) 4248.65 0.599393
\(370\) 0 0
\(371\) 20449.7 2.86171
\(372\) 0 0
\(373\) −2126.51 −0.295192 −0.147596 0.989048i \(-0.547154\pi\)
−0.147596 + 0.989048i \(0.547154\pi\)
\(374\) 0 0
\(375\) −208.824 −0.0287563
\(376\) 0 0
\(377\) 1695.68 0.231650
\(378\) 0 0
\(379\) −7544.01 −1.02245 −0.511227 0.859446i \(-0.670809\pi\)
−0.511227 + 0.859446i \(0.670809\pi\)
\(380\) 0 0
\(381\) 3790.11 0.509642
\(382\) 0 0
\(383\) 2150.83 0.286951 0.143476 0.989654i \(-0.454172\pi\)
0.143476 + 0.989654i \(0.454172\pi\)
\(384\) 0 0
\(385\) 587.813 0.0778123
\(386\) 0 0
\(387\) −6329.46 −0.831382
\(388\) 0 0
\(389\) −7353.64 −0.958469 −0.479235 0.877687i \(-0.659086\pi\)
−0.479235 + 0.877687i \(0.659086\pi\)
\(390\) 0 0
\(391\) −3077.81 −0.398085
\(392\) 0 0
\(393\) −6636.68 −0.851848
\(394\) 0 0
\(395\) 91.4919 0.0116543
\(396\) 0 0
\(397\) −968.391 −0.122424 −0.0612118 0.998125i \(-0.519497\pi\)
−0.0612118 + 0.998125i \(0.519497\pi\)
\(398\) 0 0
\(399\) −8198.87 −1.02871
\(400\) 0 0
\(401\) 10728.6 1.33606 0.668032 0.744132i \(-0.267137\pi\)
0.668032 + 0.744132i \(0.267137\pi\)
\(402\) 0 0
\(403\) 2335.18 0.288644
\(404\) 0 0
\(405\) 19.2414 0.00236078
\(406\) 0 0
\(407\) 7325.03 0.892109
\(408\) 0 0
\(409\) −4611.10 −0.557468 −0.278734 0.960368i \(-0.589915\pi\)
−0.278734 + 0.960368i \(0.589915\pi\)
\(410\) 0 0
\(411\) 220.843 0.0265046
\(412\) 0 0
\(413\) 8664.54 1.03233
\(414\) 0 0
\(415\) −88.7477 −0.0104975
\(416\) 0 0
\(417\) −7370.61 −0.865564
\(418\) 0 0
\(419\) 2791.09 0.325426 0.162713 0.986673i \(-0.447975\pi\)
0.162713 + 0.986673i \(0.447975\pi\)
\(420\) 0 0
\(421\) 8033.51 0.929998 0.464999 0.885311i \(-0.346055\pi\)
0.464999 + 0.885311i \(0.346055\pi\)
\(422\) 0 0
\(423\) −2460.15 −0.282782
\(424\) 0 0
\(425\) 16717.0 1.90799
\(426\) 0 0
\(427\) −15218.2 −1.72473
\(428\) 0 0
\(429\) −1965.06 −0.221151
\(430\) 0 0
\(431\) 3217.53 0.359589 0.179795 0.983704i \(-0.442457\pi\)
0.179795 + 0.983704i \(0.442457\pi\)
\(432\) 0 0
\(433\) −2296.56 −0.254886 −0.127443 0.991846i \(-0.540677\pi\)
−0.127443 + 0.991846i \(0.540677\pi\)
\(434\) 0 0
\(435\) 128.290 0.0141403
\(436\) 0 0
\(437\) 1715.09 0.187743
\(438\) 0 0
\(439\) 16907.4 1.83815 0.919074 0.394085i \(-0.128938\pi\)
0.919074 + 0.394085i \(0.128938\pi\)
\(440\) 0 0
\(441\) −17359.0 −1.87442
\(442\) 0 0
\(443\) −14784.6 −1.58564 −0.792821 0.609455i \(-0.791388\pi\)
−0.792821 + 0.609455i \(0.791388\pi\)
\(444\) 0 0
\(445\) −99.4711 −0.0105964
\(446\) 0 0
\(447\) −7816.80 −0.827119
\(448\) 0 0
\(449\) 9675.76 1.01699 0.508494 0.861066i \(-0.330203\pi\)
0.508494 + 0.861066i \(0.330203\pi\)
\(450\) 0 0
\(451\) 14001.4 1.46186
\(452\) 0 0
\(453\) −4047.31 −0.419777
\(454\) 0 0
\(455\) −110.537 −0.0113891
\(456\) 0 0
\(457\) −10213.4 −1.04543 −0.522714 0.852508i \(-0.675081\pi\)
−0.522714 + 0.852508i \(0.675081\pi\)
\(458\) 0 0
\(459\) 18171.5 1.84787
\(460\) 0 0
\(461\) −15680.5 −1.58419 −0.792097 0.610395i \(-0.791011\pi\)
−0.792097 + 0.610395i \(0.791011\pi\)
\(462\) 0 0
\(463\) 652.571 0.0655022 0.0327511 0.999464i \(-0.489573\pi\)
0.0327511 + 0.999464i \(0.489573\pi\)
\(464\) 0 0
\(465\) 176.671 0.0176192
\(466\) 0 0
\(467\) 11175.8 1.10740 0.553700 0.832716i \(-0.313216\pi\)
0.553700 + 0.832716i \(0.313216\pi\)
\(468\) 0 0
\(469\) 47.3120 0.00465813
\(470\) 0 0
\(471\) 4034.43 0.394686
\(472\) 0 0
\(473\) −20858.7 −2.02766
\(474\) 0 0
\(475\) −9315.45 −0.899836
\(476\) 0 0
\(477\) 10042.0 0.963924
\(478\) 0 0
\(479\) −7598.05 −0.724768 −0.362384 0.932029i \(-0.618037\pi\)
−0.362384 + 0.932029i \(0.618037\pi\)
\(480\) 0 0
\(481\) −1377.46 −0.130575
\(482\) 0 0
\(483\) −2528.85 −0.238234
\(484\) 0 0
\(485\) −24.2343 −0.00226891
\(486\) 0 0
\(487\) 6187.04 0.575691 0.287846 0.957677i \(-0.407061\pi\)
0.287846 + 0.957677i \(0.407061\pi\)
\(488\) 0 0
\(489\) −126.574 −0.0117052
\(490\) 0 0
\(491\) −8467.85 −0.778307 −0.389153 0.921173i \(-0.627232\pi\)
−0.389153 + 0.921173i \(0.627232\pi\)
\(492\) 0 0
\(493\) −20546.3 −1.87699
\(494\) 0 0
\(495\) 288.651 0.0262099
\(496\) 0 0
\(497\) −756.408 −0.0682687
\(498\) 0 0
\(499\) 12653.8 1.13519 0.567597 0.823307i \(-0.307873\pi\)
0.567597 + 0.823307i \(0.307873\pi\)
\(500\) 0 0
\(501\) −2252.41 −0.200859
\(502\) 0 0
\(503\) 12749.6 1.13017 0.565086 0.825032i \(-0.308843\pi\)
0.565086 + 0.825032i \(0.308843\pi\)
\(504\) 0 0
\(505\) 180.014 0.0158624
\(506\) 0 0
\(507\) −6286.62 −0.550687
\(508\) 0 0
\(509\) 10596.7 0.922771 0.461386 0.887200i \(-0.347352\pi\)
0.461386 + 0.887200i \(0.347352\pi\)
\(510\) 0 0
\(511\) −26524.4 −2.29622
\(512\) 0 0
\(513\) −10125.9 −0.871482
\(514\) 0 0
\(515\) 344.523 0.0294786
\(516\) 0 0
\(517\) −8107.41 −0.689678
\(518\) 0 0
\(519\) −5983.82 −0.506089
\(520\) 0 0
\(521\) 19725.1 1.65868 0.829340 0.558744i \(-0.188717\pi\)
0.829340 + 0.558744i \(0.188717\pi\)
\(522\) 0 0
\(523\) −5389.96 −0.450643 −0.225322 0.974284i \(-0.572343\pi\)
−0.225322 + 0.974284i \(0.572343\pi\)
\(524\) 0 0
\(525\) 13735.4 1.14183
\(526\) 0 0
\(527\) −28294.9 −2.33879
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 4254.80 0.347726
\(532\) 0 0
\(533\) −2632.93 −0.213968
\(534\) 0 0
\(535\) 325.181 0.0262781
\(536\) 0 0
\(537\) 4142.11 0.332859
\(538\) 0 0
\(539\) −57206.3 −4.57152
\(540\) 0 0
\(541\) −1979.56 −0.157316 −0.0786580 0.996902i \(-0.525063\pi\)
−0.0786580 + 0.996902i \(0.525063\pi\)
\(542\) 0 0
\(543\) −9507.50 −0.751392
\(544\) 0 0
\(545\) −418.762 −0.0329134
\(546\) 0 0
\(547\) −8174.95 −0.639005 −0.319502 0.947586i \(-0.603516\pi\)
−0.319502 + 0.947586i \(0.603516\pi\)
\(548\) 0 0
\(549\) −7473.02 −0.580949
\(550\) 0 0
\(551\) 11449.3 0.885218
\(552\) 0 0
\(553\) −12039.5 −0.925804
\(554\) 0 0
\(555\) −104.214 −0.00797048
\(556\) 0 0
\(557\) −7290.39 −0.554585 −0.277292 0.960786i \(-0.589437\pi\)
−0.277292 + 0.960786i \(0.589437\pi\)
\(558\) 0 0
\(559\) 3922.43 0.296782
\(560\) 0 0
\(561\) 23810.2 1.79192
\(562\) 0 0
\(563\) −21688.3 −1.62354 −0.811771 0.583976i \(-0.801496\pi\)
−0.811771 + 0.583976i \(0.801496\pi\)
\(564\) 0 0
\(565\) −498.338 −0.0371066
\(566\) 0 0
\(567\) −2531.99 −0.187537
\(568\) 0 0
\(569\) 5643.16 0.415771 0.207885 0.978153i \(-0.433342\pi\)
0.207885 + 0.978153i \(0.433342\pi\)
\(570\) 0 0
\(571\) 4777.47 0.350141 0.175071 0.984556i \(-0.443985\pi\)
0.175071 + 0.984556i \(0.443985\pi\)
\(572\) 0 0
\(573\) −912.296 −0.0665126
\(574\) 0 0
\(575\) −2873.25 −0.208388
\(576\) 0 0
\(577\) 22322.7 1.61058 0.805291 0.592879i \(-0.202009\pi\)
0.805291 + 0.592879i \(0.202009\pi\)
\(578\) 0 0
\(579\) −5420.13 −0.389038
\(580\) 0 0
\(581\) 11678.3 0.833906
\(582\) 0 0
\(583\) 33093.3 2.35092
\(584\) 0 0
\(585\) −54.2802 −0.00383626
\(586\) 0 0
\(587\) 11591.2 0.815022 0.407511 0.913200i \(-0.366397\pi\)
0.407511 + 0.913200i \(0.366397\pi\)
\(588\) 0 0
\(589\) 15767.1 1.10301
\(590\) 0 0
\(591\) 13766.6 0.958177
\(592\) 0 0
\(593\) −16207.8 −1.12238 −0.561192 0.827686i \(-0.689657\pi\)
−0.561192 + 0.827686i \(0.689657\pi\)
\(594\) 0 0
\(595\) 1339.35 0.0922827
\(596\) 0 0
\(597\) 7097.42 0.486563
\(598\) 0 0
\(599\) −11167.4 −0.761748 −0.380874 0.924627i \(-0.624377\pi\)
−0.380874 + 0.924627i \(0.624377\pi\)
\(600\) 0 0
\(601\) 508.029 0.0344807 0.0172404 0.999851i \(-0.494512\pi\)
0.0172404 + 0.999851i \(0.494512\pi\)
\(602\) 0 0
\(603\) 23.2330 0.00156902
\(604\) 0 0
\(605\) 584.170 0.0392560
\(606\) 0 0
\(607\) 24285.6 1.62392 0.811962 0.583711i \(-0.198400\pi\)
0.811962 + 0.583711i \(0.198400\pi\)
\(608\) 0 0
\(609\) −16881.7 −1.12328
\(610\) 0 0
\(611\) 1524.58 0.100946
\(612\) 0 0
\(613\) 9400.66 0.619395 0.309697 0.950835i \(-0.399772\pi\)
0.309697 + 0.950835i \(0.399772\pi\)
\(614\) 0 0
\(615\) −199.198 −0.0130609
\(616\) 0 0
\(617\) 6351.99 0.414460 0.207230 0.978292i \(-0.433555\pi\)
0.207230 + 0.978292i \(0.433555\pi\)
\(618\) 0 0
\(619\) −25037.4 −1.62575 −0.812874 0.582440i \(-0.802098\pi\)
−0.812874 + 0.582440i \(0.802098\pi\)
\(620\) 0 0
\(621\) −3123.23 −0.201821
\(622\) 0 0
\(623\) 13089.4 0.841762
\(624\) 0 0
\(625\) 15596.5 0.998175
\(626\) 0 0
\(627\) −13268.1 −0.845097
\(628\) 0 0
\(629\) 16690.4 1.05801
\(630\) 0 0
\(631\) −21260.7 −1.34132 −0.670662 0.741763i \(-0.733990\pi\)
−0.670662 + 0.741763i \(0.733990\pi\)
\(632\) 0 0
\(633\) −2293.79 −0.144028
\(634\) 0 0
\(635\) 345.016 0.0215615
\(636\) 0 0
\(637\) 10757.5 0.669119
\(638\) 0 0
\(639\) −371.441 −0.0229953
\(640\) 0 0
\(641\) −27569.8 −1.69882 −0.849410 0.527734i \(-0.823042\pi\)
−0.849410 + 0.527734i \(0.823042\pi\)
\(642\) 0 0
\(643\) 11037.8 0.676964 0.338482 0.940973i \(-0.390086\pi\)
0.338482 + 0.940973i \(0.390086\pi\)
\(644\) 0 0
\(645\) 296.757 0.0181160
\(646\) 0 0
\(647\) −74.1252 −0.00450412 −0.00225206 0.999997i \(-0.500717\pi\)
−0.00225206 + 0.999997i \(0.500717\pi\)
\(648\) 0 0
\(649\) 14021.7 0.848071
\(650\) 0 0
\(651\) −23248.2 −1.39965
\(652\) 0 0
\(653\) 6413.33 0.384338 0.192169 0.981362i \(-0.438448\pi\)
0.192169 + 0.981362i \(0.438448\pi\)
\(654\) 0 0
\(655\) −604.140 −0.0360392
\(656\) 0 0
\(657\) −13025.0 −0.773447
\(658\) 0 0
\(659\) −13664.1 −0.807708 −0.403854 0.914824i \(-0.632330\pi\)
−0.403854 + 0.914824i \(0.632330\pi\)
\(660\) 0 0
\(661\) −25788.6 −1.51749 −0.758743 0.651390i \(-0.774186\pi\)
−0.758743 + 0.651390i \(0.774186\pi\)
\(662\) 0 0
\(663\) −4477.46 −0.262278
\(664\) 0 0
\(665\) −746.346 −0.0435219
\(666\) 0 0
\(667\) 3531.40 0.205002
\(668\) 0 0
\(669\) 14886.8 0.860327
\(670\) 0 0
\(671\) −24627.3 −1.41688
\(672\) 0 0
\(673\) 8273.47 0.473876 0.236938 0.971525i \(-0.423856\pi\)
0.236938 + 0.971525i \(0.423856\pi\)
\(674\) 0 0
\(675\) 16963.8 0.967311
\(676\) 0 0
\(677\) 23309.3 1.32326 0.661632 0.749829i \(-0.269864\pi\)
0.661632 + 0.749829i \(0.269864\pi\)
\(678\) 0 0
\(679\) 3189.00 0.180240
\(680\) 0 0
\(681\) 12609.4 0.709535
\(682\) 0 0
\(683\) −11157.4 −0.625073 −0.312536 0.949906i \(-0.601179\pi\)
−0.312536 + 0.949906i \(0.601179\pi\)
\(684\) 0 0
\(685\) 20.1034 0.00112133
\(686\) 0 0
\(687\) −4616.11 −0.256355
\(688\) 0 0
\(689\) −6223.13 −0.344096
\(690\) 0 0
\(691\) −11339.6 −0.624282 −0.312141 0.950036i \(-0.601046\pi\)
−0.312141 + 0.950036i \(0.601046\pi\)
\(692\) 0 0
\(693\) −37983.7 −2.08208
\(694\) 0 0
\(695\) −670.949 −0.0366195
\(696\) 0 0
\(697\) 31902.7 1.73372
\(698\) 0 0
\(699\) 2237.68 0.121083
\(700\) 0 0
\(701\) 24605.3 1.32572 0.662859 0.748744i \(-0.269343\pi\)
0.662859 + 0.748744i \(0.269343\pi\)
\(702\) 0 0
\(703\) −9300.59 −0.498974
\(704\) 0 0
\(705\) 115.344 0.00616188
\(706\) 0 0
\(707\) −23688.1 −1.26009
\(708\) 0 0
\(709\) 18362.1 0.972644 0.486322 0.873780i \(-0.338338\pi\)
0.486322 + 0.873780i \(0.338338\pi\)
\(710\) 0 0
\(711\) −5912.09 −0.311843
\(712\) 0 0
\(713\) 4863.20 0.255439
\(714\) 0 0
\(715\) −178.880 −0.00935627
\(716\) 0 0
\(717\) −16848.1 −0.877553
\(718\) 0 0
\(719\) 7706.37 0.399721 0.199860 0.979824i \(-0.435951\pi\)
0.199860 + 0.979824i \(0.435951\pi\)
\(720\) 0 0
\(721\) −45335.9 −2.34174
\(722\) 0 0
\(723\) −9679.47 −0.497902
\(724\) 0 0
\(725\) −19180.7 −0.982558
\(726\) 0 0
\(727\) 9051.76 0.461776 0.230888 0.972980i \(-0.425837\pi\)
0.230888 + 0.972980i \(0.425837\pi\)
\(728\) 0 0
\(729\) 9864.56 0.501172
\(730\) 0 0
\(731\) −47527.3 −2.40473
\(732\) 0 0
\(733\) −9636.50 −0.485583 −0.242791 0.970079i \(-0.578063\pi\)
−0.242791 + 0.970079i \(0.578063\pi\)
\(734\) 0 0
\(735\) 813.876 0.0408439
\(736\) 0 0
\(737\) 76.5641 0.00382670
\(738\) 0 0
\(739\) 2264.22 0.112707 0.0563537 0.998411i \(-0.482053\pi\)
0.0563537 + 0.998411i \(0.482053\pi\)
\(740\) 0 0
\(741\) 2495.03 0.123694
\(742\) 0 0
\(743\) 4566.17 0.225460 0.112730 0.993626i \(-0.464041\pi\)
0.112730 + 0.993626i \(0.464041\pi\)
\(744\) 0 0
\(745\) −711.566 −0.0349930
\(746\) 0 0
\(747\) 5734.76 0.280889
\(748\) 0 0
\(749\) −42790.7 −2.08750
\(750\) 0 0
\(751\) 7425.66 0.360807 0.180404 0.983593i \(-0.442260\pi\)
0.180404 + 0.983593i \(0.442260\pi\)
\(752\) 0 0
\(753\) 3709.46 0.179522
\(754\) 0 0
\(755\) −368.428 −0.0177596
\(756\) 0 0
\(757\) −5702.50 −0.273792 −0.136896 0.990585i \(-0.543713\pi\)
−0.136896 + 0.990585i \(0.543713\pi\)
\(758\) 0 0
\(759\) −4092.40 −0.195711
\(760\) 0 0
\(761\) −2718.52 −0.129496 −0.0647479 0.997902i \(-0.520624\pi\)
−0.0647479 + 0.997902i \(0.520624\pi\)
\(762\) 0 0
\(763\) 55105.1 2.61460
\(764\) 0 0
\(765\) 657.703 0.0310840
\(766\) 0 0
\(767\) −2636.74 −0.124129
\(768\) 0 0
\(769\) −22348.6 −1.04800 −0.524000 0.851718i \(-0.675561\pi\)
−0.524000 + 0.851718i \(0.675561\pi\)
\(770\) 0 0
\(771\) 7069.55 0.330225
\(772\) 0 0
\(773\) −29249.0 −1.36095 −0.680473 0.732773i \(-0.738226\pi\)
−0.680473 + 0.732773i \(0.738226\pi\)
\(774\) 0 0
\(775\) −26414.3 −1.22430
\(776\) 0 0
\(777\) 13713.5 0.633165
\(778\) 0 0
\(779\) −17777.6 −0.817647
\(780\) 0 0
\(781\) −1224.08 −0.0560833
\(782\) 0 0
\(783\) −20849.5 −0.951597
\(784\) 0 0
\(785\) 367.256 0.0166980
\(786\) 0 0
\(787\) 13674.7 0.619378 0.309689 0.950838i \(-0.399775\pi\)
0.309689 + 0.950838i \(0.399775\pi\)
\(788\) 0 0
\(789\) −13093.6 −0.590804
\(790\) 0 0
\(791\) 65576.5 2.94770
\(792\) 0 0
\(793\) 4631.10 0.207384
\(794\) 0 0
\(795\) −470.820 −0.0210041
\(796\) 0 0
\(797\) −27180.4 −1.20800 −0.604002 0.796983i \(-0.706428\pi\)
−0.604002 + 0.796983i \(0.706428\pi\)
\(798\) 0 0
\(799\) −18473.0 −0.817934
\(800\) 0 0
\(801\) 6427.69 0.283535
\(802\) 0 0
\(803\) −42923.9 −1.88636
\(804\) 0 0
\(805\) −230.202 −0.0100790
\(806\) 0 0
\(807\) −13740.3 −0.599356
\(808\) 0 0
\(809\) 5525.23 0.240119 0.120060 0.992767i \(-0.461691\pi\)
0.120060 + 0.992767i \(0.461691\pi\)
\(810\) 0 0
\(811\) −33085.9 −1.43256 −0.716278 0.697815i \(-0.754156\pi\)
−0.716278 + 0.697815i \(0.754156\pi\)
\(812\) 0 0
\(813\) −8215.99 −0.354425
\(814\) 0 0
\(815\) −11.5220 −0.000495214 0
\(816\) 0 0
\(817\) 26484.3 1.13411
\(818\) 0 0
\(819\) 7142.76 0.304747
\(820\) 0 0
\(821\) −22886.6 −0.972896 −0.486448 0.873710i \(-0.661708\pi\)
−0.486448 + 0.873710i \(0.661708\pi\)
\(822\) 0 0
\(823\) 29113.5 1.23309 0.616545 0.787319i \(-0.288532\pi\)
0.616545 + 0.787319i \(0.288532\pi\)
\(824\) 0 0
\(825\) 22227.8 0.938025
\(826\) 0 0
\(827\) −28107.4 −1.18185 −0.590925 0.806726i \(-0.701237\pi\)
−0.590925 + 0.806726i \(0.701237\pi\)
\(828\) 0 0
\(829\) −28553.2 −1.19625 −0.598126 0.801402i \(-0.704088\pi\)
−0.598126 + 0.801402i \(0.704088\pi\)
\(830\) 0 0
\(831\) 25199.1 1.05192
\(832\) 0 0
\(833\) −130347. −5.42167
\(834\) 0 0
\(835\) −205.037 −0.00849774
\(836\) 0 0
\(837\) −28712.5 −1.18572
\(838\) 0 0
\(839\) 2444.15 0.100574 0.0502869 0.998735i \(-0.483986\pi\)
0.0502869 + 0.998735i \(0.483986\pi\)
\(840\) 0 0
\(841\) −814.691 −0.0334040
\(842\) 0 0
\(843\) 18190.4 0.743192
\(844\) 0 0
\(845\) −572.273 −0.0232980
\(846\) 0 0
\(847\) −76871.2 −3.11845
\(848\) 0 0
\(849\) 24849.3 1.00451
\(850\) 0 0
\(851\) −2868.67 −0.115554
\(852\) 0 0
\(853\) 18469.0 0.741344 0.370672 0.928764i \(-0.379127\pi\)
0.370672 + 0.928764i \(0.379127\pi\)
\(854\) 0 0
\(855\) −366.500 −0.0146597
\(856\) 0 0
\(857\) −9906.35 −0.394860 −0.197430 0.980317i \(-0.563259\pi\)
−0.197430 + 0.980317i \(0.563259\pi\)
\(858\) 0 0
\(859\) 15351.1 0.609748 0.304874 0.952393i \(-0.401386\pi\)
0.304874 + 0.952393i \(0.401386\pi\)
\(860\) 0 0
\(861\) 26212.6 1.03754
\(862\) 0 0
\(863\) −6654.73 −0.262491 −0.131245 0.991350i \(-0.541898\pi\)
−0.131245 + 0.991350i \(0.541898\pi\)
\(864\) 0 0
\(865\) −544.709 −0.0214112
\(866\) 0 0
\(867\) 39367.8 1.54210
\(868\) 0 0
\(869\) −19483.2 −0.760556
\(870\) 0 0
\(871\) −14.3977 −0.000560101 0
\(872\) 0 0
\(873\) 1565.99 0.0607110
\(874\) 0 0
\(875\) 2501.44 0.0966447
\(876\) 0 0
\(877\) −3982.77 −0.153351 −0.0766754 0.997056i \(-0.524431\pi\)
−0.0766754 + 0.997056i \(0.524431\pi\)
\(878\) 0 0
\(879\) 7041.18 0.270186
\(880\) 0 0
\(881\) −15109.1 −0.577795 −0.288897 0.957360i \(-0.593289\pi\)
−0.288897 + 0.957360i \(0.593289\pi\)
\(882\) 0 0
\(883\) −7041.73 −0.268373 −0.134186 0.990956i \(-0.542842\pi\)
−0.134186 + 0.990956i \(0.542842\pi\)
\(884\) 0 0
\(885\) −199.487 −0.00757703
\(886\) 0 0
\(887\) −7742.14 −0.293073 −0.146537 0.989205i \(-0.546813\pi\)
−0.146537 + 0.989205i \(0.546813\pi\)
\(888\) 0 0
\(889\) −45400.7 −1.71281
\(890\) 0 0
\(891\) −4097.47 −0.154063
\(892\) 0 0
\(893\) 10294.0 0.385750
\(894\) 0 0
\(895\) 377.057 0.0140823
\(896\) 0 0
\(897\) 769.566 0.0286456
\(898\) 0 0
\(899\) 32464.9 1.20441
\(900\) 0 0
\(901\) 75404.4 2.78811
\(902\) 0 0
\(903\) −39050.4 −1.43911
\(904\) 0 0
\(905\) −865.471 −0.0317892
\(906\) 0 0
\(907\) 6151.24 0.225191 0.112596 0.993641i \(-0.464084\pi\)
0.112596 + 0.993641i \(0.464084\pi\)
\(908\) 0 0
\(909\) −11632.2 −0.424441
\(910\) 0 0
\(911\) 10999.0 0.400013 0.200006 0.979795i \(-0.435904\pi\)
0.200006 + 0.979795i \(0.435904\pi\)
\(912\) 0 0
\(913\) 18898.8 0.685061
\(914\) 0 0
\(915\) 350.373 0.0126590
\(916\) 0 0
\(917\) 79499.0 2.86291
\(918\) 0 0
\(919\) 35572.5 1.27686 0.638428 0.769682i \(-0.279585\pi\)
0.638428 + 0.769682i \(0.279585\pi\)
\(920\) 0 0
\(921\) −10491.1 −0.375347
\(922\) 0 0
\(923\) 230.186 0.00820873
\(924\) 0 0
\(925\) 15581.1 0.553841
\(926\) 0 0
\(927\) −22262.6 −0.788781
\(928\) 0 0
\(929\) −29849.4 −1.05417 −0.527087 0.849811i \(-0.676716\pi\)
−0.527087 + 0.849811i \(0.676716\pi\)
\(930\) 0 0
\(931\) 72634.8 2.55694
\(932\) 0 0
\(933\) 19725.8 0.692170
\(934\) 0 0
\(935\) 2167.45 0.0758110
\(936\) 0 0
\(937\) 10376.2 0.361765 0.180883 0.983505i \(-0.442105\pi\)
0.180883 + 0.983505i \(0.442105\pi\)
\(938\) 0 0
\(939\) −27537.8 −0.957041
\(940\) 0 0
\(941\) 45307.1 1.56957 0.784787 0.619766i \(-0.212772\pi\)
0.784787 + 0.619766i \(0.212772\pi\)
\(942\) 0 0
\(943\) −5483.30 −0.189354
\(944\) 0 0
\(945\) 1359.12 0.0467854
\(946\) 0 0
\(947\) 17054.2 0.585203 0.292601 0.956235i \(-0.405479\pi\)
0.292601 + 0.956235i \(0.405479\pi\)
\(948\) 0 0
\(949\) 8071.74 0.276101
\(950\) 0 0
\(951\) 22623.7 0.771425
\(952\) 0 0
\(953\) 38930.2 1.32327 0.661633 0.749828i \(-0.269864\pi\)
0.661633 + 0.749828i \(0.269864\pi\)
\(954\) 0 0
\(955\) −83.0466 −0.00281395
\(956\) 0 0
\(957\) −27319.3 −0.922787
\(958\) 0 0
\(959\) −2645.42 −0.0890773
\(960\) 0 0
\(961\) 14917.3 0.500732
\(962\) 0 0
\(963\) −21012.8 −0.703143
\(964\) 0 0
\(965\) −493.397 −0.0164591
\(966\) 0 0
\(967\) −34227.9 −1.13826 −0.569129 0.822248i \(-0.692719\pi\)
−0.569129 + 0.822248i \(0.692719\pi\)
\(968\) 0 0
\(969\) −30231.8 −1.00226
\(970\) 0 0
\(971\) −44221.4 −1.46152 −0.730759 0.682636i \(-0.760834\pi\)
−0.730759 + 0.682636i \(0.760834\pi\)
\(972\) 0 0
\(973\) 88290.4 2.90900
\(974\) 0 0
\(975\) −4179.88 −0.137296
\(976\) 0 0
\(977\) 35205.3 1.15283 0.576416 0.817157i \(-0.304451\pi\)
0.576416 + 0.817157i \(0.304451\pi\)
\(978\) 0 0
\(979\) 21182.4 0.691514
\(980\) 0 0
\(981\) 27059.9 0.880688
\(982\) 0 0
\(983\) −37390.7 −1.21320 −0.606601 0.795006i \(-0.707468\pi\)
−0.606601 + 0.795006i \(0.707468\pi\)
\(984\) 0 0
\(985\) 1253.18 0.0405377
\(986\) 0 0
\(987\) −15178.2 −0.489492
\(988\) 0 0
\(989\) 8168.79 0.262641
\(990\) 0 0
\(991\) 49921.9 1.60022 0.800112 0.599850i \(-0.204773\pi\)
0.800112 + 0.599850i \(0.204773\pi\)
\(992\) 0 0
\(993\) 33963.6 1.08540
\(994\) 0 0
\(995\) 646.081 0.0205851
\(996\) 0 0
\(997\) 27936.3 0.887414 0.443707 0.896172i \(-0.353663\pi\)
0.443707 + 0.896172i \(0.353663\pi\)
\(998\) 0 0
\(999\) 16936.7 0.536390
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.4.a.bk.1.6 9
4.3 odd 2 1472.4.a.bj.1.4 9
8.3 odd 2 736.4.a.h.1.6 9
8.5 even 2 736.4.a.i.1.4 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
736.4.a.h.1.6 9 8.3 odd 2
736.4.a.i.1.4 yes 9 8.5 even 2
1472.4.a.bj.1.4 9 4.3 odd 2
1472.4.a.bk.1.6 9 1.1 even 1 trivial