Properties

Label 1472.4.a.bk.1.5
Level $1472$
Weight $4$
Character 1472.1
Self dual yes
Analytic conductor $86.851$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1472,4,Mod(1,1472)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1472.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1472, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,0,0,0,0,0,42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.8508115285\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 3x^{8} - 147x^{7} - 97x^{6} + 4561x^{5} + 7383x^{4} - 31427x^{3} - 43981x^{2} + 17596x + 12306 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 736)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.625016\) of defining polynomial
Character \(\chi\) \(=\) 1472.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.66678 q^{3} -9.23864 q^{5} -3.16263 q^{7} -24.2218 q^{9} +13.0566 q^{11} +37.8002 q^{13} -15.3988 q^{15} +7.39954 q^{17} -122.752 q^{19} -5.27141 q^{21} +23.0000 q^{23} -39.6475 q^{25} -85.3757 q^{27} -91.6626 q^{29} +187.336 q^{31} +21.7625 q^{33} +29.2184 q^{35} +223.354 q^{37} +63.0048 q^{39} +413.874 q^{41} -482.585 q^{43} +223.777 q^{45} -352.450 q^{47} -332.998 q^{49} +12.3334 q^{51} +88.5192 q^{53} -120.625 q^{55} -204.601 q^{57} -253.386 q^{59} -592.897 q^{61} +76.6046 q^{63} -349.223 q^{65} +787.886 q^{67} +38.3360 q^{69} +782.621 q^{71} +117.824 q^{73} -66.0838 q^{75} -41.2931 q^{77} +1062.77 q^{79} +511.687 q^{81} +431.000 q^{83} -68.3618 q^{85} -152.782 q^{87} +247.711 q^{89} -119.548 q^{91} +312.249 q^{93} +1134.06 q^{95} +615.910 q^{97} -316.254 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 42 q^{7} + 71 q^{9} - 66 q^{11} - 48 q^{13} + 90 q^{15} - 32 q^{17} - 6 q^{21} + 207 q^{23} + 135 q^{25} + 88 q^{29} + 556 q^{31} - 230 q^{33} - 368 q^{35} + 368 q^{37} + 468 q^{39} - 216 q^{41} + 552 q^{43}+ \cdots - 552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.66678 0.320773 0.160386 0.987054i \(-0.448726\pi\)
0.160386 + 0.987054i \(0.448726\pi\)
\(4\) 0 0
\(5\) −9.23864 −0.826329 −0.413165 0.910656i \(-0.635577\pi\)
−0.413165 + 0.910656i \(0.635577\pi\)
\(6\) 0 0
\(7\) −3.16263 −0.170766 −0.0853829 0.996348i \(-0.527211\pi\)
−0.0853829 + 0.996348i \(0.527211\pi\)
\(8\) 0 0
\(9\) −24.2218 −0.897105
\(10\) 0 0
\(11\) 13.0566 0.357883 0.178941 0.983860i \(-0.442733\pi\)
0.178941 + 0.983860i \(0.442733\pi\)
\(12\) 0 0
\(13\) 37.8002 0.806453 0.403227 0.915100i \(-0.367889\pi\)
0.403227 + 0.915100i \(0.367889\pi\)
\(14\) 0 0
\(15\) −15.3988 −0.265064
\(16\) 0 0
\(17\) 7.39954 0.105568 0.0527839 0.998606i \(-0.483191\pi\)
0.0527839 + 0.998606i \(0.483191\pi\)
\(18\) 0 0
\(19\) −122.752 −1.48217 −0.741084 0.671413i \(-0.765688\pi\)
−0.741084 + 0.671413i \(0.765688\pi\)
\(20\) 0 0
\(21\) −5.27141 −0.0547770
\(22\) 0 0
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) −39.6475 −0.317180
\(26\) 0 0
\(27\) −85.3757 −0.608540
\(28\) 0 0
\(29\) −91.6626 −0.586942 −0.293471 0.955968i \(-0.594810\pi\)
−0.293471 + 0.955968i \(0.594810\pi\)
\(30\) 0 0
\(31\) 187.336 1.08537 0.542687 0.839935i \(-0.317407\pi\)
0.542687 + 0.839935i \(0.317407\pi\)
\(32\) 0 0
\(33\) 21.7625 0.114799
\(34\) 0 0
\(35\) 29.2184 0.141109
\(36\) 0 0
\(37\) 223.354 0.992409 0.496204 0.868206i \(-0.334727\pi\)
0.496204 + 0.868206i \(0.334727\pi\)
\(38\) 0 0
\(39\) 63.0048 0.258688
\(40\) 0 0
\(41\) 413.874 1.57649 0.788247 0.615359i \(-0.210989\pi\)
0.788247 + 0.615359i \(0.210989\pi\)
\(42\) 0 0
\(43\) −482.585 −1.71148 −0.855738 0.517410i \(-0.826896\pi\)
−0.855738 + 0.517410i \(0.826896\pi\)
\(44\) 0 0
\(45\) 223.777 0.741304
\(46\) 0 0
\(47\) −352.450 −1.09383 −0.546917 0.837187i \(-0.684199\pi\)
−0.546917 + 0.837187i \(0.684199\pi\)
\(48\) 0 0
\(49\) −332.998 −0.970839
\(50\) 0 0
\(51\) 12.3334 0.0338633
\(52\) 0 0
\(53\) 88.5192 0.229416 0.114708 0.993399i \(-0.463407\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(54\) 0 0
\(55\) −120.625 −0.295729
\(56\) 0 0
\(57\) −204.601 −0.475439
\(58\) 0 0
\(59\) −253.386 −0.559119 −0.279559 0.960128i \(-0.590188\pi\)
−0.279559 + 0.960128i \(0.590188\pi\)
\(60\) 0 0
\(61\) −592.897 −1.24447 −0.622236 0.782830i \(-0.713775\pi\)
−0.622236 + 0.782830i \(0.713775\pi\)
\(62\) 0 0
\(63\) 76.6046 0.153195
\(64\) 0 0
\(65\) −349.223 −0.666396
\(66\) 0 0
\(67\) 787.886 1.43665 0.718325 0.695708i \(-0.244909\pi\)
0.718325 + 0.695708i \(0.244909\pi\)
\(68\) 0 0
\(69\) 38.3360 0.0668857
\(70\) 0 0
\(71\) 782.621 1.30817 0.654085 0.756421i \(-0.273054\pi\)
0.654085 + 0.756421i \(0.273054\pi\)
\(72\) 0 0
\(73\) 117.824 0.188908 0.0944539 0.995529i \(-0.469889\pi\)
0.0944539 + 0.995529i \(0.469889\pi\)
\(74\) 0 0
\(75\) −66.0838 −0.101743
\(76\) 0 0
\(77\) −41.2931 −0.0611141
\(78\) 0 0
\(79\) 1062.77 1.51355 0.756776 0.653674i \(-0.226773\pi\)
0.756776 + 0.653674i \(0.226773\pi\)
\(80\) 0 0
\(81\) 511.687 0.701902
\(82\) 0 0
\(83\) 431.000 0.569981 0.284991 0.958530i \(-0.408009\pi\)
0.284991 + 0.958530i \(0.408009\pi\)
\(84\) 0 0
\(85\) −68.3618 −0.0872338
\(86\) 0 0
\(87\) −152.782 −0.188275
\(88\) 0 0
\(89\) 247.711 0.295026 0.147513 0.989060i \(-0.452873\pi\)
0.147513 + 0.989060i \(0.452873\pi\)
\(90\) 0 0
\(91\) −119.548 −0.137715
\(92\) 0 0
\(93\) 312.249 0.348159
\(94\) 0 0
\(95\) 1134.06 1.22476
\(96\) 0 0
\(97\) 615.910 0.644703 0.322351 0.946620i \(-0.395527\pi\)
0.322351 + 0.946620i \(0.395527\pi\)
\(98\) 0 0
\(99\) −316.254 −0.321058
\(100\) 0 0
\(101\) 880.587 0.867542 0.433771 0.901023i \(-0.357183\pi\)
0.433771 + 0.901023i \(0.357183\pi\)
\(102\) 0 0
\(103\) 1514.96 1.44926 0.724628 0.689140i \(-0.242012\pi\)
0.724628 + 0.689140i \(0.242012\pi\)
\(104\) 0 0
\(105\) 48.7007 0.0452638
\(106\) 0 0
\(107\) −1426.94 −1.28923 −0.644614 0.764508i \(-0.722982\pi\)
−0.644614 + 0.764508i \(0.722982\pi\)
\(108\) 0 0
\(109\) −123.283 −0.108333 −0.0541667 0.998532i \(-0.517250\pi\)
−0.0541667 + 0.998532i \(0.517250\pi\)
\(110\) 0 0
\(111\) 372.282 0.318338
\(112\) 0 0
\(113\) 795.263 0.662054 0.331027 0.943621i \(-0.392605\pi\)
0.331027 + 0.943621i \(0.392605\pi\)
\(114\) 0 0
\(115\) −212.489 −0.172302
\(116\) 0 0
\(117\) −915.591 −0.723473
\(118\) 0 0
\(119\) −23.4020 −0.0180274
\(120\) 0 0
\(121\) −1160.53 −0.871920
\(122\) 0 0
\(123\) 689.838 0.505696
\(124\) 0 0
\(125\) 1521.12 1.08842
\(126\) 0 0
\(127\) 2450.52 1.71219 0.856097 0.516816i \(-0.172883\pi\)
0.856097 + 0.516816i \(0.172883\pi\)
\(128\) 0 0
\(129\) −804.364 −0.548995
\(130\) 0 0
\(131\) 910.056 0.606962 0.303481 0.952838i \(-0.401851\pi\)
0.303481 + 0.952838i \(0.401851\pi\)
\(132\) 0 0
\(133\) 388.218 0.253103
\(134\) 0 0
\(135\) 788.756 0.502854
\(136\) 0 0
\(137\) 1215.66 0.758110 0.379055 0.925374i \(-0.376249\pi\)
0.379055 + 0.925374i \(0.376249\pi\)
\(138\) 0 0
\(139\) −803.695 −0.490421 −0.245211 0.969470i \(-0.578857\pi\)
−0.245211 + 0.969470i \(0.578857\pi\)
\(140\) 0 0
\(141\) −587.459 −0.350872
\(142\) 0 0
\(143\) 493.542 0.288616
\(144\) 0 0
\(145\) 846.838 0.485007
\(146\) 0 0
\(147\) −555.035 −0.311419
\(148\) 0 0
\(149\) −3321.11 −1.82601 −0.913007 0.407944i \(-0.866246\pi\)
−0.913007 + 0.407944i \(0.866246\pi\)
\(150\) 0 0
\(151\) 2843.93 1.53269 0.766344 0.642431i \(-0.222074\pi\)
0.766344 + 0.642431i \(0.222074\pi\)
\(152\) 0 0
\(153\) −179.231 −0.0947054
\(154\) 0 0
\(155\) −1730.73 −0.896877
\(156\) 0 0
\(157\) −444.465 −0.225937 −0.112969 0.993599i \(-0.536036\pi\)
−0.112969 + 0.993599i \(0.536036\pi\)
\(158\) 0 0
\(159\) 147.542 0.0735904
\(160\) 0 0
\(161\) −72.7404 −0.0356071
\(162\) 0 0
\(163\) 254.266 0.122182 0.0610908 0.998132i \(-0.480542\pi\)
0.0610908 + 0.998132i \(0.480542\pi\)
\(164\) 0 0
\(165\) −201.056 −0.0948618
\(166\) 0 0
\(167\) 56.0642 0.0259783 0.0129892 0.999916i \(-0.495865\pi\)
0.0129892 + 0.999916i \(0.495865\pi\)
\(168\) 0 0
\(169\) −768.143 −0.349633
\(170\) 0 0
\(171\) 2973.27 1.32966
\(172\) 0 0
\(173\) 3903.62 1.71553 0.857765 0.514042i \(-0.171852\pi\)
0.857765 + 0.514042i \(0.171852\pi\)
\(174\) 0 0
\(175\) 125.390 0.0541635
\(176\) 0 0
\(177\) −422.339 −0.179350
\(178\) 0 0
\(179\) 2099.74 0.876770 0.438385 0.898787i \(-0.355551\pi\)
0.438385 + 0.898787i \(0.355551\pi\)
\(180\) 0 0
\(181\) 99.5753 0.0408916 0.0204458 0.999791i \(-0.493491\pi\)
0.0204458 + 0.999791i \(0.493491\pi\)
\(182\) 0 0
\(183\) −988.232 −0.399192
\(184\) 0 0
\(185\) −2063.49 −0.820057
\(186\) 0 0
\(187\) 96.6128 0.0377809
\(188\) 0 0
\(189\) 270.012 0.103918
\(190\) 0 0
\(191\) −1733.84 −0.656837 −0.328419 0.944532i \(-0.606516\pi\)
−0.328419 + 0.944532i \(0.606516\pi\)
\(192\) 0 0
\(193\) −1729.41 −0.645003 −0.322501 0.946569i \(-0.604524\pi\)
−0.322501 + 0.946569i \(0.604524\pi\)
\(194\) 0 0
\(195\) −582.079 −0.213762
\(196\) 0 0
\(197\) −1727.26 −0.624683 −0.312341 0.949970i \(-0.601113\pi\)
−0.312341 + 0.949970i \(0.601113\pi\)
\(198\) 0 0
\(199\) 1399.12 0.498395 0.249198 0.968453i \(-0.419833\pi\)
0.249198 + 0.968453i \(0.419833\pi\)
\(200\) 0 0
\(201\) 1313.24 0.460838
\(202\) 0 0
\(203\) 289.895 0.100230
\(204\) 0 0
\(205\) −3823.63 −1.30270
\(206\) 0 0
\(207\) −557.102 −0.187059
\(208\) 0 0
\(209\) −1602.72 −0.530442
\(210\) 0 0
\(211\) 5502.20 1.79520 0.897599 0.440812i \(-0.145310\pi\)
0.897599 + 0.440812i \(0.145310\pi\)
\(212\) 0 0
\(213\) 1304.46 0.419625
\(214\) 0 0
\(215\) 4458.43 1.41424
\(216\) 0 0
\(217\) −592.475 −0.185345
\(218\) 0 0
\(219\) 196.387 0.0605965
\(220\) 0 0
\(221\) 279.704 0.0851355
\(222\) 0 0
\(223\) 240.020 0.0720759 0.0360379 0.999350i \(-0.488526\pi\)
0.0360379 + 0.999350i \(0.488526\pi\)
\(224\) 0 0
\(225\) 960.335 0.284544
\(226\) 0 0
\(227\) 868.383 0.253906 0.126953 0.991909i \(-0.459480\pi\)
0.126953 + 0.991909i \(0.459480\pi\)
\(228\) 0 0
\(229\) −863.833 −0.249274 −0.124637 0.992202i \(-0.539777\pi\)
−0.124637 + 0.992202i \(0.539777\pi\)
\(230\) 0 0
\(231\) −68.8267 −0.0196037
\(232\) 0 0
\(233\) −1453.38 −0.408645 −0.204323 0.978904i \(-0.565499\pi\)
−0.204323 + 0.978904i \(0.565499\pi\)
\(234\) 0 0
\(235\) 3256.16 0.903866
\(236\) 0 0
\(237\) 1771.40 0.485506
\(238\) 0 0
\(239\) 3867.47 1.04672 0.523360 0.852112i \(-0.324678\pi\)
0.523360 + 0.852112i \(0.324678\pi\)
\(240\) 0 0
\(241\) 5238.20 1.40009 0.700046 0.714098i \(-0.253163\pi\)
0.700046 + 0.714098i \(0.253163\pi\)
\(242\) 0 0
\(243\) 3158.02 0.833691
\(244\) 0 0
\(245\) 3076.45 0.802233
\(246\) 0 0
\(247\) −4640.04 −1.19530
\(248\) 0 0
\(249\) 718.385 0.182834
\(250\) 0 0
\(251\) 2286.99 0.575113 0.287557 0.957764i \(-0.407157\pi\)
0.287557 + 0.957764i \(0.407157\pi\)
\(252\) 0 0
\(253\) 300.301 0.0746237
\(254\) 0 0
\(255\) −113.944 −0.0279822
\(256\) 0 0
\(257\) −2874.64 −0.697725 −0.348863 0.937174i \(-0.613432\pi\)
−0.348863 + 0.937174i \(0.613432\pi\)
\(258\) 0 0
\(259\) −706.384 −0.169469
\(260\) 0 0
\(261\) 2220.24 0.526548
\(262\) 0 0
\(263\) 962.922 0.225765 0.112883 0.993608i \(-0.463992\pi\)
0.112883 + 0.993608i \(0.463992\pi\)
\(264\) 0 0
\(265\) −817.797 −0.189573
\(266\) 0 0
\(267\) 412.881 0.0946364
\(268\) 0 0
\(269\) −3355.11 −0.760465 −0.380232 0.924891i \(-0.624156\pi\)
−0.380232 + 0.924891i \(0.624156\pi\)
\(270\) 0 0
\(271\) 3528.43 0.790911 0.395455 0.918485i \(-0.370587\pi\)
0.395455 + 0.918485i \(0.370587\pi\)
\(272\) 0 0
\(273\) −199.261 −0.0441751
\(274\) 0 0
\(275\) −517.661 −0.113513
\(276\) 0 0
\(277\) 960.706 0.208387 0.104194 0.994557i \(-0.466774\pi\)
0.104194 + 0.994557i \(0.466774\pi\)
\(278\) 0 0
\(279\) −4537.63 −0.973695
\(280\) 0 0
\(281\) 3860.68 0.819605 0.409803 0.912174i \(-0.365598\pi\)
0.409803 + 0.912174i \(0.365598\pi\)
\(282\) 0 0
\(283\) −3950.23 −0.829742 −0.414871 0.909880i \(-0.636173\pi\)
−0.414871 + 0.909880i \(0.636173\pi\)
\(284\) 0 0
\(285\) 1890.23 0.392869
\(286\) 0 0
\(287\) −1308.93 −0.269211
\(288\) 0 0
\(289\) −4858.25 −0.988855
\(290\) 0 0
\(291\) 1026.59 0.206803
\(292\) 0 0
\(293\) −4881.86 −0.973384 −0.486692 0.873574i \(-0.661797\pi\)
−0.486692 + 0.873574i \(0.661797\pi\)
\(294\) 0 0
\(295\) 2340.94 0.462016
\(296\) 0 0
\(297\) −1114.72 −0.217786
\(298\) 0 0
\(299\) 869.405 0.168157
\(300\) 0 0
\(301\) 1526.23 0.292261
\(302\) 0 0
\(303\) 1467.75 0.278284
\(304\) 0 0
\(305\) 5477.57 1.02834
\(306\) 0 0
\(307\) 8023.71 1.49165 0.745826 0.666141i \(-0.232055\pi\)
0.745826 + 0.666141i \(0.232055\pi\)
\(308\) 0 0
\(309\) 2525.11 0.464882
\(310\) 0 0
\(311\) −8162.92 −1.48835 −0.744175 0.667984i \(-0.767157\pi\)
−0.744175 + 0.667984i \(0.767157\pi\)
\(312\) 0 0
\(313\) −8135.11 −1.46909 −0.734543 0.678562i \(-0.762603\pi\)
−0.734543 + 0.678562i \(0.762603\pi\)
\(314\) 0 0
\(315\) −707.722 −0.126589
\(316\) 0 0
\(317\) −5721.01 −1.01364 −0.506820 0.862052i \(-0.669179\pi\)
−0.506820 + 0.862052i \(0.669179\pi\)
\(318\) 0 0
\(319\) −1196.80 −0.210056
\(320\) 0 0
\(321\) −2378.40 −0.413549
\(322\) 0 0
\(323\) −908.307 −0.156469
\(324\) 0 0
\(325\) −1498.68 −0.255791
\(326\) 0 0
\(327\) −205.486 −0.0347504
\(328\) 0 0
\(329\) 1114.67 0.186789
\(330\) 0 0
\(331\) 11233.2 1.86536 0.932679 0.360707i \(-0.117465\pi\)
0.932679 + 0.360707i \(0.117465\pi\)
\(332\) 0 0
\(333\) −5410.04 −0.890295
\(334\) 0 0
\(335\) −7278.99 −1.18715
\(336\) 0 0
\(337\) 11099.8 1.79420 0.897099 0.441830i \(-0.145671\pi\)
0.897099 + 0.441830i \(0.145671\pi\)
\(338\) 0 0
\(339\) 1325.53 0.212369
\(340\) 0 0
\(341\) 2445.97 0.388437
\(342\) 0 0
\(343\) 2137.93 0.336552
\(344\) 0 0
\(345\) −354.173 −0.0552696
\(346\) 0 0
\(347\) 607.635 0.0940045 0.0470022 0.998895i \(-0.485033\pi\)
0.0470022 + 0.998895i \(0.485033\pi\)
\(348\) 0 0
\(349\) 5030.44 0.771556 0.385778 0.922592i \(-0.373933\pi\)
0.385778 + 0.922592i \(0.373933\pi\)
\(350\) 0 0
\(351\) −3227.22 −0.490759
\(352\) 0 0
\(353\) 7578.90 1.14273 0.571366 0.820695i \(-0.306414\pi\)
0.571366 + 0.820695i \(0.306414\pi\)
\(354\) 0 0
\(355\) −7230.36 −1.08098
\(356\) 0 0
\(357\) −39.0061 −0.00578269
\(358\) 0 0
\(359\) 1804.47 0.265282 0.132641 0.991164i \(-0.457654\pi\)
0.132641 + 0.991164i \(0.457654\pi\)
\(360\) 0 0
\(361\) 8208.98 1.19682
\(362\) 0 0
\(363\) −1934.35 −0.279688
\(364\) 0 0
\(365\) −1088.54 −0.156100
\(366\) 0 0
\(367\) −2356.11 −0.335117 −0.167558 0.985862i \(-0.553588\pi\)
−0.167558 + 0.985862i \(0.553588\pi\)
\(368\) 0 0
\(369\) −10024.8 −1.41428
\(370\) 0 0
\(371\) −279.953 −0.0391764
\(372\) 0 0
\(373\) −7071.80 −0.981672 −0.490836 0.871252i \(-0.663309\pi\)
−0.490836 + 0.871252i \(0.663309\pi\)
\(374\) 0 0
\(375\) 2535.38 0.349137
\(376\) 0 0
\(377\) −3464.87 −0.473341
\(378\) 0 0
\(379\) 6752.69 0.915205 0.457602 0.889157i \(-0.348708\pi\)
0.457602 + 0.889157i \(0.348708\pi\)
\(380\) 0 0
\(381\) 4084.49 0.549225
\(382\) 0 0
\(383\) −6495.53 −0.866595 −0.433297 0.901251i \(-0.642650\pi\)
−0.433297 + 0.901251i \(0.642650\pi\)
\(384\) 0 0
\(385\) 381.492 0.0505004
\(386\) 0 0
\(387\) 11689.1 1.53537
\(388\) 0 0
\(389\) 4340.24 0.565704 0.282852 0.959164i \(-0.408719\pi\)
0.282852 + 0.959164i \(0.408719\pi\)
\(390\) 0 0
\(391\) 170.190 0.0220124
\(392\) 0 0
\(393\) 1516.87 0.194697
\(394\) 0 0
\(395\) −9818.52 −1.25069
\(396\) 0 0
\(397\) 10555.8 1.33446 0.667231 0.744851i \(-0.267480\pi\)
0.667231 + 0.744851i \(0.267480\pi\)
\(398\) 0 0
\(399\) 647.075 0.0811887
\(400\) 0 0
\(401\) −13778.3 −1.71585 −0.857925 0.513774i \(-0.828247\pi\)
−0.857925 + 0.513774i \(0.828247\pi\)
\(402\) 0 0
\(403\) 7081.36 0.875304
\(404\) 0 0
\(405\) −4727.29 −0.580002
\(406\) 0 0
\(407\) 2916.24 0.355166
\(408\) 0 0
\(409\) 6083.54 0.735481 0.367740 0.929928i \(-0.380132\pi\)
0.367740 + 0.929928i \(0.380132\pi\)
\(410\) 0 0
\(411\) 2026.25 0.243181
\(412\) 0 0
\(413\) 801.364 0.0954783
\(414\) 0 0
\(415\) −3981.86 −0.470992
\(416\) 0 0
\(417\) −1339.59 −0.157314
\(418\) 0 0
\(419\) 4326.69 0.504469 0.252234 0.967666i \(-0.418835\pi\)
0.252234 + 0.967666i \(0.418835\pi\)
\(420\) 0 0
\(421\) 1577.16 0.182580 0.0912901 0.995824i \(-0.470901\pi\)
0.0912901 + 0.995824i \(0.470901\pi\)
\(422\) 0 0
\(423\) 8536.99 0.981283
\(424\) 0 0
\(425\) −293.373 −0.0334840
\(426\) 0 0
\(427\) 1875.11 0.212513
\(428\) 0 0
\(429\) 822.628 0.0925800
\(430\) 0 0
\(431\) 11095.3 1.24001 0.620004 0.784599i \(-0.287131\pi\)
0.620004 + 0.784599i \(0.287131\pi\)
\(432\) 0 0
\(433\) 4970.59 0.551665 0.275833 0.961206i \(-0.411046\pi\)
0.275833 + 0.961206i \(0.411046\pi\)
\(434\) 0 0
\(435\) 1411.50 0.155577
\(436\) 0 0
\(437\) −2823.29 −0.309053
\(438\) 0 0
\(439\) 3189.61 0.346769 0.173385 0.984854i \(-0.444530\pi\)
0.173385 + 0.984854i \(0.444530\pi\)
\(440\) 0 0
\(441\) 8065.82 0.870944
\(442\) 0 0
\(443\) −4489.76 −0.481523 −0.240762 0.970584i \(-0.577397\pi\)
−0.240762 + 0.970584i \(0.577397\pi\)
\(444\) 0 0
\(445\) −2288.52 −0.243789
\(446\) 0 0
\(447\) −5535.58 −0.585736
\(448\) 0 0
\(449\) 10374.1 1.09038 0.545191 0.838312i \(-0.316457\pi\)
0.545191 + 0.838312i \(0.316457\pi\)
\(450\) 0 0
\(451\) 5403.78 0.564200
\(452\) 0 0
\(453\) 4740.22 0.491644
\(454\) 0 0
\(455\) 1104.46 0.113798
\(456\) 0 0
\(457\) −16384.6 −1.67711 −0.838555 0.544818i \(-0.816599\pi\)
−0.838555 + 0.544818i \(0.816599\pi\)
\(458\) 0 0
\(459\) −631.742 −0.0642422
\(460\) 0 0
\(461\) 767.780 0.0775685 0.0387843 0.999248i \(-0.487651\pi\)
0.0387843 + 0.999248i \(0.487651\pi\)
\(462\) 0 0
\(463\) −14148.6 −1.42017 −0.710086 0.704115i \(-0.751344\pi\)
−0.710086 + 0.704115i \(0.751344\pi\)
\(464\) 0 0
\(465\) −2884.76 −0.287694
\(466\) 0 0
\(467\) 10364.7 1.02703 0.513514 0.858081i \(-0.328343\pi\)
0.513514 + 0.858081i \(0.328343\pi\)
\(468\) 0 0
\(469\) −2491.79 −0.245331
\(470\) 0 0
\(471\) −740.827 −0.0724745
\(472\) 0 0
\(473\) −6300.91 −0.612507
\(474\) 0 0
\(475\) 4866.80 0.470114
\(476\) 0 0
\(477\) −2144.10 −0.205810
\(478\) 0 0
\(479\) −6248.79 −0.596063 −0.298032 0.954556i \(-0.596330\pi\)
−0.298032 + 0.954556i \(0.596330\pi\)
\(480\) 0 0
\(481\) 8442.82 0.800332
\(482\) 0 0
\(483\) −121.243 −0.0114218
\(484\) 0 0
\(485\) −5690.17 −0.532737
\(486\) 0 0
\(487\) −2405.30 −0.223808 −0.111904 0.993719i \(-0.535695\pi\)
−0.111904 + 0.993719i \(0.535695\pi\)
\(488\) 0 0
\(489\) 423.806 0.0391926
\(490\) 0 0
\(491\) −10022.0 −0.921157 −0.460578 0.887619i \(-0.652358\pi\)
−0.460578 + 0.887619i \(0.652358\pi\)
\(492\) 0 0
\(493\) −678.261 −0.0619622
\(494\) 0 0
\(495\) 2921.76 0.265300
\(496\) 0 0
\(497\) −2475.14 −0.223391
\(498\) 0 0
\(499\) −300.268 −0.0269376 −0.0134688 0.999909i \(-0.504287\pi\)
−0.0134688 + 0.999909i \(0.504287\pi\)
\(500\) 0 0
\(501\) 93.4470 0.00833314
\(502\) 0 0
\(503\) −6790.34 −0.601921 −0.300961 0.953637i \(-0.597307\pi\)
−0.300961 + 0.953637i \(0.597307\pi\)
\(504\) 0 0
\(505\) −8135.43 −0.716875
\(506\) 0 0
\(507\) −1280.33 −0.112153
\(508\) 0 0
\(509\) −15177.3 −1.32166 −0.660829 0.750537i \(-0.729795\pi\)
−0.660829 + 0.750537i \(0.729795\pi\)
\(510\) 0 0
\(511\) −372.634 −0.0322590
\(512\) 0 0
\(513\) 10480.0 0.901957
\(514\) 0 0
\(515\) −13996.2 −1.19756
\(516\) 0 0
\(517\) −4601.80 −0.391464
\(518\) 0 0
\(519\) 6506.49 0.550295
\(520\) 0 0
\(521\) −9295.72 −0.781675 −0.390838 0.920460i \(-0.627815\pi\)
−0.390838 + 0.920460i \(0.627815\pi\)
\(522\) 0 0
\(523\) −7803.60 −0.652443 −0.326221 0.945293i \(-0.605775\pi\)
−0.326221 + 0.945293i \(0.605775\pi\)
\(524\) 0 0
\(525\) 208.998 0.0173742
\(526\) 0 0
\(527\) 1386.20 0.114581
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 6137.47 0.501588
\(532\) 0 0
\(533\) 15644.5 1.27137
\(534\) 0 0
\(535\) 13183.0 1.06533
\(536\) 0 0
\(537\) 3499.81 0.281244
\(538\) 0 0
\(539\) −4347.81 −0.347446
\(540\) 0 0
\(541\) 22303.2 1.77244 0.886220 0.463265i \(-0.153322\pi\)
0.886220 + 0.463265i \(0.153322\pi\)
\(542\) 0 0
\(543\) 165.970 0.0131169
\(544\) 0 0
\(545\) 1138.96 0.0895190
\(546\) 0 0
\(547\) −17044.9 −1.33233 −0.666166 0.745803i \(-0.732066\pi\)
−0.666166 + 0.745803i \(0.732066\pi\)
\(548\) 0 0
\(549\) 14361.1 1.11642
\(550\) 0 0
\(551\) 11251.7 0.869946
\(552\) 0 0
\(553\) −3361.13 −0.258463
\(554\) 0 0
\(555\) −3439.38 −0.263052
\(556\) 0 0
\(557\) 14046.8 1.06855 0.534273 0.845312i \(-0.320585\pi\)
0.534273 + 0.845312i \(0.320585\pi\)
\(558\) 0 0
\(559\) −18241.8 −1.38023
\(560\) 0 0
\(561\) 161.033 0.0121191
\(562\) 0 0
\(563\) −23296.2 −1.74390 −0.871950 0.489595i \(-0.837145\pi\)
−0.871950 + 0.489595i \(0.837145\pi\)
\(564\) 0 0
\(565\) −7347.15 −0.547074
\(566\) 0 0
\(567\) −1618.27 −0.119861
\(568\) 0 0
\(569\) 19503.6 1.43696 0.718481 0.695546i \(-0.244838\pi\)
0.718481 + 0.695546i \(0.244838\pi\)
\(570\) 0 0
\(571\) −11030.4 −0.808420 −0.404210 0.914666i \(-0.632454\pi\)
−0.404210 + 0.914666i \(0.632454\pi\)
\(572\) 0 0
\(573\) −2889.93 −0.210696
\(574\) 0 0
\(575\) −911.892 −0.0661366
\(576\) 0 0
\(577\) −8912.75 −0.643055 −0.321527 0.946900i \(-0.604196\pi\)
−0.321527 + 0.946900i \(0.604196\pi\)
\(578\) 0 0
\(579\) −2882.55 −0.206899
\(580\) 0 0
\(581\) −1363.09 −0.0973333
\(582\) 0 0
\(583\) 1155.76 0.0821040
\(584\) 0 0
\(585\) 8458.81 0.597827
\(586\) 0 0
\(587\) −25244.2 −1.77502 −0.887512 0.460784i \(-0.847568\pi\)
−0.887512 + 0.460784i \(0.847568\pi\)
\(588\) 0 0
\(589\) −22995.9 −1.60871
\(590\) 0 0
\(591\) −2878.98 −0.200381
\(592\) 0 0
\(593\) −1620.86 −0.112244 −0.0561222 0.998424i \(-0.517874\pi\)
−0.0561222 + 0.998424i \(0.517874\pi\)
\(594\) 0 0
\(595\) 216.203 0.0148965
\(596\) 0 0
\(597\) 2332.02 0.159872
\(598\) 0 0
\(599\) 14225.4 0.970341 0.485171 0.874420i \(-0.338758\pi\)
0.485171 + 0.874420i \(0.338758\pi\)
\(600\) 0 0
\(601\) −99.7031 −0.00676702 −0.00338351 0.999994i \(-0.501077\pi\)
−0.00338351 + 0.999994i \(0.501077\pi\)
\(602\) 0 0
\(603\) −19084.0 −1.28883
\(604\) 0 0
\(605\) 10721.7 0.720493
\(606\) 0 0
\(607\) −22971.3 −1.53604 −0.768019 0.640427i \(-0.778757\pi\)
−0.768019 + 0.640427i \(0.778757\pi\)
\(608\) 0 0
\(609\) 483.192 0.0321509
\(610\) 0 0
\(611\) −13322.7 −0.882125
\(612\) 0 0
\(613\) −5333.56 −0.351420 −0.175710 0.984442i \(-0.556222\pi\)
−0.175710 + 0.984442i \(0.556222\pi\)
\(614\) 0 0
\(615\) −6373.17 −0.417872
\(616\) 0 0
\(617\) 3633.60 0.237088 0.118544 0.992949i \(-0.462177\pi\)
0.118544 + 0.992949i \(0.462177\pi\)
\(618\) 0 0
\(619\) −9984.55 −0.648325 −0.324162 0.946001i \(-0.605082\pi\)
−0.324162 + 0.946001i \(0.605082\pi\)
\(620\) 0 0
\(621\) −1963.64 −0.126889
\(622\) 0 0
\(623\) −783.418 −0.0503804
\(624\) 0 0
\(625\) −9097.14 −0.582217
\(626\) 0 0
\(627\) −2671.39 −0.170151
\(628\) 0 0
\(629\) 1652.72 0.104766
\(630\) 0 0
\(631\) 19104.9 1.20532 0.602659 0.797999i \(-0.294108\pi\)
0.602659 + 0.797999i \(0.294108\pi\)
\(632\) 0 0
\(633\) 9170.97 0.575851
\(634\) 0 0
\(635\) −22639.5 −1.41484
\(636\) 0 0
\(637\) −12587.4 −0.782936
\(638\) 0 0
\(639\) −18956.5 −1.17357
\(640\) 0 0
\(641\) −19282.8 −1.18818 −0.594092 0.804397i \(-0.702488\pi\)
−0.594092 + 0.804397i \(0.702488\pi\)
\(642\) 0 0
\(643\) 3074.46 0.188562 0.0942808 0.995546i \(-0.469945\pi\)
0.0942808 + 0.995546i \(0.469945\pi\)
\(644\) 0 0
\(645\) 7431.23 0.453650
\(646\) 0 0
\(647\) 24653.6 1.49804 0.749021 0.662546i \(-0.230524\pi\)
0.749021 + 0.662546i \(0.230524\pi\)
\(648\) 0 0
\(649\) −3308.35 −0.200099
\(650\) 0 0
\(651\) −987.528 −0.0594536
\(652\) 0 0
\(653\) −8394.63 −0.503074 −0.251537 0.967848i \(-0.580936\pi\)
−0.251537 + 0.967848i \(0.580936\pi\)
\(654\) 0 0
\(655\) −8407.68 −0.501550
\(656\) 0 0
\(657\) −2853.92 −0.169470
\(658\) 0 0
\(659\) −16885.4 −0.998121 −0.499060 0.866567i \(-0.666321\pi\)
−0.499060 + 0.866567i \(0.666321\pi\)
\(660\) 0 0
\(661\) −6002.36 −0.353200 −0.176600 0.984283i \(-0.556510\pi\)
−0.176600 + 0.984283i \(0.556510\pi\)
\(662\) 0 0
\(663\) 466.207 0.0273092
\(664\) 0 0
\(665\) −3586.61 −0.209147
\(666\) 0 0
\(667\) −2108.24 −0.122386
\(668\) 0 0
\(669\) 400.061 0.0231200
\(670\) 0 0
\(671\) −7741.22 −0.445375
\(672\) 0 0
\(673\) −23919.0 −1.37000 −0.684998 0.728545i \(-0.740197\pi\)
−0.684998 + 0.728545i \(0.740197\pi\)
\(674\) 0 0
\(675\) 3384.93 0.193016
\(676\) 0 0
\(677\) −9402.50 −0.533778 −0.266889 0.963727i \(-0.585996\pi\)
−0.266889 + 0.963727i \(0.585996\pi\)
\(678\) 0 0
\(679\) −1947.89 −0.110093
\(680\) 0 0
\(681\) 1447.41 0.0814460
\(682\) 0 0
\(683\) 12019.5 0.673371 0.336685 0.941617i \(-0.390694\pi\)
0.336685 + 0.941617i \(0.390694\pi\)
\(684\) 0 0
\(685\) −11231.1 −0.626448
\(686\) 0 0
\(687\) −1439.82 −0.0799602
\(688\) 0 0
\(689\) 3346.05 0.185013
\(690\) 0 0
\(691\) 9350.34 0.514767 0.257383 0.966309i \(-0.417140\pi\)
0.257383 + 0.966309i \(0.417140\pi\)
\(692\) 0 0
\(693\) 1000.19 0.0548258
\(694\) 0 0
\(695\) 7425.05 0.405249
\(696\) 0 0
\(697\) 3062.48 0.166427
\(698\) 0 0
\(699\) −2422.48 −0.131082
\(700\) 0 0
\(701\) −21765.1 −1.17269 −0.586346 0.810061i \(-0.699434\pi\)
−0.586346 + 0.810061i \(0.699434\pi\)
\(702\) 0 0
\(703\) −27417.1 −1.47092
\(704\) 0 0
\(705\) 5427.32 0.289936
\(706\) 0 0
\(707\) −2784.97 −0.148146
\(708\) 0 0
\(709\) 426.079 0.0225694 0.0112847 0.999936i \(-0.496408\pi\)
0.0112847 + 0.999936i \(0.496408\pi\)
\(710\) 0 0
\(711\) −25742.2 −1.35781
\(712\) 0 0
\(713\) 4308.74 0.226316
\(714\) 0 0
\(715\) −4559.66 −0.238492
\(716\) 0 0
\(717\) 6446.24 0.335759
\(718\) 0 0
\(719\) −13266.1 −0.688097 −0.344049 0.938952i \(-0.611799\pi\)
−0.344049 + 0.938952i \(0.611799\pi\)
\(720\) 0 0
\(721\) −4791.25 −0.247483
\(722\) 0 0
\(723\) 8730.95 0.449111
\(724\) 0 0
\(725\) 3634.19 0.186166
\(726\) 0 0
\(727\) −6451.40 −0.329119 −0.164559 0.986367i \(-0.552620\pi\)
−0.164559 + 0.986367i \(0.552620\pi\)
\(728\) 0 0
\(729\) −8551.81 −0.434477
\(730\) 0 0
\(731\) −3570.91 −0.180677
\(732\) 0 0
\(733\) 8411.80 0.423870 0.211935 0.977284i \(-0.432023\pi\)
0.211935 + 0.977284i \(0.432023\pi\)
\(734\) 0 0
\(735\) 5127.77 0.257334
\(736\) 0 0
\(737\) 10287.1 0.514152
\(738\) 0 0
\(739\) 22558.5 1.12291 0.561453 0.827509i \(-0.310243\pi\)
0.561453 + 0.827509i \(0.310243\pi\)
\(740\) 0 0
\(741\) −7733.95 −0.383419
\(742\) 0 0
\(743\) 26995.7 1.33294 0.666472 0.745530i \(-0.267803\pi\)
0.666472 + 0.745530i \(0.267803\pi\)
\(744\) 0 0
\(745\) 30682.6 1.50889
\(746\) 0 0
\(747\) −10439.6 −0.511333
\(748\) 0 0
\(749\) 4512.87 0.220156
\(750\) 0 0
\(751\) 35427.7 1.72140 0.860702 0.509109i \(-0.170025\pi\)
0.860702 + 0.509109i \(0.170025\pi\)
\(752\) 0 0
\(753\) 3811.92 0.184481
\(754\) 0 0
\(755\) −26274.1 −1.26650
\(756\) 0 0
\(757\) 22067.2 1.05951 0.529753 0.848152i \(-0.322284\pi\)
0.529753 + 0.848152i \(0.322284\pi\)
\(758\) 0 0
\(759\) 500.538 0.0239372
\(760\) 0 0
\(761\) 6125.32 0.291777 0.145889 0.989301i \(-0.453396\pi\)
0.145889 + 0.989301i \(0.453396\pi\)
\(762\) 0 0
\(763\) 389.897 0.0184996
\(764\) 0 0
\(765\) 1655.85 0.0782579
\(766\) 0 0
\(767\) −9578.03 −0.450903
\(768\) 0 0
\(769\) 3552.49 0.166588 0.0832939 0.996525i \(-0.473456\pi\)
0.0832939 + 0.996525i \(0.473456\pi\)
\(770\) 0 0
\(771\) −4791.41 −0.223811
\(772\) 0 0
\(773\) 1348.20 0.0627313 0.0313656 0.999508i \(-0.490014\pi\)
0.0313656 + 0.999508i \(0.490014\pi\)
\(774\) 0 0
\(775\) −7427.42 −0.344259
\(776\) 0 0
\(777\) −1177.39 −0.0543612
\(778\) 0 0
\(779\) −50803.7 −2.33663
\(780\) 0 0
\(781\) 10218.4 0.468171
\(782\) 0 0
\(783\) 7825.76 0.357177
\(784\) 0 0
\(785\) 4106.25 0.186699
\(786\) 0 0
\(787\) 34885.5 1.58009 0.790047 0.613047i \(-0.210056\pi\)
0.790047 + 0.613047i \(0.210056\pi\)
\(788\) 0 0
\(789\) 1604.98 0.0724194
\(790\) 0 0
\(791\) −2515.12 −0.113056
\(792\) 0 0
\(793\) −22411.7 −1.00361
\(794\) 0 0
\(795\) −1363.09 −0.0608099
\(796\) 0 0
\(797\) 11000.3 0.488897 0.244449 0.969662i \(-0.421393\pi\)
0.244449 + 0.969662i \(0.421393\pi\)
\(798\) 0 0
\(799\) −2607.97 −0.115474
\(800\) 0 0
\(801\) −6000.02 −0.264670
\(802\) 0 0
\(803\) 1538.38 0.0676068
\(804\) 0 0
\(805\) 672.023 0.0294232
\(806\) 0 0
\(807\) −5592.25 −0.243936
\(808\) 0 0
\(809\) −12167.3 −0.528775 −0.264388 0.964416i \(-0.585170\pi\)
−0.264388 + 0.964416i \(0.585170\pi\)
\(810\) 0 0
\(811\) 28930.7 1.25264 0.626322 0.779565i \(-0.284560\pi\)
0.626322 + 0.779565i \(0.284560\pi\)
\(812\) 0 0
\(813\) 5881.13 0.253703
\(814\) 0 0
\(815\) −2349.07 −0.100962
\(816\) 0 0
\(817\) 59238.1 2.53669
\(818\) 0 0
\(819\) 2895.67 0.123544
\(820\) 0 0
\(821\) −46160.7 −1.96227 −0.981133 0.193332i \(-0.938071\pi\)
−0.981133 + 0.193332i \(0.938071\pi\)
\(822\) 0 0
\(823\) 13199.6 0.559064 0.279532 0.960136i \(-0.409821\pi\)
0.279532 + 0.960136i \(0.409821\pi\)
\(824\) 0 0
\(825\) −862.829 −0.0364119
\(826\) 0 0
\(827\) −18213.5 −0.765833 −0.382917 0.923783i \(-0.625080\pi\)
−0.382917 + 0.923783i \(0.625080\pi\)
\(828\) 0 0
\(829\) −14514.5 −0.608094 −0.304047 0.952657i \(-0.598338\pi\)
−0.304047 + 0.952657i \(0.598338\pi\)
\(830\) 0 0
\(831\) 1601.29 0.0668449
\(832\) 0 0
\(833\) −2464.03 −0.102489
\(834\) 0 0
\(835\) −517.957 −0.0214666
\(836\) 0 0
\(837\) −15994.0 −0.660494
\(838\) 0 0
\(839\) 17152.8 0.705816 0.352908 0.935658i \(-0.385193\pi\)
0.352908 + 0.935658i \(0.385193\pi\)
\(840\) 0 0
\(841\) −15987.0 −0.655499
\(842\) 0 0
\(843\) 6434.93 0.262907
\(844\) 0 0
\(845\) 7096.60 0.288912
\(846\) 0 0
\(847\) 3670.31 0.148894
\(848\) 0 0
\(849\) −6584.18 −0.266158
\(850\) 0 0
\(851\) 5137.14 0.206932
\(852\) 0 0
\(853\) 5172.11 0.207608 0.103804 0.994598i \(-0.466899\pi\)
0.103804 + 0.994598i \(0.466899\pi\)
\(854\) 0 0
\(855\) −27469.0 −1.09874
\(856\) 0 0
\(857\) −10403.6 −0.414679 −0.207340 0.978269i \(-0.566481\pi\)
−0.207340 + 0.978269i \(0.566481\pi\)
\(858\) 0 0
\(859\) −6774.47 −0.269083 −0.134541 0.990908i \(-0.542956\pi\)
−0.134541 + 0.990908i \(0.542956\pi\)
\(860\) 0 0
\(861\) −2181.70 −0.0863556
\(862\) 0 0
\(863\) 16651.9 0.656822 0.328411 0.944535i \(-0.393487\pi\)
0.328411 + 0.944535i \(0.393487\pi\)
\(864\) 0 0
\(865\) −36064.2 −1.41759
\(866\) 0 0
\(867\) −8097.65 −0.317198
\(868\) 0 0
\(869\) 13876.1 0.541674
\(870\) 0 0
\(871\) 29782.2 1.15859
\(872\) 0 0
\(873\) −14918.5 −0.578366
\(874\) 0 0
\(875\) −4810.73 −0.185866
\(876\) 0 0
\(877\) 19710.8 0.758935 0.379467 0.925205i \(-0.376107\pi\)
0.379467 + 0.925205i \(0.376107\pi\)
\(878\) 0 0
\(879\) −8137.01 −0.312235
\(880\) 0 0
\(881\) −4425.01 −0.169219 −0.0846097 0.996414i \(-0.526964\pi\)
−0.0846097 + 0.996414i \(0.526964\pi\)
\(882\) 0 0
\(883\) −2282.94 −0.0870069 −0.0435035 0.999053i \(-0.513852\pi\)
−0.0435035 + 0.999053i \(0.513852\pi\)
\(884\) 0 0
\(885\) 3901.84 0.148202
\(886\) 0 0
\(887\) −9323.50 −0.352934 −0.176467 0.984307i \(-0.556467\pi\)
−0.176467 + 0.984307i \(0.556467\pi\)
\(888\) 0 0
\(889\) −7750.08 −0.292384
\(890\) 0 0
\(891\) 6680.88 0.251199
\(892\) 0 0
\(893\) 43263.9 1.62124
\(894\) 0 0
\(895\) −19398.7 −0.724501
\(896\) 0 0
\(897\) 1449.11 0.0539402
\(898\) 0 0
\(899\) −17171.7 −0.637052
\(900\) 0 0
\(901\) 655.002 0.0242190
\(902\) 0 0
\(903\) 2543.90 0.0937495
\(904\) 0 0
\(905\) −919.940 −0.0337899
\(906\) 0 0
\(907\) −18256.8 −0.668365 −0.334182 0.942508i \(-0.608460\pi\)
−0.334182 + 0.942508i \(0.608460\pi\)
\(908\) 0 0
\(909\) −21329.4 −0.778276
\(910\) 0 0
\(911\) 6264.20 0.227818 0.113909 0.993491i \(-0.463663\pi\)
0.113909 + 0.993491i \(0.463663\pi\)
\(912\) 0 0
\(913\) 5627.39 0.203986
\(914\) 0 0
\(915\) 9129.92 0.329864
\(916\) 0 0
\(917\) −2878.17 −0.103648
\(918\) 0 0
\(919\) 1446.18 0.0519098 0.0259549 0.999663i \(-0.491737\pi\)
0.0259549 + 0.999663i \(0.491737\pi\)
\(920\) 0 0
\(921\) 13373.8 0.478481
\(922\) 0 0
\(923\) 29583.2 1.05498
\(924\) 0 0
\(925\) −8855.41 −0.314772
\(926\) 0 0
\(927\) −36695.1 −1.30013
\(928\) 0 0
\(929\) 14182.6 0.500877 0.250438 0.968133i \(-0.419425\pi\)
0.250438 + 0.968133i \(0.419425\pi\)
\(930\) 0 0
\(931\) 40876.1 1.43895
\(932\) 0 0
\(933\) −13605.8 −0.477422
\(934\) 0 0
\(935\) −892.571 −0.0312195
\(936\) 0 0
\(937\) 35308.5 1.23103 0.615517 0.788124i \(-0.288947\pi\)
0.615517 + 0.788124i \(0.288947\pi\)
\(938\) 0 0
\(939\) −13559.5 −0.471243
\(940\) 0 0
\(941\) −33968.4 −1.17677 −0.588384 0.808581i \(-0.700236\pi\)
−0.588384 + 0.808581i \(0.700236\pi\)
\(942\) 0 0
\(943\) 9519.10 0.328722
\(944\) 0 0
\(945\) −2494.54 −0.0858703
\(946\) 0 0
\(947\) 49044.4 1.68292 0.841461 0.540317i \(-0.181696\pi\)
0.841461 + 0.540317i \(0.181696\pi\)
\(948\) 0 0
\(949\) 4453.78 0.152345
\(950\) 0 0
\(951\) −9535.69 −0.325148
\(952\) 0 0
\(953\) −22796.9 −0.774882 −0.387441 0.921894i \(-0.626641\pi\)
−0.387441 + 0.921894i \(0.626641\pi\)
\(954\) 0 0
\(955\) 16018.3 0.542764
\(956\) 0 0
\(957\) −1994.81 −0.0673803
\(958\) 0 0
\(959\) −3844.68 −0.129459
\(960\) 0 0
\(961\) 5303.95 0.178039
\(962\) 0 0
\(963\) 34563.1 1.15657
\(964\) 0 0
\(965\) 15977.4 0.532985
\(966\) 0 0
\(967\) −32512.1 −1.08120 −0.540599 0.841280i \(-0.681803\pi\)
−0.540599 + 0.841280i \(0.681803\pi\)
\(968\) 0 0
\(969\) −1513.95 −0.0501910
\(970\) 0 0
\(971\) −58023.6 −1.91768 −0.958839 0.283951i \(-0.908355\pi\)
−0.958839 + 0.283951i \(0.908355\pi\)
\(972\) 0 0
\(973\) 2541.79 0.0837471
\(974\) 0 0
\(975\) −2497.98 −0.0820507
\(976\) 0 0
\(977\) −14305.7 −0.468453 −0.234226 0.972182i \(-0.575256\pi\)
−0.234226 + 0.972182i \(0.575256\pi\)
\(978\) 0 0
\(979\) 3234.26 0.105585
\(980\) 0 0
\(981\) 2986.13 0.0971864
\(982\) 0 0
\(983\) 15294.9 0.496267 0.248134 0.968726i \(-0.420183\pi\)
0.248134 + 0.968726i \(0.420183\pi\)
\(984\) 0 0
\(985\) 15957.6 0.516194
\(986\) 0 0
\(987\) 1857.91 0.0599169
\(988\) 0 0
\(989\) −11099.4 −0.356867
\(990\) 0 0
\(991\) 4874.24 0.156241 0.0781207 0.996944i \(-0.475108\pi\)
0.0781207 + 0.996944i \(0.475108\pi\)
\(992\) 0 0
\(993\) 18723.4 0.598356
\(994\) 0 0
\(995\) −12925.9 −0.411839
\(996\) 0 0
\(997\) 53025.2 1.68438 0.842189 0.539183i \(-0.181267\pi\)
0.842189 + 0.539183i \(0.181267\pi\)
\(998\) 0 0
\(999\) −19069.0 −0.603920
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.4.a.bk.1.5 9
4.3 odd 2 1472.4.a.bj.1.5 9
8.3 odd 2 736.4.a.h.1.5 9
8.5 even 2 736.4.a.i.1.5 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
736.4.a.h.1.5 9 8.3 odd 2
736.4.a.i.1.5 yes 9 8.5 even 2
1472.4.a.bj.1.5 9 4.3 odd 2
1472.4.a.bk.1.5 9 1.1 even 1 trivial