Properties

Label 1472.4.a.bg.1.7
Level $1472$
Weight $4$
Character 1472.1
Self dual yes
Analytic conductor $86.851$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,4,Mod(1,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.8508115285\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 137x^{6} + 344x^{5} + 6175x^{4} - 7924x^{3} - 89643x^{2} + 45072x + 51084 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 736)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(7.48973\) of defining polynomial
Character \(\chi\) \(=\) 1472.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.48973 q^{3} +7.85529 q^{5} +7.65099 q^{7} +3.13714 q^{9} +O(q^{10})\) \(q+5.48973 q^{3} +7.85529 q^{5} +7.65099 q^{7} +3.13714 q^{9} +2.42526 q^{11} -62.4046 q^{13} +43.1234 q^{15} -117.017 q^{17} +76.2008 q^{19} +42.0019 q^{21} -23.0000 q^{23} -63.2945 q^{25} -131.001 q^{27} -39.2568 q^{29} -171.793 q^{31} +13.3140 q^{33} +60.1007 q^{35} +280.327 q^{37} -342.584 q^{39} -280.321 q^{41} -393.268 q^{43} +24.6431 q^{45} +467.968 q^{47} -284.462 q^{49} -642.393 q^{51} -253.167 q^{53} +19.0511 q^{55} +418.322 q^{57} -850.800 q^{59} -176.962 q^{61} +24.0022 q^{63} -490.206 q^{65} +684.006 q^{67} -126.264 q^{69} +1110.22 q^{71} -510.525 q^{73} -347.470 q^{75} +18.5556 q^{77} -535.994 q^{79} -803.861 q^{81} -323.934 q^{83} -919.204 q^{85} -215.509 q^{87} +327.742 q^{89} -477.457 q^{91} -943.095 q^{93} +598.579 q^{95} +1658.33 q^{97} +7.60838 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{3} + 12 q^{5} - 14 q^{7} + 90 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 12 q^{3} + 12 q^{5} - 14 q^{7} + 90 q^{9} - 88 q^{11} + 30 q^{13} + 30 q^{15} + 58 q^{17} - 190 q^{19} + 66 q^{21} - 184 q^{23} + 28 q^{25} - 432 q^{27} - 190 q^{29} - 60 q^{31} + 346 q^{33} - 192 q^{35} + 156 q^{37} + 156 q^{39} + 282 q^{41} - 810 q^{43} - 358 q^{45} + 564 q^{47} + 752 q^{49} - 1614 q^{51} + 230 q^{53} + 1292 q^{55} + 796 q^{57} - 1916 q^{59} - 22 q^{61} + 1036 q^{63} + 222 q^{65} - 2292 q^{67} + 276 q^{69} + 2376 q^{71} - 630 q^{73} - 3952 q^{75} + 948 q^{77} + 892 q^{79} - 1044 q^{81} - 2800 q^{83} - 288 q^{85} + 2756 q^{87} - 308 q^{89} - 4610 q^{91} + 982 q^{93} + 1300 q^{95} + 854 q^{97} - 5986 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.48973 1.05650 0.528250 0.849089i \(-0.322849\pi\)
0.528250 + 0.849089i \(0.322849\pi\)
\(4\) 0 0
\(5\) 7.85529 0.702598 0.351299 0.936263i \(-0.385740\pi\)
0.351299 + 0.936263i \(0.385740\pi\)
\(6\) 0 0
\(7\) 7.65099 0.413115 0.206557 0.978434i \(-0.433774\pi\)
0.206557 + 0.978434i \(0.433774\pi\)
\(8\) 0 0
\(9\) 3.13714 0.116190
\(10\) 0 0
\(11\) 2.42526 0.0664767 0.0332383 0.999447i \(-0.489418\pi\)
0.0332383 + 0.999447i \(0.489418\pi\)
\(12\) 0 0
\(13\) −62.4046 −1.33138 −0.665689 0.746229i \(-0.731862\pi\)
−0.665689 + 0.746229i \(0.731862\pi\)
\(14\) 0 0
\(15\) 43.1234 0.742294
\(16\) 0 0
\(17\) −117.017 −1.66946 −0.834731 0.550658i \(-0.814377\pi\)
−0.834731 + 0.550658i \(0.814377\pi\)
\(18\) 0 0
\(19\) 76.2008 0.920088 0.460044 0.887896i \(-0.347834\pi\)
0.460044 + 0.887896i \(0.347834\pi\)
\(20\) 0 0
\(21\) 42.0019 0.436455
\(22\) 0 0
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) −63.2945 −0.506356
\(26\) 0 0
\(27\) −131.001 −0.933744
\(28\) 0 0
\(29\) −39.2568 −0.251372 −0.125686 0.992070i \(-0.540113\pi\)
−0.125686 + 0.992070i \(0.540113\pi\)
\(30\) 0 0
\(31\) −171.793 −0.995318 −0.497659 0.867373i \(-0.665807\pi\)
−0.497659 + 0.867373i \(0.665807\pi\)
\(32\) 0 0
\(33\) 13.3140 0.0702325
\(34\) 0 0
\(35\) 60.1007 0.290254
\(36\) 0 0
\(37\) 280.327 1.24555 0.622776 0.782400i \(-0.286005\pi\)
0.622776 + 0.782400i \(0.286005\pi\)
\(38\) 0 0
\(39\) −342.584 −1.40660
\(40\) 0 0
\(41\) −280.321 −1.06778 −0.533888 0.845555i \(-0.679269\pi\)
−0.533888 + 0.845555i \(0.679269\pi\)
\(42\) 0 0
\(43\) −393.268 −1.39472 −0.697359 0.716722i \(-0.745642\pi\)
−0.697359 + 0.716722i \(0.745642\pi\)
\(44\) 0 0
\(45\) 24.6431 0.0816352
\(46\) 0 0
\(47\) 467.968 1.45234 0.726172 0.687513i \(-0.241297\pi\)
0.726172 + 0.687513i \(0.241297\pi\)
\(48\) 0 0
\(49\) −284.462 −0.829336
\(50\) 0 0
\(51\) −642.393 −1.76378
\(52\) 0 0
\(53\) −253.167 −0.656134 −0.328067 0.944654i \(-0.606397\pi\)
−0.328067 + 0.944654i \(0.606397\pi\)
\(54\) 0 0
\(55\) 19.0511 0.0467064
\(56\) 0 0
\(57\) 418.322 0.972072
\(58\) 0 0
\(59\) −850.800 −1.87737 −0.938685 0.344777i \(-0.887955\pi\)
−0.938685 + 0.344777i \(0.887955\pi\)
\(60\) 0 0
\(61\) −176.962 −0.371437 −0.185719 0.982603i \(-0.559461\pi\)
−0.185719 + 0.982603i \(0.559461\pi\)
\(62\) 0 0
\(63\) 24.0022 0.0480000
\(64\) 0 0
\(65\) −490.206 −0.935424
\(66\) 0 0
\(67\) 684.006 1.24723 0.623616 0.781731i \(-0.285663\pi\)
0.623616 + 0.781731i \(0.285663\pi\)
\(68\) 0 0
\(69\) −126.264 −0.220295
\(70\) 0 0
\(71\) 1110.22 1.85576 0.927879 0.372883i \(-0.121631\pi\)
0.927879 + 0.372883i \(0.121631\pi\)
\(72\) 0 0
\(73\) −510.525 −0.818527 −0.409264 0.912416i \(-0.634214\pi\)
−0.409264 + 0.912416i \(0.634214\pi\)
\(74\) 0 0
\(75\) −347.470 −0.534965
\(76\) 0 0
\(77\) 18.5556 0.0274625
\(78\) 0 0
\(79\) −535.994 −0.763343 −0.381671 0.924298i \(-0.624651\pi\)
−0.381671 + 0.924298i \(0.624651\pi\)
\(80\) 0 0
\(81\) −803.861 −1.10269
\(82\) 0 0
\(83\) −323.934 −0.428390 −0.214195 0.976791i \(-0.568713\pi\)
−0.214195 + 0.976791i \(0.568713\pi\)
\(84\) 0 0
\(85\) −919.204 −1.17296
\(86\) 0 0
\(87\) −215.509 −0.265575
\(88\) 0 0
\(89\) 327.742 0.390343 0.195172 0.980769i \(-0.437474\pi\)
0.195172 + 0.980769i \(0.437474\pi\)
\(90\) 0 0
\(91\) −477.457 −0.550012
\(92\) 0 0
\(93\) −943.095 −1.05155
\(94\) 0 0
\(95\) 598.579 0.646452
\(96\) 0 0
\(97\) 1658.33 1.73585 0.867926 0.496693i \(-0.165452\pi\)
0.867926 + 0.496693i \(0.165452\pi\)
\(98\) 0 0
\(99\) 7.60838 0.00772395
\(100\) 0 0
\(101\) 446.685 0.440067 0.220034 0.975492i \(-0.429383\pi\)
0.220034 + 0.975492i \(0.429383\pi\)
\(102\) 0 0
\(103\) 281.783 0.269563 0.134781 0.990875i \(-0.456967\pi\)
0.134781 + 0.990875i \(0.456967\pi\)
\(104\) 0 0
\(105\) 329.937 0.306653
\(106\) 0 0
\(107\) −308.125 −0.278389 −0.139194 0.990265i \(-0.544451\pi\)
−0.139194 + 0.990265i \(0.544451\pi\)
\(108\) 0 0
\(109\) −308.232 −0.270856 −0.135428 0.990787i \(-0.543241\pi\)
−0.135428 + 0.990787i \(0.543241\pi\)
\(110\) 0 0
\(111\) 1538.92 1.31593
\(112\) 0 0
\(113\) 1988.11 1.65509 0.827547 0.561396i \(-0.189736\pi\)
0.827547 + 0.561396i \(0.189736\pi\)
\(114\) 0 0
\(115\) −180.672 −0.146502
\(116\) 0 0
\(117\) −195.772 −0.154693
\(118\) 0 0
\(119\) −895.298 −0.689679
\(120\) 0 0
\(121\) −1325.12 −0.995581
\(122\) 0 0
\(123\) −1538.89 −1.12810
\(124\) 0 0
\(125\) −1479.11 −1.05836
\(126\) 0 0
\(127\) 1004.98 0.702184 0.351092 0.936341i \(-0.385810\pi\)
0.351092 + 0.936341i \(0.385810\pi\)
\(128\) 0 0
\(129\) −2158.94 −1.47352
\(130\) 0 0
\(131\) −2395.25 −1.59751 −0.798754 0.601658i \(-0.794507\pi\)
−0.798754 + 0.601658i \(0.794507\pi\)
\(132\) 0 0
\(133\) 583.012 0.380102
\(134\) 0 0
\(135\) −1029.05 −0.656047
\(136\) 0 0
\(137\) 2300.47 1.43462 0.717309 0.696755i \(-0.245374\pi\)
0.717309 + 0.696755i \(0.245374\pi\)
\(138\) 0 0
\(139\) 1229.62 0.750323 0.375162 0.926959i \(-0.377587\pi\)
0.375162 + 0.926959i \(0.377587\pi\)
\(140\) 0 0
\(141\) 2569.02 1.53440
\(142\) 0 0
\(143\) −151.347 −0.0885056
\(144\) 0 0
\(145\) −308.373 −0.176614
\(146\) 0 0
\(147\) −1561.62 −0.876193
\(148\) 0 0
\(149\) −531.897 −0.292448 −0.146224 0.989252i \(-0.546712\pi\)
−0.146224 + 0.989252i \(0.546712\pi\)
\(150\) 0 0
\(151\) −844.608 −0.455187 −0.227594 0.973756i \(-0.573086\pi\)
−0.227594 + 0.973756i \(0.573086\pi\)
\(152\) 0 0
\(153\) −367.099 −0.193975
\(154\) 0 0
\(155\) −1349.48 −0.699309
\(156\) 0 0
\(157\) 492.127 0.250166 0.125083 0.992146i \(-0.460080\pi\)
0.125083 + 0.992146i \(0.460080\pi\)
\(158\) 0 0
\(159\) −1389.82 −0.693205
\(160\) 0 0
\(161\) −175.973 −0.0861404
\(162\) 0 0
\(163\) −1380.19 −0.663220 −0.331610 0.943417i \(-0.607592\pi\)
−0.331610 + 0.943417i \(0.607592\pi\)
\(164\) 0 0
\(165\) 104.585 0.0493452
\(166\) 0 0
\(167\) −2773.16 −1.28499 −0.642495 0.766290i \(-0.722101\pi\)
−0.642495 + 0.766290i \(0.722101\pi\)
\(168\) 0 0
\(169\) 1697.33 0.772569
\(170\) 0 0
\(171\) 239.053 0.106905
\(172\) 0 0
\(173\) 480.280 0.211069 0.105535 0.994416i \(-0.466345\pi\)
0.105535 + 0.994416i \(0.466345\pi\)
\(174\) 0 0
\(175\) −484.266 −0.209183
\(176\) 0 0
\(177\) −4670.67 −1.98344
\(178\) 0 0
\(179\) 1929.00 0.805476 0.402738 0.915315i \(-0.368059\pi\)
0.402738 + 0.915315i \(0.368059\pi\)
\(180\) 0 0
\(181\) −1779.61 −0.730815 −0.365407 0.930848i \(-0.619070\pi\)
−0.365407 + 0.930848i \(0.619070\pi\)
\(182\) 0 0
\(183\) −971.474 −0.392423
\(184\) 0 0
\(185\) 2202.05 0.875123
\(186\) 0 0
\(187\) −283.797 −0.110980
\(188\) 0 0
\(189\) −1002.29 −0.385743
\(190\) 0 0
\(191\) 3234.01 1.22516 0.612578 0.790410i \(-0.290132\pi\)
0.612578 + 0.790410i \(0.290132\pi\)
\(192\) 0 0
\(193\) −2011.95 −0.750378 −0.375189 0.926948i \(-0.622422\pi\)
−0.375189 + 0.926948i \(0.622422\pi\)
\(194\) 0 0
\(195\) −2691.10 −0.988275
\(196\) 0 0
\(197\) 1638.43 0.592553 0.296277 0.955102i \(-0.404255\pi\)
0.296277 + 0.955102i \(0.404255\pi\)
\(198\) 0 0
\(199\) 4660.98 1.66034 0.830171 0.557508i \(-0.188243\pi\)
0.830171 + 0.557508i \(0.188243\pi\)
\(200\) 0 0
\(201\) 3755.01 1.31770
\(202\) 0 0
\(203\) −300.353 −0.103846
\(204\) 0 0
\(205\) −2202.00 −0.750217
\(206\) 0 0
\(207\) −72.1542 −0.0242274
\(208\) 0 0
\(209\) 184.807 0.0611643
\(210\) 0 0
\(211\) −3479.16 −1.13514 −0.567571 0.823324i \(-0.692117\pi\)
−0.567571 + 0.823324i \(0.692117\pi\)
\(212\) 0 0
\(213\) 6094.80 1.96061
\(214\) 0 0
\(215\) −3089.24 −0.979926
\(216\) 0 0
\(217\) −1314.38 −0.411181
\(218\) 0 0
\(219\) −2802.65 −0.864773
\(220\) 0 0
\(221\) 7302.41 2.22269
\(222\) 0 0
\(223\) 129.110 0.0387706 0.0193853 0.999812i \(-0.493829\pi\)
0.0193853 + 0.999812i \(0.493829\pi\)
\(224\) 0 0
\(225\) −198.564 −0.0588337
\(226\) 0 0
\(227\) −1345.95 −0.393542 −0.196771 0.980449i \(-0.563046\pi\)
−0.196771 + 0.980449i \(0.563046\pi\)
\(228\) 0 0
\(229\) 3539.19 1.02129 0.510647 0.859791i \(-0.329406\pi\)
0.510647 + 0.859791i \(0.329406\pi\)
\(230\) 0 0
\(231\) 101.865 0.0290141
\(232\) 0 0
\(233\) 709.902 0.199602 0.0998009 0.995007i \(-0.468179\pi\)
0.0998009 + 0.995007i \(0.468179\pi\)
\(234\) 0 0
\(235\) 3676.03 1.02041
\(236\) 0 0
\(237\) −2942.46 −0.806471
\(238\) 0 0
\(239\) −4538.38 −1.22830 −0.614149 0.789190i \(-0.710501\pi\)
−0.614149 + 0.789190i \(0.710501\pi\)
\(240\) 0 0
\(241\) 4621.77 1.23533 0.617665 0.786442i \(-0.288079\pi\)
0.617665 + 0.786442i \(0.288079\pi\)
\(242\) 0 0
\(243\) −875.963 −0.231247
\(244\) 0 0
\(245\) −2234.53 −0.582690
\(246\) 0 0
\(247\) −4755.28 −1.22499
\(248\) 0 0
\(249\) −1778.31 −0.452594
\(250\) 0 0
\(251\) −4438.87 −1.11625 −0.558125 0.829757i \(-0.688479\pi\)
−0.558125 + 0.829757i \(0.688479\pi\)
\(252\) 0 0
\(253\) −55.7810 −0.0138613
\(254\) 0 0
\(255\) −5046.18 −1.23923
\(256\) 0 0
\(257\) −2737.89 −0.664533 −0.332267 0.943186i \(-0.607813\pi\)
−0.332267 + 0.943186i \(0.607813\pi\)
\(258\) 0 0
\(259\) 2144.78 0.514556
\(260\) 0 0
\(261\) −123.154 −0.0292070
\(262\) 0 0
\(263\) −1402.58 −0.328847 −0.164423 0.986390i \(-0.552576\pi\)
−0.164423 + 0.986390i \(0.552576\pi\)
\(264\) 0 0
\(265\) −1988.70 −0.460999
\(266\) 0 0
\(267\) 1799.21 0.412397
\(268\) 0 0
\(269\) −6170.17 −1.39852 −0.699260 0.714868i \(-0.746487\pi\)
−0.699260 + 0.714868i \(0.746487\pi\)
\(270\) 0 0
\(271\) −7394.68 −1.65755 −0.828773 0.559586i \(-0.810960\pi\)
−0.828773 + 0.559586i \(0.810960\pi\)
\(272\) 0 0
\(273\) −2621.11 −0.581087
\(274\) 0 0
\(275\) −153.506 −0.0336608
\(276\) 0 0
\(277\) 6011.84 1.30403 0.652015 0.758206i \(-0.273924\pi\)
0.652015 + 0.758206i \(0.273924\pi\)
\(278\) 0 0
\(279\) −538.938 −0.115646
\(280\) 0 0
\(281\) 881.575 0.187154 0.0935772 0.995612i \(-0.470170\pi\)
0.0935772 + 0.995612i \(0.470170\pi\)
\(282\) 0 0
\(283\) −105.593 −0.0221796 −0.0110898 0.999939i \(-0.503530\pi\)
−0.0110898 + 0.999939i \(0.503530\pi\)
\(284\) 0 0
\(285\) 3286.04 0.682976
\(286\) 0 0
\(287\) −2144.73 −0.441114
\(288\) 0 0
\(289\) 8780.03 1.78710
\(290\) 0 0
\(291\) 9103.78 1.83393
\(292\) 0 0
\(293\) 2713.76 0.541091 0.270545 0.962707i \(-0.412796\pi\)
0.270545 + 0.962707i \(0.412796\pi\)
\(294\) 0 0
\(295\) −6683.28 −1.31904
\(296\) 0 0
\(297\) −317.711 −0.0620722
\(298\) 0 0
\(299\) 1435.31 0.277612
\(300\) 0 0
\(301\) −3008.89 −0.576179
\(302\) 0 0
\(303\) 2452.18 0.464930
\(304\) 0 0
\(305\) −1390.09 −0.260971
\(306\) 0 0
\(307\) −7196.59 −1.33789 −0.668943 0.743314i \(-0.733253\pi\)
−0.668943 + 0.743314i \(0.733253\pi\)
\(308\) 0 0
\(309\) 1546.92 0.284793
\(310\) 0 0
\(311\) −6355.15 −1.15874 −0.579369 0.815066i \(-0.696701\pi\)
−0.579369 + 0.815066i \(0.696701\pi\)
\(312\) 0 0
\(313\) 9574.89 1.72909 0.864544 0.502557i \(-0.167607\pi\)
0.864544 + 0.502557i \(0.167607\pi\)
\(314\) 0 0
\(315\) 188.544 0.0337247
\(316\) 0 0
\(317\) −9519.61 −1.68667 −0.843335 0.537388i \(-0.819411\pi\)
−0.843335 + 0.537388i \(0.819411\pi\)
\(318\) 0 0
\(319\) −95.2078 −0.0167104
\(320\) 0 0
\(321\) −1691.52 −0.294117
\(322\) 0 0
\(323\) −8916.81 −1.53605
\(324\) 0 0
\(325\) 3949.87 0.674151
\(326\) 0 0
\(327\) −1692.11 −0.286159
\(328\) 0 0
\(329\) 3580.42 0.599985
\(330\) 0 0
\(331\) 3307.29 0.549200 0.274600 0.961558i \(-0.411455\pi\)
0.274600 + 0.961558i \(0.411455\pi\)
\(332\) 0 0
\(333\) 879.425 0.144721
\(334\) 0 0
\(335\) 5373.06 0.876303
\(336\) 0 0
\(337\) −5207.02 −0.841674 −0.420837 0.907136i \(-0.638264\pi\)
−0.420837 + 0.907136i \(0.638264\pi\)
\(338\) 0 0
\(339\) 10914.2 1.74861
\(340\) 0 0
\(341\) −416.642 −0.0661654
\(342\) 0 0
\(343\) −4800.71 −0.755726
\(344\) 0 0
\(345\) −991.838 −0.154779
\(346\) 0 0
\(347\) 1463.16 0.226358 0.113179 0.993575i \(-0.463897\pi\)
0.113179 + 0.993575i \(0.463897\pi\)
\(348\) 0 0
\(349\) −4445.77 −0.681882 −0.340941 0.940085i \(-0.610746\pi\)
−0.340941 + 0.940085i \(0.610746\pi\)
\(350\) 0 0
\(351\) 8175.05 1.24317
\(352\) 0 0
\(353\) −1260.86 −0.190110 −0.0950548 0.995472i \(-0.530303\pi\)
−0.0950548 + 0.995472i \(0.530303\pi\)
\(354\) 0 0
\(355\) 8721.09 1.30385
\(356\) 0 0
\(357\) −4914.94 −0.728645
\(358\) 0 0
\(359\) 2402.90 0.353260 0.176630 0.984277i \(-0.443480\pi\)
0.176630 + 0.984277i \(0.443480\pi\)
\(360\) 0 0
\(361\) −1052.44 −0.153439
\(362\) 0 0
\(363\) −7274.54 −1.05183
\(364\) 0 0
\(365\) −4010.32 −0.575096
\(366\) 0 0
\(367\) −11147.0 −1.58548 −0.792739 0.609561i \(-0.791346\pi\)
−0.792739 + 0.609561i \(0.791346\pi\)
\(368\) 0 0
\(369\) −879.407 −0.124065
\(370\) 0 0
\(371\) −1936.98 −0.271059
\(372\) 0 0
\(373\) −5613.44 −0.779230 −0.389615 0.920978i \(-0.627392\pi\)
−0.389615 + 0.920978i \(0.627392\pi\)
\(374\) 0 0
\(375\) −8119.90 −1.11816
\(376\) 0 0
\(377\) 2449.80 0.334672
\(378\) 0 0
\(379\) 6192.90 0.839334 0.419667 0.907678i \(-0.362147\pi\)
0.419667 + 0.907678i \(0.362147\pi\)
\(380\) 0 0
\(381\) 5517.06 0.741857
\(382\) 0 0
\(383\) −7459.94 −0.995261 −0.497631 0.867389i \(-0.665797\pi\)
−0.497631 + 0.867389i \(0.665797\pi\)
\(384\) 0 0
\(385\) 145.760 0.0192951
\(386\) 0 0
\(387\) −1233.74 −0.162053
\(388\) 0 0
\(389\) 6925.74 0.902697 0.451349 0.892348i \(-0.350943\pi\)
0.451349 + 0.892348i \(0.350943\pi\)
\(390\) 0 0
\(391\) 2691.40 0.348107
\(392\) 0 0
\(393\) −13149.3 −1.68777
\(394\) 0 0
\(395\) −4210.39 −0.536323
\(396\) 0 0
\(397\) −8893.75 −1.12434 −0.562172 0.827021i \(-0.690034\pi\)
−0.562172 + 0.827021i \(0.690034\pi\)
\(398\) 0 0
\(399\) 3200.58 0.401577
\(400\) 0 0
\(401\) −3648.18 −0.454317 −0.227159 0.973858i \(-0.572944\pi\)
−0.227159 + 0.973858i \(0.572944\pi\)
\(402\) 0 0
\(403\) 10720.6 1.32515
\(404\) 0 0
\(405\) −6314.56 −0.774748
\(406\) 0 0
\(407\) 679.865 0.0828002
\(408\) 0 0
\(409\) 5118.89 0.618858 0.309429 0.950923i \(-0.399862\pi\)
0.309429 + 0.950923i \(0.399862\pi\)
\(410\) 0 0
\(411\) 12629.0 1.51567
\(412\) 0 0
\(413\) −6509.47 −0.775569
\(414\) 0 0
\(415\) −2544.59 −0.300986
\(416\) 0 0
\(417\) 6750.28 0.792716
\(418\) 0 0
\(419\) −8405.19 −0.980001 −0.490001 0.871722i \(-0.663003\pi\)
−0.490001 + 0.871722i \(0.663003\pi\)
\(420\) 0 0
\(421\) −8606.11 −0.996285 −0.498142 0.867095i \(-0.665984\pi\)
−0.498142 + 0.867095i \(0.665984\pi\)
\(422\) 0 0
\(423\) 1468.08 0.168748
\(424\) 0 0
\(425\) 7406.54 0.845342
\(426\) 0 0
\(427\) −1353.94 −0.153446
\(428\) 0 0
\(429\) −830.856 −0.0935061
\(430\) 0 0
\(431\) 15070.8 1.68430 0.842150 0.539243i \(-0.181290\pi\)
0.842150 + 0.539243i \(0.181290\pi\)
\(432\) 0 0
\(433\) 5727.65 0.635689 0.317845 0.948143i \(-0.397041\pi\)
0.317845 + 0.948143i \(0.397041\pi\)
\(434\) 0 0
\(435\) −1692.88 −0.186592
\(436\) 0 0
\(437\) −1752.62 −0.191852
\(438\) 0 0
\(439\) 2314.32 0.251609 0.125805 0.992055i \(-0.459849\pi\)
0.125805 + 0.992055i \(0.459849\pi\)
\(440\) 0 0
\(441\) −892.398 −0.0963609
\(442\) 0 0
\(443\) 4086.12 0.438234 0.219117 0.975699i \(-0.429682\pi\)
0.219117 + 0.975699i \(0.429682\pi\)
\(444\) 0 0
\(445\) 2574.50 0.274254
\(446\) 0 0
\(447\) −2919.97 −0.308971
\(448\) 0 0
\(449\) −4703.04 −0.494321 −0.247161 0.968975i \(-0.579498\pi\)
−0.247161 + 0.968975i \(0.579498\pi\)
\(450\) 0 0
\(451\) −679.851 −0.0709821
\(452\) 0 0
\(453\) −4636.67 −0.480905
\(454\) 0 0
\(455\) −3750.56 −0.386438
\(456\) 0 0
\(457\) −17069.8 −1.74724 −0.873621 0.486607i \(-0.838234\pi\)
−0.873621 + 0.486607i \(0.838234\pi\)
\(458\) 0 0
\(459\) 15329.3 1.55885
\(460\) 0 0
\(461\) 18748.8 1.89419 0.947093 0.320958i \(-0.104005\pi\)
0.947093 + 0.320958i \(0.104005\pi\)
\(462\) 0 0
\(463\) 8363.76 0.839518 0.419759 0.907636i \(-0.362115\pi\)
0.419759 + 0.907636i \(0.362115\pi\)
\(464\) 0 0
\(465\) −7408.28 −0.738819
\(466\) 0 0
\(467\) −16791.3 −1.66383 −0.831916 0.554902i \(-0.812756\pi\)
−0.831916 + 0.554902i \(0.812756\pi\)
\(468\) 0 0
\(469\) 5233.32 0.515250
\(470\) 0 0
\(471\) 2701.64 0.264300
\(472\) 0 0
\(473\) −953.778 −0.0927162
\(474\) 0 0
\(475\) −4823.09 −0.465892
\(476\) 0 0
\(477\) −794.220 −0.0762365
\(478\) 0 0
\(479\) 16933.3 1.61524 0.807621 0.589702i \(-0.200755\pi\)
0.807621 + 0.589702i \(0.200755\pi\)
\(480\) 0 0
\(481\) −17493.7 −1.65830
\(482\) 0 0
\(483\) −966.043 −0.0910072
\(484\) 0 0
\(485\) 13026.6 1.21961
\(486\) 0 0
\(487\) 10890.1 1.01330 0.506648 0.862153i \(-0.330884\pi\)
0.506648 + 0.862153i \(0.330884\pi\)
\(488\) 0 0
\(489\) −7576.87 −0.700691
\(490\) 0 0
\(491\) 19997.8 1.83806 0.919029 0.394190i \(-0.128975\pi\)
0.919029 + 0.394190i \(0.128975\pi\)
\(492\) 0 0
\(493\) 4593.72 0.419656
\(494\) 0 0
\(495\) 59.7660 0.00542683
\(496\) 0 0
\(497\) 8494.28 0.766641
\(498\) 0 0
\(499\) −17327.8 −1.55451 −0.777254 0.629187i \(-0.783388\pi\)
−0.777254 + 0.629187i \(0.783388\pi\)
\(500\) 0 0
\(501\) −15223.9 −1.35759
\(502\) 0 0
\(503\) −12292.5 −1.08965 −0.544824 0.838550i \(-0.683404\pi\)
−0.544824 + 0.838550i \(0.683404\pi\)
\(504\) 0 0
\(505\) 3508.83 0.309190
\(506\) 0 0
\(507\) 9317.91 0.816219
\(508\) 0 0
\(509\) −15951.6 −1.38908 −0.694540 0.719454i \(-0.744392\pi\)
−0.694540 + 0.719454i \(0.744392\pi\)
\(510\) 0 0
\(511\) −3906.03 −0.338146
\(512\) 0 0
\(513\) −9982.36 −0.859126
\(514\) 0 0
\(515\) 2213.49 0.189394
\(516\) 0 0
\(517\) 1134.94 0.0965470
\(518\) 0 0
\(519\) 2636.61 0.222995
\(520\) 0 0
\(521\) −9467.89 −0.796153 −0.398077 0.917352i \(-0.630322\pi\)
−0.398077 + 0.917352i \(0.630322\pi\)
\(522\) 0 0
\(523\) −4081.75 −0.341266 −0.170633 0.985335i \(-0.554581\pi\)
−0.170633 + 0.985335i \(0.554581\pi\)
\(524\) 0 0
\(525\) −2658.49 −0.221002
\(526\) 0 0
\(527\) 20102.7 1.66165
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −2669.08 −0.218132
\(532\) 0 0
\(533\) 17493.3 1.42161
\(534\) 0 0
\(535\) −2420.41 −0.195595
\(536\) 0 0
\(537\) 10589.7 0.850985
\(538\) 0 0
\(539\) −689.895 −0.0551315
\(540\) 0 0
\(541\) −4111.48 −0.326740 −0.163370 0.986565i \(-0.552236\pi\)
−0.163370 + 0.986565i \(0.552236\pi\)
\(542\) 0 0
\(543\) −9769.59 −0.772105
\(544\) 0 0
\(545\) −2421.25 −0.190303
\(546\) 0 0
\(547\) 12040.9 0.941189 0.470595 0.882350i \(-0.344039\pi\)
0.470595 + 0.882350i \(0.344039\pi\)
\(548\) 0 0
\(549\) −555.155 −0.0431574
\(550\) 0 0
\(551\) −2991.40 −0.231285
\(552\) 0 0
\(553\) −4100.89 −0.315348
\(554\) 0 0
\(555\) 12088.6 0.924567
\(556\) 0 0
\(557\) 5052.74 0.384365 0.192183 0.981359i \(-0.438443\pi\)
0.192183 + 0.981359i \(0.438443\pi\)
\(558\) 0 0
\(559\) 24541.8 1.85690
\(560\) 0 0
\(561\) −1557.97 −0.117250
\(562\) 0 0
\(563\) 985.606 0.0737803 0.0368902 0.999319i \(-0.488255\pi\)
0.0368902 + 0.999319i \(0.488255\pi\)
\(564\) 0 0
\(565\) 15617.2 1.16287
\(566\) 0 0
\(567\) −6150.34 −0.455538
\(568\) 0 0
\(569\) 11356.1 0.836681 0.418340 0.908290i \(-0.362612\pi\)
0.418340 + 0.908290i \(0.362612\pi\)
\(570\) 0 0
\(571\) 7142.79 0.523496 0.261748 0.965136i \(-0.415701\pi\)
0.261748 + 0.965136i \(0.415701\pi\)
\(572\) 0 0
\(573\) 17753.9 1.29438
\(574\) 0 0
\(575\) 1455.77 0.105583
\(576\) 0 0
\(577\) 16039.3 1.15723 0.578617 0.815599i \(-0.303593\pi\)
0.578617 + 0.815599i \(0.303593\pi\)
\(578\) 0 0
\(579\) −11045.0 −0.792774
\(580\) 0 0
\(581\) −2478.42 −0.176974
\(582\) 0 0
\(583\) −613.995 −0.0436176
\(584\) 0 0
\(585\) −1537.85 −0.108687
\(586\) 0 0
\(587\) 1617.10 0.113705 0.0568527 0.998383i \(-0.481893\pi\)
0.0568527 + 0.998383i \(0.481893\pi\)
\(588\) 0 0
\(589\) −13090.7 −0.915780
\(590\) 0 0
\(591\) 8994.51 0.626032
\(592\) 0 0
\(593\) −1874.90 −0.129836 −0.0649182 0.997891i \(-0.520679\pi\)
−0.0649182 + 0.997891i \(0.520679\pi\)
\(594\) 0 0
\(595\) −7032.82 −0.484567
\(596\) 0 0
\(597\) 25587.5 1.75415
\(598\) 0 0
\(599\) 13139.5 0.896270 0.448135 0.893966i \(-0.352088\pi\)
0.448135 + 0.893966i \(0.352088\pi\)
\(600\) 0 0
\(601\) 11841.7 0.803718 0.401859 0.915701i \(-0.368364\pi\)
0.401859 + 0.915701i \(0.368364\pi\)
\(602\) 0 0
\(603\) 2145.82 0.144916
\(604\) 0 0
\(605\) −10409.2 −0.699493
\(606\) 0 0
\(607\) −11573.8 −0.773915 −0.386958 0.922097i \(-0.626474\pi\)
−0.386958 + 0.922097i \(0.626474\pi\)
\(608\) 0 0
\(609\) −1648.86 −0.109713
\(610\) 0 0
\(611\) −29203.4 −1.93362
\(612\) 0 0
\(613\) 1661.20 0.109454 0.0547270 0.998501i \(-0.482571\pi\)
0.0547270 + 0.998501i \(0.482571\pi\)
\(614\) 0 0
\(615\) −12088.4 −0.792604
\(616\) 0 0
\(617\) 9195.09 0.599968 0.299984 0.953944i \(-0.403019\pi\)
0.299984 + 0.953944i \(0.403019\pi\)
\(618\) 0 0
\(619\) −14699.0 −0.954448 −0.477224 0.878782i \(-0.658357\pi\)
−0.477224 + 0.878782i \(0.658357\pi\)
\(620\) 0 0
\(621\) 3013.02 0.194699
\(622\) 0 0
\(623\) 2507.55 0.161257
\(624\) 0 0
\(625\) −3707.00 −0.237248
\(626\) 0 0
\(627\) 1014.54 0.0646201
\(628\) 0 0
\(629\) −32803.1 −2.07940
\(630\) 0 0
\(631\) −1488.43 −0.0939043 −0.0469522 0.998897i \(-0.514951\pi\)
−0.0469522 + 0.998897i \(0.514951\pi\)
\(632\) 0 0
\(633\) −19099.6 −1.19928
\(634\) 0 0
\(635\) 7894.39 0.493353
\(636\) 0 0
\(637\) 17751.8 1.10416
\(638\) 0 0
\(639\) 3482.91 0.215621
\(640\) 0 0
\(641\) 13182.6 0.812296 0.406148 0.913807i \(-0.366872\pi\)
0.406148 + 0.913807i \(0.366872\pi\)
\(642\) 0 0
\(643\) −15982.1 −0.980203 −0.490102 0.871665i \(-0.663040\pi\)
−0.490102 + 0.871665i \(0.663040\pi\)
\(644\) 0 0
\(645\) −16959.1 −1.03529
\(646\) 0 0
\(647\) 20355.8 1.23689 0.618447 0.785826i \(-0.287762\pi\)
0.618447 + 0.785826i \(0.287762\pi\)
\(648\) 0 0
\(649\) −2063.41 −0.124801
\(650\) 0 0
\(651\) −7215.61 −0.434412
\(652\) 0 0
\(653\) 3084.67 0.184858 0.0924291 0.995719i \(-0.470537\pi\)
0.0924291 + 0.995719i \(0.470537\pi\)
\(654\) 0 0
\(655\) −18815.3 −1.12241
\(656\) 0 0
\(657\) −1601.59 −0.0951050
\(658\) 0 0
\(659\) −2056.48 −0.121561 −0.0607807 0.998151i \(-0.519359\pi\)
−0.0607807 + 0.998151i \(0.519359\pi\)
\(660\) 0 0
\(661\) −17916.9 −1.05429 −0.527145 0.849775i \(-0.676737\pi\)
−0.527145 + 0.849775i \(0.676737\pi\)
\(662\) 0 0
\(663\) 40088.3 2.34827
\(664\) 0 0
\(665\) 4579.72 0.267059
\(666\) 0 0
\(667\) 902.905 0.0524147
\(668\) 0 0
\(669\) 708.780 0.0409611
\(670\) 0 0
\(671\) −429.179 −0.0246919
\(672\) 0 0
\(673\) 10308.1 0.590416 0.295208 0.955433i \(-0.404611\pi\)
0.295208 + 0.955433i \(0.404611\pi\)
\(674\) 0 0
\(675\) 8291.62 0.472807
\(676\) 0 0
\(677\) −357.650 −0.0203037 −0.0101518 0.999948i \(-0.503231\pi\)
−0.0101518 + 0.999948i \(0.503231\pi\)
\(678\) 0 0
\(679\) 12687.9 0.717107
\(680\) 0 0
\(681\) −7388.92 −0.415777
\(682\) 0 0
\(683\) −1489.89 −0.0834688 −0.0417344 0.999129i \(-0.513288\pi\)
−0.0417344 + 0.999129i \(0.513288\pi\)
\(684\) 0 0
\(685\) 18070.9 1.00796
\(686\) 0 0
\(687\) 19429.2 1.07900
\(688\) 0 0
\(689\) 15798.8 0.873563
\(690\) 0 0
\(691\) 3520.91 0.193838 0.0969189 0.995292i \(-0.469101\pi\)
0.0969189 + 0.995292i \(0.469101\pi\)
\(692\) 0 0
\(693\) 58.2117 0.00319088
\(694\) 0 0
\(695\) 9659.01 0.527176
\(696\) 0 0
\(697\) 32802.4 1.78261
\(698\) 0 0
\(699\) 3897.17 0.210879
\(700\) 0 0
\(701\) 31535.2 1.69910 0.849548 0.527511i \(-0.176875\pi\)
0.849548 + 0.527511i \(0.176875\pi\)
\(702\) 0 0
\(703\) 21361.1 1.14602
\(704\) 0 0
\(705\) 20180.4 1.07807
\(706\) 0 0
\(707\) 3417.58 0.181798
\(708\) 0 0
\(709\) −8182.42 −0.433424 −0.216712 0.976236i \(-0.569533\pi\)
−0.216712 + 0.976236i \(0.569533\pi\)
\(710\) 0 0
\(711\) −1681.49 −0.0886931
\(712\) 0 0
\(713\) 3951.23 0.207538
\(714\) 0 0
\(715\) −1188.88 −0.0621839
\(716\) 0 0
\(717\) −24914.5 −1.29770
\(718\) 0 0
\(719\) 29878.1 1.54974 0.774872 0.632119i \(-0.217814\pi\)
0.774872 + 0.632119i \(0.217814\pi\)
\(720\) 0 0
\(721\) 2155.92 0.111360
\(722\) 0 0
\(723\) 25372.3 1.30512
\(724\) 0 0
\(725\) 2484.74 0.127284
\(726\) 0 0
\(727\) 7403.24 0.377677 0.188838 0.982008i \(-0.439528\pi\)
0.188838 + 0.982008i \(0.439528\pi\)
\(728\) 0 0
\(729\) 16895.4 0.858378
\(730\) 0 0
\(731\) 46019.2 2.32843
\(732\) 0 0
\(733\) 33897.3 1.70808 0.854042 0.520204i \(-0.174144\pi\)
0.854042 + 0.520204i \(0.174144\pi\)
\(734\) 0 0
\(735\) −12267.0 −0.615612
\(736\) 0 0
\(737\) 1658.89 0.0829119
\(738\) 0 0
\(739\) −16685.2 −0.830546 −0.415273 0.909697i \(-0.636314\pi\)
−0.415273 + 0.909697i \(0.636314\pi\)
\(740\) 0 0
\(741\) −26105.2 −1.29420
\(742\) 0 0
\(743\) 1995.90 0.0985500 0.0492750 0.998785i \(-0.484309\pi\)
0.0492750 + 0.998785i \(0.484309\pi\)
\(744\) 0 0
\(745\) −4178.20 −0.205473
\(746\) 0 0
\(747\) −1016.23 −0.0497748
\(748\) 0 0
\(749\) −2357.46 −0.115007
\(750\) 0 0
\(751\) 11144.2 0.541487 0.270743 0.962652i \(-0.412731\pi\)
0.270743 + 0.962652i \(0.412731\pi\)
\(752\) 0 0
\(753\) −24368.2 −1.17932
\(754\) 0 0
\(755\) −6634.64 −0.319814
\(756\) 0 0
\(757\) 5734.32 0.275320 0.137660 0.990480i \(-0.456042\pi\)
0.137660 + 0.990480i \(0.456042\pi\)
\(758\) 0 0
\(759\) −306.222 −0.0146445
\(760\) 0 0
\(761\) −27665.0 −1.31781 −0.658907 0.752224i \(-0.728981\pi\)
−0.658907 + 0.752224i \(0.728981\pi\)
\(762\) 0 0
\(763\) −2358.28 −0.111895
\(764\) 0 0
\(765\) −2883.67 −0.136287
\(766\) 0 0
\(767\) 53093.9 2.49949
\(768\) 0 0
\(769\) 19614.7 0.919798 0.459899 0.887971i \(-0.347886\pi\)
0.459899 + 0.887971i \(0.347886\pi\)
\(770\) 0 0
\(771\) −15030.3 −0.702079
\(772\) 0 0
\(773\) 18009.7 0.837989 0.418994 0.907989i \(-0.362383\pi\)
0.418994 + 0.907989i \(0.362383\pi\)
\(774\) 0 0
\(775\) 10873.5 0.503985
\(776\) 0 0
\(777\) 11774.3 0.543628
\(778\) 0 0
\(779\) −21360.7 −0.982447
\(780\) 0 0
\(781\) 2692.57 0.123365
\(782\) 0 0
\(783\) 5142.66 0.234717
\(784\) 0 0
\(785\) 3865.80 0.175766
\(786\) 0 0
\(787\) 1306.98 0.0591981 0.0295991 0.999562i \(-0.490577\pi\)
0.0295991 + 0.999562i \(0.490577\pi\)
\(788\) 0 0
\(789\) −7699.77 −0.347426
\(790\) 0 0
\(791\) 15211.0 0.683744
\(792\) 0 0
\(793\) 11043.2 0.494524
\(794\) 0 0
\(795\) −10917.4 −0.487045
\(796\) 0 0
\(797\) 824.672 0.0366517 0.0183258 0.999832i \(-0.494166\pi\)
0.0183258 + 0.999832i \(0.494166\pi\)
\(798\) 0 0
\(799\) −54760.4 −2.42463
\(800\) 0 0
\(801\) 1028.17 0.0453541
\(802\) 0 0
\(803\) −1238.16 −0.0544129
\(804\) 0 0
\(805\) −1382.32 −0.0605221
\(806\) 0 0
\(807\) −33872.6 −1.47753
\(808\) 0 0
\(809\) −6391.38 −0.277761 −0.138881 0.990309i \(-0.544350\pi\)
−0.138881 + 0.990309i \(0.544350\pi\)
\(810\) 0 0
\(811\) 38881.0 1.68347 0.841737 0.539887i \(-0.181533\pi\)
0.841737 + 0.539887i \(0.181533\pi\)
\(812\) 0 0
\(813\) −40594.8 −1.75119
\(814\) 0 0
\(815\) −10841.8 −0.465977
\(816\) 0 0
\(817\) −29967.4 −1.28326
\(818\) 0 0
\(819\) −1497.85 −0.0639061
\(820\) 0 0
\(821\) 30235.1 1.28528 0.642639 0.766169i \(-0.277840\pi\)
0.642639 + 0.766169i \(0.277840\pi\)
\(822\) 0 0
\(823\) −11940.8 −0.505749 −0.252875 0.967499i \(-0.581376\pi\)
−0.252875 + 0.967499i \(0.581376\pi\)
\(824\) 0 0
\(825\) −842.704 −0.0355627
\(826\) 0 0
\(827\) 34537.9 1.45224 0.726118 0.687570i \(-0.241322\pi\)
0.726118 + 0.687570i \(0.241322\pi\)
\(828\) 0 0
\(829\) −25718.1 −1.07748 −0.538738 0.842473i \(-0.681099\pi\)
−0.538738 + 0.842473i \(0.681099\pi\)
\(830\) 0 0
\(831\) 33003.4 1.37771
\(832\) 0 0
\(833\) 33287.0 1.38454
\(834\) 0 0
\(835\) −21784.0 −0.902832
\(836\) 0 0
\(837\) 22504.9 0.929372
\(838\) 0 0
\(839\) −4305.30 −0.177158 −0.0885788 0.996069i \(-0.528233\pi\)
−0.0885788 + 0.996069i \(0.528233\pi\)
\(840\) 0 0
\(841\) −22847.9 −0.936812
\(842\) 0 0
\(843\) 4839.61 0.197728
\(844\) 0 0
\(845\) 13333.1 0.542806
\(846\) 0 0
\(847\) −10138.5 −0.411289
\(848\) 0 0
\(849\) −579.675 −0.0234327
\(850\) 0 0
\(851\) −6447.52 −0.259716
\(852\) 0 0
\(853\) −15662.7 −0.628698 −0.314349 0.949307i \(-0.601786\pi\)
−0.314349 + 0.949307i \(0.601786\pi\)
\(854\) 0 0
\(855\) 1877.83 0.0751115
\(856\) 0 0
\(857\) −25676.4 −1.02344 −0.511720 0.859152i \(-0.670991\pi\)
−0.511720 + 0.859152i \(0.670991\pi\)
\(858\) 0 0
\(859\) −2442.30 −0.0970083 −0.0485041 0.998823i \(-0.515445\pi\)
−0.0485041 + 0.998823i \(0.515445\pi\)
\(860\) 0 0
\(861\) −11774.0 −0.466036
\(862\) 0 0
\(863\) −13122.0 −0.517589 −0.258795 0.965932i \(-0.583325\pi\)
−0.258795 + 0.965932i \(0.583325\pi\)
\(864\) 0 0
\(865\) 3772.74 0.148297
\(866\) 0 0
\(867\) 48200.0 1.88807
\(868\) 0 0
\(869\) −1299.93 −0.0507445
\(870\) 0 0
\(871\) −42685.1 −1.66054
\(872\) 0 0
\(873\) 5202.41 0.201689
\(874\) 0 0
\(875\) −11316.6 −0.437225
\(876\) 0 0
\(877\) 43482.6 1.67423 0.837117 0.547024i \(-0.184239\pi\)
0.837117 + 0.547024i \(0.184239\pi\)
\(878\) 0 0
\(879\) 14897.8 0.571662
\(880\) 0 0
\(881\) −12660.8 −0.484170 −0.242085 0.970255i \(-0.577831\pi\)
−0.242085 + 0.970255i \(0.577831\pi\)
\(882\) 0 0
\(883\) 25125.1 0.957561 0.478780 0.877935i \(-0.341079\pi\)
0.478780 + 0.877935i \(0.341079\pi\)
\(884\) 0 0
\(885\) −36689.4 −1.39356
\(886\) 0 0
\(887\) −4437.31 −0.167971 −0.0839854 0.996467i \(-0.526765\pi\)
−0.0839854 + 0.996467i \(0.526765\pi\)
\(888\) 0 0
\(889\) 7689.08 0.290083
\(890\) 0 0
\(891\) −1949.57 −0.0733032
\(892\) 0 0
\(893\) 35659.6 1.33628
\(894\) 0 0
\(895\) 15152.9 0.565926
\(896\) 0 0
\(897\) 7879.44 0.293296
\(898\) 0 0
\(899\) 6744.02 0.250195
\(900\) 0 0
\(901\) 29624.9 1.09539
\(902\) 0 0
\(903\) −16518.0 −0.608732
\(904\) 0 0
\(905\) −13979.4 −0.513469
\(906\) 0 0
\(907\) 37531.4 1.37399 0.686996 0.726661i \(-0.258929\pi\)
0.686996 + 0.726661i \(0.258929\pi\)
\(908\) 0 0
\(909\) 1401.31 0.0511316
\(910\) 0 0
\(911\) 54011.5 1.96431 0.982153 0.188086i \(-0.0602284\pi\)
0.982153 + 0.188086i \(0.0602284\pi\)
\(912\) 0 0
\(913\) −785.624 −0.0284779
\(914\) 0 0
\(915\) −7631.21 −0.275716
\(916\) 0 0
\(917\) −18326.0 −0.659954
\(918\) 0 0
\(919\) −41699.0 −1.49676 −0.748381 0.663269i \(-0.769168\pi\)
−0.748381 + 0.663269i \(0.769168\pi\)
\(920\) 0 0
\(921\) −39507.3 −1.41348
\(922\) 0 0
\(923\) −69282.8 −2.47072
\(924\) 0 0
\(925\) −17743.1 −0.630693
\(926\) 0 0
\(927\) 883.994 0.0313206
\(928\) 0 0
\(929\) −2259.47 −0.0797965 −0.0398982 0.999204i \(-0.512703\pi\)
−0.0398982 + 0.999204i \(0.512703\pi\)
\(930\) 0 0
\(931\) −21676.3 −0.763062
\(932\) 0 0
\(933\) −34888.1 −1.22421
\(934\) 0 0
\(935\) −2229.31 −0.0779745
\(936\) 0 0
\(937\) −45807.4 −1.59708 −0.798539 0.601943i \(-0.794393\pi\)
−0.798539 + 0.601943i \(0.794393\pi\)
\(938\) 0 0
\(939\) 52563.5 1.82678
\(940\) 0 0
\(941\) −31202.1 −1.08093 −0.540467 0.841365i \(-0.681752\pi\)
−0.540467 + 0.841365i \(0.681752\pi\)
\(942\) 0 0
\(943\) 6447.38 0.222647
\(944\) 0 0
\(945\) −7873.24 −0.271023
\(946\) 0 0
\(947\) −28637.3 −0.982670 −0.491335 0.870971i \(-0.663491\pi\)
−0.491335 + 0.870971i \(0.663491\pi\)
\(948\) 0 0
\(949\) 31859.1 1.08977
\(950\) 0 0
\(951\) −52260.1 −1.78197
\(952\) 0 0
\(953\) 42835.7 1.45602 0.728009 0.685568i \(-0.240446\pi\)
0.728009 + 0.685568i \(0.240446\pi\)
\(954\) 0 0
\(955\) 25404.1 0.860793
\(956\) 0 0
\(957\) −522.665 −0.0176545
\(958\) 0 0
\(959\) 17600.9 0.592662
\(960\) 0 0
\(961\) −278.302 −0.00934182
\(962\) 0 0
\(963\) −966.632 −0.0323461
\(964\) 0 0
\(965\) −15804.4 −0.527214
\(966\) 0 0
\(967\) −36655.4 −1.21898 −0.609492 0.792792i \(-0.708626\pi\)
−0.609492 + 0.792792i \(0.708626\pi\)
\(968\) 0 0
\(969\) −48950.9 −1.62284
\(970\) 0 0
\(971\) −14726.2 −0.486699 −0.243350 0.969939i \(-0.578246\pi\)
−0.243350 + 0.969939i \(0.578246\pi\)
\(972\) 0 0
\(973\) 9407.80 0.309970
\(974\) 0 0
\(975\) 21683.7 0.712240
\(976\) 0 0
\(977\) −28358.0 −0.928612 −0.464306 0.885675i \(-0.653696\pi\)
−0.464306 + 0.885675i \(0.653696\pi\)
\(978\) 0 0
\(979\) 794.859 0.0259487
\(980\) 0 0
\(981\) −966.968 −0.0314709
\(982\) 0 0
\(983\) 1529.50 0.0496271 0.0248136 0.999692i \(-0.492101\pi\)
0.0248136 + 0.999692i \(0.492101\pi\)
\(984\) 0 0
\(985\) 12870.3 0.416327
\(986\) 0 0
\(987\) 19655.6 0.633884
\(988\) 0 0
\(989\) 9045.17 0.290819
\(990\) 0 0
\(991\) 50505.7 1.61894 0.809468 0.587164i \(-0.199756\pi\)
0.809468 + 0.587164i \(0.199756\pi\)
\(992\) 0 0
\(993\) 18156.2 0.580230
\(994\) 0 0
\(995\) 36613.3 1.16655
\(996\) 0 0
\(997\) −3016.06 −0.0958070 −0.0479035 0.998852i \(-0.515254\pi\)
−0.0479035 + 0.998852i \(0.515254\pi\)
\(998\) 0 0
\(999\) −36723.0 −1.16303
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.4.a.bg.1.7 8
4.3 odd 2 1472.4.a.bh.1.2 8
8.3 odd 2 736.4.a.e.1.7 8
8.5 even 2 736.4.a.f.1.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
736.4.a.e.1.7 8 8.3 odd 2
736.4.a.f.1.2 yes 8 8.5 even 2
1472.4.a.bg.1.7 8 1.1 even 1 trivial
1472.4.a.bh.1.2 8 4.3 odd 2