Properties

Label 1472.4.a.bg.1.6
Level $1472$
Weight $4$
Character 1472.1
Self dual yes
Analytic conductor $86.851$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,4,Mod(1,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.8508115285\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 137x^{6} + 344x^{5} + 6175x^{4} - 7924x^{3} - 89643x^{2} + 45072x + 51084 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 736)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(5.24371\) of defining polynomial
Character \(\chi\) \(=\) 1472.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.24371 q^{3} +5.01937 q^{5} -22.4881 q^{7} -16.4784 q^{9} +50.5296 q^{11} +89.2035 q^{13} +16.2813 q^{15} -66.9007 q^{17} -97.7214 q^{19} -72.9448 q^{21} -23.0000 q^{23} -99.8060 q^{25} -141.031 q^{27} -29.9936 q^{29} -73.5761 q^{31} +163.903 q^{33} -112.876 q^{35} -1.12672 q^{37} +289.350 q^{39} +34.3225 q^{41} +160.562 q^{43} -82.7110 q^{45} -289.634 q^{47} +162.715 q^{49} -217.006 q^{51} +392.969 q^{53} +253.627 q^{55} -316.980 q^{57} +174.989 q^{59} +474.108 q^{61} +370.567 q^{63} +447.745 q^{65} -671.911 q^{67} -74.6052 q^{69} +481.540 q^{71} -778.702 q^{73} -323.741 q^{75} -1136.32 q^{77} +132.340 q^{79} -12.5472 q^{81} -808.059 q^{83} -335.799 q^{85} -97.2903 q^{87} -1055.47 q^{89} -2006.02 q^{91} -238.659 q^{93} -490.500 q^{95} +824.410 q^{97} -832.646 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{3} + 12 q^{5} - 14 q^{7} + 90 q^{9} - 88 q^{11} + 30 q^{13} + 30 q^{15} + 58 q^{17} - 190 q^{19} + 66 q^{21} - 184 q^{23} + 28 q^{25} - 432 q^{27} - 190 q^{29} - 60 q^{31} + 346 q^{33} - 192 q^{35}+ \cdots - 5986 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.24371 0.624251 0.312126 0.950041i \(-0.398959\pi\)
0.312126 + 0.950041i \(0.398959\pi\)
\(4\) 0 0
\(5\) 5.01937 0.448946 0.224473 0.974480i \(-0.427934\pi\)
0.224473 + 0.974480i \(0.427934\pi\)
\(6\) 0 0
\(7\) −22.4881 −1.21424 −0.607122 0.794609i \(-0.707676\pi\)
−0.607122 + 0.794609i \(0.707676\pi\)
\(8\) 0 0
\(9\) −16.4784 −0.610310
\(10\) 0 0
\(11\) 50.5296 1.38502 0.692512 0.721406i \(-0.256504\pi\)
0.692512 + 0.721406i \(0.256504\pi\)
\(12\) 0 0
\(13\) 89.2035 1.90312 0.951561 0.307460i \(-0.0994790\pi\)
0.951561 + 0.307460i \(0.0994790\pi\)
\(14\) 0 0
\(15\) 16.2813 0.280255
\(16\) 0 0
\(17\) −66.9007 −0.954459 −0.477230 0.878779i \(-0.658359\pi\)
−0.477230 + 0.878779i \(0.658359\pi\)
\(18\) 0 0
\(19\) −97.7214 −1.17994 −0.589969 0.807426i \(-0.700860\pi\)
−0.589969 + 0.807426i \(0.700860\pi\)
\(20\) 0 0
\(21\) −72.9448 −0.757993
\(22\) 0 0
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) −99.8060 −0.798448
\(26\) 0 0
\(27\) −141.031 −1.00524
\(28\) 0 0
\(29\) −29.9936 −0.192057 −0.0960287 0.995379i \(-0.530614\pi\)
−0.0960287 + 0.995379i \(0.530614\pi\)
\(30\) 0 0
\(31\) −73.5761 −0.426279 −0.213140 0.977022i \(-0.568369\pi\)
−0.213140 + 0.977022i \(0.568369\pi\)
\(32\) 0 0
\(33\) 163.903 0.864603
\(34\) 0 0
\(35\) −112.876 −0.545130
\(36\) 0 0
\(37\) −1.12672 −0.00500628 −0.00250314 0.999997i \(-0.500797\pi\)
−0.00250314 + 0.999997i \(0.500797\pi\)
\(38\) 0 0
\(39\) 289.350 1.18803
\(40\) 0 0
\(41\) 34.3225 0.130738 0.0653692 0.997861i \(-0.479177\pi\)
0.0653692 + 0.997861i \(0.479177\pi\)
\(42\) 0 0
\(43\) 160.562 0.569429 0.284714 0.958612i \(-0.408101\pi\)
0.284714 + 0.958612i \(0.408101\pi\)
\(44\) 0 0
\(45\) −82.7110 −0.273996
\(46\) 0 0
\(47\) −289.634 −0.898883 −0.449442 0.893310i \(-0.648377\pi\)
−0.449442 + 0.893310i \(0.648377\pi\)
\(48\) 0 0
\(49\) 162.715 0.474388
\(50\) 0 0
\(51\) −217.006 −0.595823
\(52\) 0 0
\(53\) 392.969 1.01846 0.509230 0.860630i \(-0.329930\pi\)
0.509230 + 0.860630i \(0.329930\pi\)
\(54\) 0 0
\(55\) 253.627 0.621801
\(56\) 0 0
\(57\) −316.980 −0.736579
\(58\) 0 0
\(59\) 174.989 0.386129 0.193065 0.981186i \(-0.438157\pi\)
0.193065 + 0.981186i \(0.438157\pi\)
\(60\) 0 0
\(61\) 474.108 0.995136 0.497568 0.867425i \(-0.334226\pi\)
0.497568 + 0.867425i \(0.334226\pi\)
\(62\) 0 0
\(63\) 370.567 0.741065
\(64\) 0 0
\(65\) 447.745 0.854399
\(66\) 0 0
\(67\) −671.911 −1.22518 −0.612589 0.790401i \(-0.709872\pi\)
−0.612589 + 0.790401i \(0.709872\pi\)
\(68\) 0 0
\(69\) −74.6052 −0.130165
\(70\) 0 0
\(71\) 481.540 0.804906 0.402453 0.915441i \(-0.368158\pi\)
0.402453 + 0.915441i \(0.368158\pi\)
\(72\) 0 0
\(73\) −778.702 −1.24850 −0.624248 0.781226i \(-0.714595\pi\)
−0.624248 + 0.781226i \(0.714595\pi\)
\(74\) 0 0
\(75\) −323.741 −0.498432
\(76\) 0 0
\(77\) −1136.32 −1.68176
\(78\) 0 0
\(79\) 132.340 0.188474 0.0942369 0.995550i \(-0.469959\pi\)
0.0942369 + 0.995550i \(0.469959\pi\)
\(80\) 0 0
\(81\) −12.5472 −0.0172115
\(82\) 0 0
\(83\) −808.059 −1.06863 −0.534313 0.845287i \(-0.679430\pi\)
−0.534313 + 0.845287i \(0.679430\pi\)
\(84\) 0 0
\(85\) −335.799 −0.428500
\(86\) 0 0
\(87\) −97.2903 −0.119892
\(88\) 0 0
\(89\) −1055.47 −1.25707 −0.628534 0.777782i \(-0.716345\pi\)
−0.628534 + 0.777782i \(0.716345\pi\)
\(90\) 0 0
\(91\) −2006.02 −2.31085
\(92\) 0 0
\(93\) −238.659 −0.266106
\(94\) 0 0
\(95\) −490.500 −0.529729
\(96\) 0 0
\(97\) 824.410 0.862950 0.431475 0.902125i \(-0.357993\pi\)
0.431475 + 0.902125i \(0.357993\pi\)
\(98\) 0 0
\(99\) −832.646 −0.845294
\(100\) 0 0
\(101\) −1026.60 −1.01139 −0.505694 0.862713i \(-0.668763\pi\)
−0.505694 + 0.862713i \(0.668763\pi\)
\(102\) 0 0
\(103\) −1258.22 −1.20365 −0.601825 0.798628i \(-0.705560\pi\)
−0.601825 + 0.798628i \(0.705560\pi\)
\(104\) 0 0
\(105\) −366.137 −0.340298
\(106\) 0 0
\(107\) 507.430 0.458459 0.229229 0.973372i \(-0.426379\pi\)
0.229229 + 0.973372i \(0.426379\pi\)
\(108\) 0 0
\(109\) 479.750 0.421575 0.210787 0.977532i \(-0.432397\pi\)
0.210787 + 0.977532i \(0.432397\pi\)
\(110\) 0 0
\(111\) −3.65476 −0.00312518
\(112\) 0 0
\(113\) −1634.89 −1.36104 −0.680519 0.732731i \(-0.738245\pi\)
−0.680519 + 0.732731i \(0.738245\pi\)
\(114\) 0 0
\(115\) −115.445 −0.0936117
\(116\) 0 0
\(117\) −1469.93 −1.16149
\(118\) 0 0
\(119\) 1504.47 1.15895
\(120\) 0 0
\(121\) 1222.25 0.918291
\(122\) 0 0
\(123\) 111.332 0.0816136
\(124\) 0 0
\(125\) −1128.38 −0.807405
\(126\) 0 0
\(127\) −433.550 −0.302924 −0.151462 0.988463i \(-0.548398\pi\)
−0.151462 + 0.988463i \(0.548398\pi\)
\(128\) 0 0
\(129\) 520.815 0.355467
\(130\) 0 0
\(131\) −1097.96 −0.732281 −0.366140 0.930560i \(-0.619321\pi\)
−0.366140 + 0.930560i \(0.619321\pi\)
\(132\) 0 0
\(133\) 2197.57 1.43273
\(134\) 0 0
\(135\) −707.886 −0.451298
\(136\) 0 0
\(137\) −1578.08 −0.984122 −0.492061 0.870561i \(-0.663756\pi\)
−0.492061 + 0.870561i \(0.663756\pi\)
\(138\) 0 0
\(139\) −1969.53 −1.20182 −0.600911 0.799316i \(-0.705195\pi\)
−0.600911 + 0.799316i \(0.705195\pi\)
\(140\) 0 0
\(141\) −939.489 −0.561129
\(142\) 0 0
\(143\) 4507.42 2.63587
\(144\) 0 0
\(145\) −150.549 −0.0862233
\(146\) 0 0
\(147\) 527.800 0.296137
\(148\) 0 0
\(149\) 1291.44 0.710060 0.355030 0.934855i \(-0.384471\pi\)
0.355030 + 0.934855i \(0.384471\pi\)
\(150\) 0 0
\(151\) −1388.00 −0.748038 −0.374019 0.927421i \(-0.622021\pi\)
−0.374019 + 0.927421i \(0.622021\pi\)
\(152\) 0 0
\(153\) 1102.42 0.582516
\(154\) 0 0
\(155\) −369.305 −0.191376
\(156\) 0 0
\(157\) −2602.69 −1.32304 −0.661519 0.749929i \(-0.730088\pi\)
−0.661519 + 0.749929i \(0.730088\pi\)
\(158\) 0 0
\(159\) 1274.68 0.635776
\(160\) 0 0
\(161\) 517.227 0.253187
\(162\) 0 0
\(163\) 1483.18 0.712711 0.356356 0.934350i \(-0.384019\pi\)
0.356356 + 0.934350i \(0.384019\pi\)
\(164\) 0 0
\(165\) 822.691 0.388160
\(166\) 0 0
\(167\) −3685.95 −1.70795 −0.853975 0.520314i \(-0.825815\pi\)
−0.853975 + 0.520314i \(0.825815\pi\)
\(168\) 0 0
\(169\) 5760.26 2.62187
\(170\) 0 0
\(171\) 1610.29 0.720129
\(172\) 0 0
\(173\) 1816.77 0.798417 0.399208 0.916860i \(-0.369285\pi\)
0.399208 + 0.916860i \(0.369285\pi\)
\(174\) 0 0
\(175\) 2244.45 0.969510
\(176\) 0 0
\(177\) 567.613 0.241042
\(178\) 0 0
\(179\) −3595.87 −1.50150 −0.750749 0.660588i \(-0.770307\pi\)
−0.750749 + 0.660588i \(0.770307\pi\)
\(180\) 0 0
\(181\) 2646.44 1.08679 0.543394 0.839478i \(-0.317139\pi\)
0.543394 + 0.839478i \(0.317139\pi\)
\(182\) 0 0
\(183\) 1537.87 0.621215
\(184\) 0 0
\(185\) −5.65544 −0.00224755
\(186\) 0 0
\(187\) −3380.47 −1.32195
\(188\) 0 0
\(189\) 3171.52 1.22060
\(190\) 0 0
\(191\) −3057.51 −1.15829 −0.579146 0.815224i \(-0.696614\pi\)
−0.579146 + 0.815224i \(0.696614\pi\)
\(192\) 0 0
\(193\) 2810.64 1.04826 0.524130 0.851638i \(-0.324390\pi\)
0.524130 + 0.851638i \(0.324390\pi\)
\(194\) 0 0
\(195\) 1452.35 0.533360
\(196\) 0 0
\(197\) 3369.29 1.21854 0.609269 0.792963i \(-0.291463\pi\)
0.609269 + 0.792963i \(0.291463\pi\)
\(198\) 0 0
\(199\) −3191.01 −1.13671 −0.568353 0.822785i \(-0.692419\pi\)
−0.568353 + 0.822785i \(0.692419\pi\)
\(200\) 0 0
\(201\) −2179.48 −0.764819
\(202\) 0 0
\(203\) 674.498 0.233204
\(204\) 0 0
\(205\) 172.277 0.0586944
\(206\) 0 0
\(207\) 379.003 0.127258
\(208\) 0 0
\(209\) −4937.83 −1.63424
\(210\) 0 0
\(211\) −3367.08 −1.09857 −0.549287 0.835634i \(-0.685101\pi\)
−0.549287 + 0.835634i \(0.685101\pi\)
\(212\) 0 0
\(213\) 1561.98 0.502464
\(214\) 0 0
\(215\) 805.918 0.255643
\(216\) 0 0
\(217\) 1654.59 0.517607
\(218\) 0 0
\(219\) −2525.88 −0.779376
\(220\) 0 0
\(221\) −5967.78 −1.81645
\(222\) 0 0
\(223\) −4129.95 −1.24019 −0.620094 0.784528i \(-0.712906\pi\)
−0.620094 + 0.784528i \(0.712906\pi\)
\(224\) 0 0
\(225\) 1644.64 0.487301
\(226\) 0 0
\(227\) −2844.36 −0.831661 −0.415830 0.909442i \(-0.636509\pi\)
−0.415830 + 0.909442i \(0.636509\pi\)
\(228\) 0 0
\(229\) 3004.28 0.866936 0.433468 0.901169i \(-0.357290\pi\)
0.433468 + 0.901169i \(0.357290\pi\)
\(230\) 0 0
\(231\) −3685.88 −1.04984
\(232\) 0 0
\(233\) −457.644 −0.128675 −0.0643374 0.997928i \(-0.520493\pi\)
−0.0643374 + 0.997928i \(0.520493\pi\)
\(234\) 0 0
\(235\) −1453.78 −0.403550
\(236\) 0 0
\(237\) 429.273 0.117655
\(238\) 0 0
\(239\) 1302.50 0.352518 0.176259 0.984344i \(-0.443600\pi\)
0.176259 + 0.984344i \(0.443600\pi\)
\(240\) 0 0
\(241\) −4474.43 −1.19595 −0.597973 0.801516i \(-0.704027\pi\)
−0.597973 + 0.801516i \(0.704027\pi\)
\(242\) 0 0
\(243\) 3767.14 0.994494
\(244\) 0 0
\(245\) 816.727 0.212975
\(246\) 0 0
\(247\) −8717.09 −2.24557
\(248\) 0 0
\(249\) −2621.10 −0.667091
\(250\) 0 0
\(251\) −3834.68 −0.964314 −0.482157 0.876085i \(-0.660146\pi\)
−0.482157 + 0.876085i \(0.660146\pi\)
\(252\) 0 0
\(253\) −1162.18 −0.288797
\(254\) 0 0
\(255\) −1089.23 −0.267492
\(256\) 0 0
\(257\) 385.508 0.0935693 0.0467846 0.998905i \(-0.485103\pi\)
0.0467846 + 0.998905i \(0.485103\pi\)
\(258\) 0 0
\(259\) 25.3379 0.00607884
\(260\) 0 0
\(261\) 494.245 0.117215
\(262\) 0 0
\(263\) −3080.35 −0.722215 −0.361108 0.932524i \(-0.617601\pi\)
−0.361108 + 0.932524i \(0.617601\pi\)
\(264\) 0 0
\(265\) 1972.45 0.457234
\(266\) 0 0
\(267\) −3423.62 −0.784727
\(268\) 0 0
\(269\) 5963.04 1.35157 0.675786 0.737098i \(-0.263804\pi\)
0.675786 + 0.737098i \(0.263804\pi\)
\(270\) 0 0
\(271\) −6227.62 −1.39594 −0.697972 0.716125i \(-0.745914\pi\)
−0.697972 + 0.716125i \(0.745914\pi\)
\(272\) 0 0
\(273\) −6506.93 −1.44255
\(274\) 0 0
\(275\) −5043.16 −1.10587
\(276\) 0 0
\(277\) 615.008 0.133402 0.0667009 0.997773i \(-0.478753\pi\)
0.0667009 + 0.997773i \(0.478753\pi\)
\(278\) 0 0
\(279\) 1212.41 0.260163
\(280\) 0 0
\(281\) 8285.01 1.75887 0.879435 0.476019i \(-0.157921\pi\)
0.879435 + 0.476019i \(0.157921\pi\)
\(282\) 0 0
\(283\) 3165.51 0.664911 0.332456 0.943119i \(-0.392123\pi\)
0.332456 + 0.943119i \(0.392123\pi\)
\(284\) 0 0
\(285\) −1591.04 −0.330684
\(286\) 0 0
\(287\) −771.848 −0.158748
\(288\) 0 0
\(289\) −437.293 −0.0890073
\(290\) 0 0
\(291\) 2674.14 0.538698
\(292\) 0 0
\(293\) −8523.21 −1.69942 −0.849712 0.527248i \(-0.823224\pi\)
−0.849712 + 0.527248i \(0.823224\pi\)
\(294\) 0 0
\(295\) 878.334 0.173351
\(296\) 0 0
\(297\) −7126.25 −1.39228
\(298\) 0 0
\(299\) −2051.68 −0.396828
\(300\) 0 0
\(301\) −3610.73 −0.691425
\(302\) 0 0
\(303\) −3329.98 −0.631360
\(304\) 0 0
\(305\) 2379.72 0.446762
\(306\) 0 0
\(307\) 10084.1 1.87469 0.937343 0.348407i \(-0.113277\pi\)
0.937343 + 0.348407i \(0.113277\pi\)
\(308\) 0 0
\(309\) −4081.29 −0.751381
\(310\) 0 0
\(311\) 3592.20 0.654967 0.327484 0.944857i \(-0.393799\pi\)
0.327484 + 0.944857i \(0.393799\pi\)
\(312\) 0 0
\(313\) 1308.03 0.236212 0.118106 0.993001i \(-0.462318\pi\)
0.118106 + 0.993001i \(0.462318\pi\)
\(314\) 0 0
\(315\) 1860.01 0.332698
\(316\) 0 0
\(317\) −1877.87 −0.332718 −0.166359 0.986065i \(-0.553201\pi\)
−0.166359 + 0.986065i \(0.553201\pi\)
\(318\) 0 0
\(319\) −1515.56 −0.266004
\(320\) 0 0
\(321\) 1645.95 0.286194
\(322\) 0 0
\(323\) 6537.64 1.12620
\(324\) 0 0
\(325\) −8903.04 −1.51954
\(326\) 0 0
\(327\) 1556.17 0.263169
\(328\) 0 0
\(329\) 6513.33 1.09146
\(330\) 0 0
\(331\) 8312.07 1.38028 0.690140 0.723675i \(-0.257549\pi\)
0.690140 + 0.723675i \(0.257549\pi\)
\(332\) 0 0
\(333\) 18.5666 0.00305538
\(334\) 0 0
\(335\) −3372.57 −0.550039
\(336\) 0 0
\(337\) 8346.55 1.34916 0.674578 0.738204i \(-0.264326\pi\)
0.674578 + 0.738204i \(0.264326\pi\)
\(338\) 0 0
\(339\) −5303.09 −0.849629
\(340\) 0 0
\(341\) −3717.78 −0.590407
\(342\) 0 0
\(343\) 4054.27 0.638221
\(344\) 0 0
\(345\) −374.471 −0.0584372
\(346\) 0 0
\(347\) 10694.4 1.65449 0.827245 0.561842i \(-0.189907\pi\)
0.827245 + 0.561842i \(0.189907\pi\)
\(348\) 0 0
\(349\) −8.08786 −0.00124050 −0.000620248 1.00000i \(-0.500197\pi\)
−0.000620248 1.00000i \(0.500197\pi\)
\(350\) 0 0
\(351\) −12580.5 −1.91309
\(352\) 0 0
\(353\) −7139.25 −1.07644 −0.538221 0.842804i \(-0.680903\pi\)
−0.538221 + 0.842804i \(0.680903\pi\)
\(354\) 0 0
\(355\) 2417.03 0.361359
\(356\) 0 0
\(357\) 4880.06 0.723474
\(358\) 0 0
\(359\) −11540.4 −1.69660 −0.848301 0.529514i \(-0.822374\pi\)
−0.848301 + 0.529514i \(0.822374\pi\)
\(360\) 0 0
\(361\) 2690.48 0.392256
\(362\) 0 0
\(363\) 3964.60 0.573244
\(364\) 0 0
\(365\) −3908.59 −0.560507
\(366\) 0 0
\(367\) 4341.92 0.617565 0.308783 0.951133i \(-0.400078\pi\)
0.308783 + 0.951133i \(0.400078\pi\)
\(368\) 0 0
\(369\) −565.579 −0.0797910
\(370\) 0 0
\(371\) −8837.13 −1.23666
\(372\) 0 0
\(373\) 10170.6 1.41183 0.705915 0.708297i \(-0.250536\pi\)
0.705915 + 0.708297i \(0.250536\pi\)
\(374\) 0 0
\(375\) −3660.14 −0.504024
\(376\) 0 0
\(377\) −2675.53 −0.365509
\(378\) 0 0
\(379\) 11102.5 1.50474 0.752370 0.658740i \(-0.228910\pi\)
0.752370 + 0.658740i \(0.228910\pi\)
\(380\) 0 0
\(381\) −1406.31 −0.189101
\(382\) 0 0
\(383\) 7798.68 1.04045 0.520227 0.854028i \(-0.325847\pi\)
0.520227 + 0.854028i \(0.325847\pi\)
\(384\) 0 0
\(385\) −5703.59 −0.755017
\(386\) 0 0
\(387\) −2645.80 −0.347528
\(388\) 0 0
\(389\) 4144.11 0.540141 0.270070 0.962841i \(-0.412953\pi\)
0.270070 + 0.962841i \(0.412953\pi\)
\(390\) 0 0
\(391\) 1538.72 0.199019
\(392\) 0 0
\(393\) −3561.44 −0.457127
\(394\) 0 0
\(395\) 664.264 0.0846145
\(396\) 0 0
\(397\) 13652.5 1.72595 0.862974 0.505248i \(-0.168599\pi\)
0.862974 + 0.505248i \(0.168599\pi\)
\(398\) 0 0
\(399\) 7128.27 0.894386
\(400\) 0 0
\(401\) −4312.25 −0.537016 −0.268508 0.963277i \(-0.586531\pi\)
−0.268508 + 0.963277i \(0.586531\pi\)
\(402\) 0 0
\(403\) −6563.24 −0.811262
\(404\) 0 0
\(405\) −62.9788 −0.00772702
\(406\) 0 0
\(407\) −56.9329 −0.00693381
\(408\) 0 0
\(409\) 4307.52 0.520765 0.260383 0.965505i \(-0.416151\pi\)
0.260383 + 0.965505i \(0.416151\pi\)
\(410\) 0 0
\(411\) −5118.84 −0.614340
\(412\) 0 0
\(413\) −3935.17 −0.468855
\(414\) 0 0
\(415\) −4055.94 −0.479755
\(416\) 0 0
\(417\) −6388.57 −0.750239
\(418\) 0 0
\(419\) −3968.03 −0.462651 −0.231326 0.972876i \(-0.574306\pi\)
−0.231326 + 0.972876i \(0.574306\pi\)
\(420\) 0 0
\(421\) −10423.7 −1.20670 −0.603350 0.797477i \(-0.706168\pi\)
−0.603350 + 0.797477i \(0.706168\pi\)
\(422\) 0 0
\(423\) 4772.70 0.548598
\(424\) 0 0
\(425\) 6677.09 0.762086
\(426\) 0 0
\(427\) −10661.8 −1.20834
\(428\) 0 0
\(429\) 14620.7 1.64545
\(430\) 0 0
\(431\) −7390.02 −0.825905 −0.412952 0.910753i \(-0.635502\pi\)
−0.412952 + 0.910753i \(0.635502\pi\)
\(432\) 0 0
\(433\) −9821.24 −1.09002 −0.545010 0.838430i \(-0.683474\pi\)
−0.545010 + 0.838430i \(0.683474\pi\)
\(434\) 0 0
\(435\) −488.336 −0.0538250
\(436\) 0 0
\(437\) 2247.59 0.246034
\(438\) 0 0
\(439\) 4275.53 0.464829 0.232414 0.972617i \(-0.425337\pi\)
0.232414 + 0.972617i \(0.425337\pi\)
\(440\) 0 0
\(441\) −2681.28 −0.289524
\(442\) 0 0
\(443\) −5079.47 −0.544770 −0.272385 0.962188i \(-0.587812\pi\)
−0.272385 + 0.962188i \(0.587812\pi\)
\(444\) 0 0
\(445\) −5297.77 −0.564356
\(446\) 0 0
\(447\) 4189.06 0.443256
\(448\) 0 0
\(449\) 17452.0 1.83433 0.917163 0.398513i \(-0.130474\pi\)
0.917163 + 0.398513i \(0.130474\pi\)
\(450\) 0 0
\(451\) 1734.30 0.181076
\(452\) 0 0
\(453\) −4502.26 −0.466964
\(454\) 0 0
\(455\) −10068.9 −1.03745
\(456\) 0 0
\(457\) 3153.12 0.322750 0.161375 0.986893i \(-0.448407\pi\)
0.161375 + 0.986893i \(0.448407\pi\)
\(458\) 0 0
\(459\) 9435.08 0.959459
\(460\) 0 0
\(461\) −5406.53 −0.546220 −0.273110 0.961983i \(-0.588052\pi\)
−0.273110 + 0.961983i \(0.588052\pi\)
\(462\) 0 0
\(463\) 9702.07 0.973851 0.486926 0.873443i \(-0.338118\pi\)
0.486926 + 0.873443i \(0.338118\pi\)
\(464\) 0 0
\(465\) −1197.92 −0.119467
\(466\) 0 0
\(467\) −19192.0 −1.90172 −0.950858 0.309627i \(-0.899796\pi\)
−0.950858 + 0.309627i \(0.899796\pi\)
\(468\) 0 0
\(469\) 15110.0 1.48767
\(470\) 0 0
\(471\) −8442.35 −0.825908
\(472\) 0 0
\(473\) 8113.13 0.788672
\(474\) 0 0
\(475\) 9753.18 0.942119
\(476\) 0 0
\(477\) −6475.49 −0.621577
\(478\) 0 0
\(479\) 2427.60 0.231565 0.115783 0.993275i \(-0.463062\pi\)
0.115783 + 0.993275i \(0.463062\pi\)
\(480\) 0 0
\(481\) −100.508 −0.00952756
\(482\) 0 0
\(483\) 1677.73 0.158053
\(484\) 0 0
\(485\) 4138.02 0.387418
\(486\) 0 0
\(487\) −13649.6 −1.27006 −0.635031 0.772487i \(-0.719013\pi\)
−0.635031 + 0.772487i \(0.719013\pi\)
\(488\) 0 0
\(489\) 4811.01 0.444911
\(490\) 0 0
\(491\) 18411.1 1.69222 0.846109 0.533010i \(-0.178939\pi\)
0.846109 + 0.533010i \(0.178939\pi\)
\(492\) 0 0
\(493\) 2006.59 0.183311
\(494\) 0 0
\(495\) −4179.36 −0.379491
\(496\) 0 0
\(497\) −10828.9 −0.977352
\(498\) 0 0
\(499\) 18746.4 1.68177 0.840884 0.541215i \(-0.182035\pi\)
0.840884 + 0.541215i \(0.182035\pi\)
\(500\) 0 0
\(501\) −11956.2 −1.06619
\(502\) 0 0
\(503\) 6877.91 0.609683 0.304842 0.952403i \(-0.401396\pi\)
0.304842 + 0.952403i \(0.401396\pi\)
\(504\) 0 0
\(505\) −5152.86 −0.454058
\(506\) 0 0
\(507\) 18684.6 1.63671
\(508\) 0 0
\(509\) −2182.76 −0.190077 −0.0950385 0.995474i \(-0.530297\pi\)
−0.0950385 + 0.995474i \(0.530297\pi\)
\(510\) 0 0
\(511\) 17511.5 1.51598
\(512\) 0 0
\(513\) 13781.8 1.18612
\(514\) 0 0
\(515\) −6315.46 −0.540374
\(516\) 0 0
\(517\) −14635.1 −1.24497
\(518\) 0 0
\(519\) 5893.05 0.498413
\(520\) 0 0
\(521\) −10786.2 −0.907012 −0.453506 0.891253i \(-0.649827\pi\)
−0.453506 + 0.891253i \(0.649827\pi\)
\(522\) 0 0
\(523\) −2309.04 −0.193054 −0.0965269 0.995330i \(-0.530773\pi\)
−0.0965269 + 0.995330i \(0.530773\pi\)
\(524\) 0 0
\(525\) 7280.33 0.605218
\(526\) 0 0
\(527\) 4922.30 0.406866
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −2883.53 −0.235659
\(532\) 0 0
\(533\) 3061.69 0.248811
\(534\) 0 0
\(535\) 2546.98 0.205823
\(536\) 0 0
\(537\) −11664.0 −0.937312
\(538\) 0 0
\(539\) 8221.94 0.657039
\(540\) 0 0
\(541\) 10591.1 0.841673 0.420836 0.907137i \(-0.361737\pi\)
0.420836 + 0.907137i \(0.361737\pi\)
\(542\) 0 0
\(543\) 8584.28 0.678429
\(544\) 0 0
\(545\) 2408.04 0.189264
\(546\) 0 0
\(547\) −22197.1 −1.73506 −0.867530 0.497384i \(-0.834294\pi\)
−0.867530 + 0.497384i \(0.834294\pi\)
\(548\) 0 0
\(549\) −7812.53 −0.607342
\(550\) 0 0
\(551\) 2931.01 0.226616
\(552\) 0 0
\(553\) −2976.08 −0.228853
\(554\) 0 0
\(555\) −18.3446 −0.00140303
\(556\) 0 0
\(557\) −14996.6 −1.14080 −0.570400 0.821367i \(-0.693212\pi\)
−0.570400 + 0.821367i \(0.693212\pi\)
\(558\) 0 0
\(559\) 14322.7 1.08369
\(560\) 0 0
\(561\) −10965.2 −0.825229
\(562\) 0 0
\(563\) −6781.84 −0.507674 −0.253837 0.967247i \(-0.581693\pi\)
−0.253837 + 0.967247i \(0.581693\pi\)
\(564\) 0 0
\(565\) −8206.09 −0.611032
\(566\) 0 0
\(567\) 282.162 0.0208989
\(568\) 0 0
\(569\) 2121.99 0.156341 0.0781707 0.996940i \(-0.475092\pi\)
0.0781707 + 0.996940i \(0.475092\pi\)
\(570\) 0 0
\(571\) −11539.3 −0.845720 −0.422860 0.906195i \(-0.638974\pi\)
−0.422860 + 0.906195i \(0.638974\pi\)
\(572\) 0 0
\(573\) −9917.66 −0.723065
\(574\) 0 0
\(575\) 2295.54 0.166488
\(576\) 0 0
\(577\) −17547.9 −1.26608 −0.633042 0.774118i \(-0.718194\pi\)
−0.633042 + 0.774118i \(0.718194\pi\)
\(578\) 0 0
\(579\) 9116.89 0.654378
\(580\) 0 0
\(581\) 18171.7 1.29757
\(582\) 0 0
\(583\) 19856.6 1.41059
\(584\) 0 0
\(585\) −7378.11 −0.521448
\(586\) 0 0
\(587\) 16611.1 1.16800 0.583999 0.811754i \(-0.301487\pi\)
0.583999 + 0.811754i \(0.301487\pi\)
\(588\) 0 0
\(589\) 7189.96 0.502984
\(590\) 0 0
\(591\) 10929.0 0.760675
\(592\) 0 0
\(593\) 6065.78 0.420054 0.210027 0.977696i \(-0.432645\pi\)
0.210027 + 0.977696i \(0.432645\pi\)
\(594\) 0 0
\(595\) 7551.49 0.520304
\(596\) 0 0
\(597\) −10350.7 −0.709590
\(598\) 0 0
\(599\) 12573.5 0.857659 0.428829 0.903385i \(-0.358926\pi\)
0.428829 + 0.903385i \(0.358926\pi\)
\(600\) 0 0
\(601\) −18446.2 −1.25198 −0.625988 0.779832i \(-0.715304\pi\)
−0.625988 + 0.779832i \(0.715304\pi\)
\(602\) 0 0
\(603\) 11072.0 0.747739
\(604\) 0 0
\(605\) 6134.90 0.412263
\(606\) 0 0
\(607\) 13715.7 0.917135 0.458568 0.888659i \(-0.348363\pi\)
0.458568 + 0.888659i \(0.348363\pi\)
\(608\) 0 0
\(609\) 2187.87 0.145578
\(610\) 0 0
\(611\) −25836.4 −1.71068
\(612\) 0 0
\(613\) 9497.86 0.625800 0.312900 0.949786i \(-0.398700\pi\)
0.312900 + 0.949786i \(0.398700\pi\)
\(614\) 0 0
\(615\) 558.817 0.0366401
\(616\) 0 0
\(617\) 4749.94 0.309928 0.154964 0.987920i \(-0.450474\pi\)
0.154964 + 0.987920i \(0.450474\pi\)
\(618\) 0 0
\(619\) −17961.0 −1.16626 −0.583130 0.812379i \(-0.698172\pi\)
−0.583130 + 0.812379i \(0.698172\pi\)
\(620\) 0 0
\(621\) 3243.71 0.209607
\(622\) 0 0
\(623\) 23735.4 1.52639
\(624\) 0 0
\(625\) 6811.98 0.435966
\(626\) 0 0
\(627\) −16016.9 −1.02018
\(628\) 0 0
\(629\) 75.3786 0.00477829
\(630\) 0 0
\(631\) −20618.4 −1.30080 −0.650401 0.759591i \(-0.725399\pi\)
−0.650401 + 0.759591i \(0.725399\pi\)
\(632\) 0 0
\(633\) −10921.8 −0.685786
\(634\) 0 0
\(635\) −2176.14 −0.135996
\(636\) 0 0
\(637\) 14514.7 0.902818
\(638\) 0 0
\(639\) −7935.00 −0.491242
\(640\) 0 0
\(641\) 18608.2 1.14661 0.573306 0.819341i \(-0.305661\pi\)
0.573306 + 0.819341i \(0.305661\pi\)
\(642\) 0 0
\(643\) 24685.2 1.51398 0.756989 0.653428i \(-0.226670\pi\)
0.756989 + 0.653428i \(0.226670\pi\)
\(644\) 0 0
\(645\) 2614.16 0.159585
\(646\) 0 0
\(647\) 26900.9 1.63460 0.817298 0.576215i \(-0.195471\pi\)
0.817298 + 0.576215i \(0.195471\pi\)
\(648\) 0 0
\(649\) 8842.13 0.534798
\(650\) 0 0
\(651\) 5367.00 0.323117
\(652\) 0 0
\(653\) 11712.3 0.701898 0.350949 0.936395i \(-0.385859\pi\)
0.350949 + 0.936395i \(0.385859\pi\)
\(654\) 0 0
\(655\) −5511.04 −0.328754
\(656\) 0 0
\(657\) 12831.8 0.761970
\(658\) 0 0
\(659\) −324.827 −0.0192010 −0.00960051 0.999954i \(-0.503056\pi\)
−0.00960051 + 0.999954i \(0.503056\pi\)
\(660\) 0 0
\(661\) −11829.6 −0.696095 −0.348047 0.937477i \(-0.613155\pi\)
−0.348047 + 0.937477i \(0.613155\pi\)
\(662\) 0 0
\(663\) −19357.7 −1.13392
\(664\) 0 0
\(665\) 11030.4 0.643220
\(666\) 0 0
\(667\) 689.852 0.0400467
\(668\) 0 0
\(669\) −13396.3 −0.774189
\(670\) 0 0
\(671\) 23956.5 1.37829
\(672\) 0 0
\(673\) 2893.24 0.165715 0.0828576 0.996561i \(-0.473595\pi\)
0.0828576 + 0.996561i \(0.473595\pi\)
\(674\) 0 0
\(675\) 14075.7 0.802630
\(676\) 0 0
\(677\) 15638.7 0.887805 0.443903 0.896075i \(-0.353594\pi\)
0.443903 + 0.896075i \(0.353594\pi\)
\(678\) 0 0
\(679\) −18539.4 −1.04783
\(680\) 0 0
\(681\) −9226.28 −0.519166
\(682\) 0 0
\(683\) −27288.8 −1.52881 −0.764404 0.644738i \(-0.776967\pi\)
−0.764404 + 0.644738i \(0.776967\pi\)
\(684\) 0 0
\(685\) −7920.98 −0.441818
\(686\) 0 0
\(687\) 9744.99 0.541186
\(688\) 0 0
\(689\) 35054.2 1.93825
\(690\) 0 0
\(691\) −25680.2 −1.41378 −0.706889 0.707325i \(-0.749902\pi\)
−0.706889 + 0.707325i \(0.749902\pi\)
\(692\) 0 0
\(693\) 18724.6 1.02639
\(694\) 0 0
\(695\) −9885.78 −0.539553
\(696\) 0 0
\(697\) −2296.20 −0.124784
\(698\) 0 0
\(699\) −1484.46 −0.0803254
\(700\) 0 0
\(701\) 17178.5 0.925568 0.462784 0.886471i \(-0.346851\pi\)
0.462784 + 0.886471i \(0.346851\pi\)
\(702\) 0 0
\(703\) 110.105 0.00590710
\(704\) 0 0
\(705\) −4715.64 −0.251917
\(706\) 0 0
\(707\) 23086.2 1.22807
\(708\) 0 0
\(709\) −6738.71 −0.356950 −0.178475 0.983944i \(-0.557116\pi\)
−0.178475 + 0.983944i \(0.557116\pi\)
\(710\) 0 0
\(711\) −2180.75 −0.115028
\(712\) 0 0
\(713\) 1692.25 0.0888854
\(714\) 0 0
\(715\) 22624.4 1.18336
\(716\) 0 0
\(717\) 4224.93 0.220060
\(718\) 0 0
\(719\) 24261.2 1.25840 0.629200 0.777243i \(-0.283383\pi\)
0.629200 + 0.777243i \(0.283383\pi\)
\(720\) 0 0
\(721\) 28295.0 1.46153
\(722\) 0 0
\(723\) −14513.7 −0.746572
\(724\) 0 0
\(725\) 2993.54 0.153348
\(726\) 0 0
\(727\) −33964.0 −1.73268 −0.866338 0.499458i \(-0.833533\pi\)
−0.866338 + 0.499458i \(0.833533\pi\)
\(728\) 0 0
\(729\) 12558.3 0.638026
\(730\) 0 0
\(731\) −10741.7 −0.543496
\(732\) 0 0
\(733\) −37420.1 −1.88560 −0.942798 0.333365i \(-0.891816\pi\)
−0.942798 + 0.333365i \(0.891816\pi\)
\(734\) 0 0
\(735\) 2649.22 0.132950
\(736\) 0 0
\(737\) −33951.4 −1.69690
\(738\) 0 0
\(739\) −5606.82 −0.279094 −0.139547 0.990215i \(-0.544565\pi\)
−0.139547 + 0.990215i \(0.544565\pi\)
\(740\) 0 0
\(741\) −28275.7 −1.40180
\(742\) 0 0
\(743\) 38168.4 1.88461 0.942303 0.334760i \(-0.108655\pi\)
0.942303 + 0.334760i \(0.108655\pi\)
\(744\) 0 0
\(745\) 6482.22 0.318779
\(746\) 0 0
\(747\) 13315.5 0.652193
\(748\) 0 0
\(749\) −11411.1 −0.556681
\(750\) 0 0
\(751\) 17551.3 0.852804 0.426402 0.904534i \(-0.359781\pi\)
0.426402 + 0.904534i \(0.359781\pi\)
\(752\) 0 0
\(753\) −12438.6 −0.601974
\(754\) 0 0
\(755\) −6966.87 −0.335828
\(756\) 0 0
\(757\) 17994.6 0.863967 0.431984 0.901881i \(-0.357814\pi\)
0.431984 + 0.901881i \(0.357814\pi\)
\(758\) 0 0
\(759\) −3769.78 −0.180282
\(760\) 0 0
\(761\) 13231.7 0.630286 0.315143 0.949044i \(-0.397947\pi\)
0.315143 + 0.949044i \(0.397947\pi\)
\(762\) 0 0
\(763\) −10788.7 −0.511895
\(764\) 0 0
\(765\) 5533.43 0.261518
\(766\) 0 0
\(767\) 15609.6 0.734851
\(768\) 0 0
\(769\) 19279.4 0.904074 0.452037 0.891999i \(-0.350697\pi\)
0.452037 + 0.891999i \(0.350697\pi\)
\(770\) 0 0
\(771\) 1250.47 0.0584107
\(772\) 0 0
\(773\) 8171.25 0.380206 0.190103 0.981764i \(-0.439118\pi\)
0.190103 + 0.981764i \(0.439118\pi\)
\(774\) 0 0
\(775\) 7343.34 0.340362
\(776\) 0 0
\(777\) 82.1886 0.00379472
\(778\) 0 0
\(779\) −3354.04 −0.154263
\(780\) 0 0
\(781\) 24332.1 1.11481
\(782\) 0 0
\(783\) 4230.02 0.193063
\(784\) 0 0
\(785\) −13063.8 −0.593972
\(786\) 0 0
\(787\) 24615.9 1.11495 0.557473 0.830195i \(-0.311771\pi\)
0.557473 + 0.830195i \(0.311771\pi\)
\(788\) 0 0
\(789\) −9991.76 −0.450844
\(790\) 0 0
\(791\) 36765.5 1.65263
\(792\) 0 0
\(793\) 42292.1 1.89387
\(794\) 0 0
\(795\) 6398.06 0.285429
\(796\) 0 0
\(797\) −37349.4 −1.65995 −0.829976 0.557798i \(-0.811646\pi\)
−0.829976 + 0.557798i \(0.811646\pi\)
\(798\) 0 0
\(799\) 19376.7 0.857948
\(800\) 0 0
\(801\) 17392.4 0.767202
\(802\) 0 0
\(803\) −39347.6 −1.72920
\(804\) 0 0
\(805\) 2596.15 0.113667
\(806\) 0 0
\(807\) 19342.3 0.843720
\(808\) 0 0
\(809\) −16964.4 −0.737254 −0.368627 0.929577i \(-0.620172\pi\)
−0.368627 + 0.929577i \(0.620172\pi\)
\(810\) 0 0
\(811\) 19028.5 0.823899 0.411950 0.911207i \(-0.364848\pi\)
0.411950 + 0.911207i \(0.364848\pi\)
\(812\) 0 0
\(813\) −20200.6 −0.871420
\(814\) 0 0
\(815\) 7444.64 0.319969
\(816\) 0 0
\(817\) −15690.3 −0.671891
\(818\) 0 0
\(819\) 33055.9 1.41034
\(820\) 0 0
\(821\) 16919.1 0.719223 0.359612 0.933102i \(-0.382909\pi\)
0.359612 + 0.933102i \(0.382909\pi\)
\(822\) 0 0
\(823\) −23348.3 −0.988908 −0.494454 0.869204i \(-0.664632\pi\)
−0.494454 + 0.869204i \(0.664632\pi\)
\(824\) 0 0
\(825\) −16358.5 −0.690340
\(826\) 0 0
\(827\) 27804.4 1.16911 0.584555 0.811354i \(-0.301269\pi\)
0.584555 + 0.811354i \(0.301269\pi\)
\(828\) 0 0
\(829\) −14429.4 −0.604528 −0.302264 0.953224i \(-0.597742\pi\)
−0.302264 + 0.953224i \(0.597742\pi\)
\(830\) 0 0
\(831\) 1994.91 0.0832762
\(832\) 0 0
\(833\) −10885.8 −0.452784
\(834\) 0 0
\(835\) −18501.2 −0.766777
\(836\) 0 0
\(837\) 10376.5 0.428512
\(838\) 0 0
\(839\) 30557.7 1.25741 0.628707 0.777643i \(-0.283585\pi\)
0.628707 + 0.777643i \(0.283585\pi\)
\(840\) 0 0
\(841\) −23489.4 −0.963114
\(842\) 0 0
\(843\) 26874.1 1.09798
\(844\) 0 0
\(845\) 28912.8 1.17708
\(846\) 0 0
\(847\) −27486.0 −1.11503
\(848\) 0 0
\(849\) 10268.0 0.415072
\(850\) 0 0
\(851\) 25.9146 0.00104388
\(852\) 0 0
\(853\) 46453.7 1.86465 0.932325 0.361622i \(-0.117777\pi\)
0.932325 + 0.361622i \(0.117777\pi\)
\(854\) 0 0
\(855\) 8082.64 0.323299
\(856\) 0 0
\(857\) −43077.2 −1.71702 −0.858512 0.512794i \(-0.828610\pi\)
−0.858512 + 0.512794i \(0.828610\pi\)
\(858\) 0 0
\(859\) −27121.5 −1.07727 −0.538634 0.842540i \(-0.681059\pi\)
−0.538634 + 0.842540i \(0.681059\pi\)
\(860\) 0 0
\(861\) −2503.65 −0.0990989
\(862\) 0 0
\(863\) −12067.2 −0.475983 −0.237992 0.971267i \(-0.576489\pi\)
−0.237992 + 0.971267i \(0.576489\pi\)
\(864\) 0 0
\(865\) 9119.01 0.358446
\(866\) 0 0
\(867\) −1418.45 −0.0555630
\(868\) 0 0
\(869\) 6687.10 0.261041
\(870\) 0 0
\(871\) −59936.8 −2.33166
\(872\) 0 0
\(873\) −13584.9 −0.526667
\(874\) 0 0
\(875\) 25375.2 0.980387
\(876\) 0 0
\(877\) −33239.2 −1.27983 −0.639913 0.768447i \(-0.721030\pi\)
−0.639913 + 0.768447i \(0.721030\pi\)
\(878\) 0 0
\(879\) −27646.8 −1.06087
\(880\) 0 0
\(881\) 29990.7 1.14689 0.573445 0.819244i \(-0.305606\pi\)
0.573445 + 0.819244i \(0.305606\pi\)
\(882\) 0 0
\(883\) 31116.9 1.18592 0.592960 0.805232i \(-0.297959\pi\)
0.592960 + 0.805232i \(0.297959\pi\)
\(884\) 0 0
\(885\) 2849.06 0.108215
\(886\) 0 0
\(887\) 2202.57 0.0833765 0.0416882 0.999131i \(-0.486726\pi\)
0.0416882 + 0.999131i \(0.486726\pi\)
\(888\) 0 0
\(889\) 9749.71 0.367823
\(890\) 0 0
\(891\) −634.004 −0.0238383
\(892\) 0 0
\(893\) 28303.5 1.06063
\(894\) 0 0
\(895\) −18049.0 −0.674091
\(896\) 0 0
\(897\) −6655.04 −0.247721
\(898\) 0 0
\(899\) 2206.81 0.0818701
\(900\) 0 0
\(901\) −26289.9 −0.972079
\(902\) 0 0
\(903\) −11712.1 −0.431623
\(904\) 0 0
\(905\) 13283.5 0.487909
\(906\) 0 0
\(907\) 25884.4 0.947606 0.473803 0.880631i \(-0.342881\pi\)
0.473803 + 0.880631i \(0.342881\pi\)
\(908\) 0 0
\(909\) 16916.6 0.617260
\(910\) 0 0
\(911\) 40217.9 1.46265 0.731326 0.682028i \(-0.238902\pi\)
0.731326 + 0.682028i \(0.238902\pi\)
\(912\) 0 0
\(913\) −40830.9 −1.48007
\(914\) 0 0
\(915\) 7719.12 0.278892
\(916\) 0 0
\(917\) 24690.9 0.889168
\(918\) 0 0
\(919\) −26633.7 −0.956000 −0.478000 0.878360i \(-0.658638\pi\)
−0.478000 + 0.878360i \(0.658638\pi\)
\(920\) 0 0
\(921\) 32709.8 1.17028
\(922\) 0 0
\(923\) 42955.1 1.53183
\(924\) 0 0
\(925\) 112.454 0.00399725
\(926\) 0 0
\(927\) 20733.4 0.734600
\(928\) 0 0
\(929\) −11575.8 −0.408815 −0.204408 0.978886i \(-0.565527\pi\)
−0.204408 + 0.978886i \(0.565527\pi\)
\(930\) 0 0
\(931\) −15900.8 −0.559749
\(932\) 0 0
\(933\) 11652.0 0.408864
\(934\) 0 0
\(935\) −16967.8 −0.593483
\(936\) 0 0
\(937\) −11824.3 −0.412254 −0.206127 0.978525i \(-0.566086\pi\)
−0.206127 + 0.978525i \(0.566086\pi\)
\(938\) 0 0
\(939\) 4242.88 0.147456
\(940\) 0 0
\(941\) −106.265 −0.00368135 −0.00184068 0.999998i \(-0.500586\pi\)
−0.00184068 + 0.999998i \(0.500586\pi\)
\(942\) 0 0
\(943\) −789.418 −0.0272608
\(944\) 0 0
\(945\) 15919.0 0.547985
\(946\) 0 0
\(947\) −7880.25 −0.270405 −0.135203 0.990818i \(-0.543169\pi\)
−0.135203 + 0.990818i \(0.543169\pi\)
\(948\) 0 0
\(949\) −69463.0 −2.37604
\(950\) 0 0
\(951\) −6091.26 −0.207700
\(952\) 0 0
\(953\) 10290.6 0.349784 0.174892 0.984588i \(-0.444042\pi\)
0.174892 + 0.984588i \(0.444042\pi\)
\(954\) 0 0
\(955\) −15346.8 −0.520010
\(956\) 0 0
\(957\) −4916.04 −0.166053
\(958\) 0 0
\(959\) 35488.1 1.19496
\(960\) 0 0
\(961\) −24377.6 −0.818286
\(962\) 0 0
\(963\) −8361.62 −0.279802
\(964\) 0 0
\(965\) 14107.6 0.470612
\(966\) 0 0
\(967\) −4662.32 −0.155047 −0.0775234 0.996991i \(-0.524701\pi\)
−0.0775234 + 0.996991i \(0.524701\pi\)
\(968\) 0 0
\(969\) 21206.2 0.703034
\(970\) 0 0
\(971\) 6268.19 0.207164 0.103582 0.994621i \(-0.466970\pi\)
0.103582 + 0.994621i \(0.466970\pi\)
\(972\) 0 0
\(973\) 44291.0 1.45930
\(974\) 0 0
\(975\) −28878.8 −0.948577
\(976\) 0 0
\(977\) −26085.0 −0.854180 −0.427090 0.904209i \(-0.640461\pi\)
−0.427090 + 0.904209i \(0.640461\pi\)
\(978\) 0 0
\(979\) −53332.3 −1.74107
\(980\) 0 0
\(981\) −7905.49 −0.257291
\(982\) 0 0
\(983\) −54148.4 −1.75693 −0.878467 0.477802i \(-0.841434\pi\)
−0.878467 + 0.477802i \(0.841434\pi\)
\(984\) 0 0
\(985\) 16911.7 0.547058
\(986\) 0 0
\(987\) 21127.3 0.681348
\(988\) 0 0
\(989\) −3692.92 −0.118734
\(990\) 0 0
\(991\) −40567.7 −1.30038 −0.650189 0.759772i \(-0.725310\pi\)
−0.650189 + 0.759772i \(0.725310\pi\)
\(992\) 0 0
\(993\) 26961.9 0.861642
\(994\) 0 0
\(995\) −16016.8 −0.510319
\(996\) 0 0
\(997\) −49354.5 −1.56778 −0.783888 0.620902i \(-0.786766\pi\)
−0.783888 + 0.620902i \(0.786766\pi\)
\(998\) 0 0
\(999\) 158.903 0.00503250
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.4.a.bg.1.6 8
4.3 odd 2 1472.4.a.bh.1.3 8
8.3 odd 2 736.4.a.e.1.6 8
8.5 even 2 736.4.a.f.1.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
736.4.a.e.1.6 8 8.3 odd 2
736.4.a.f.1.3 yes 8 8.5 even 2
1472.4.a.bg.1.6 8 1.1 even 1 trivial
1472.4.a.bh.1.3 8 4.3 odd 2