Properties

Label 1472.4.a.bg.1.5
Level $1472$
Weight $4$
Character 1472.1
Self dual yes
Analytic conductor $86.851$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,4,Mod(1,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.8508115285\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 137x^{6} + 344x^{5} + 6175x^{4} - 7924x^{3} - 89643x^{2} + 45072x + 51084 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 736)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.03676\) of defining polynomial
Character \(\chi\) \(=\) 1472.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.963239 q^{3} -5.79749 q^{5} +15.5937 q^{7} -26.0722 q^{9} +25.2920 q^{11} -27.0039 q^{13} +5.58437 q^{15} +75.9614 q^{17} -27.9509 q^{19} -15.0205 q^{21} -23.0000 q^{23} -91.3891 q^{25} +51.1212 q^{27} -141.807 q^{29} +318.869 q^{31} -24.3622 q^{33} -90.4043 q^{35} -35.1933 q^{37} +26.0112 q^{39} -20.6356 q^{41} -181.307 q^{43} +151.153 q^{45} +423.443 q^{47} -99.8367 q^{49} -73.1690 q^{51} -167.525 q^{53} -146.630 q^{55} +26.9234 q^{57} +72.6487 q^{59} +744.947 q^{61} -406.561 q^{63} +156.555 q^{65} -538.772 q^{67} +22.1545 q^{69} -737.505 q^{71} +4.93206 q^{73} +88.0295 q^{75} +394.395 q^{77} +216.545 q^{79} +654.707 q^{81} -1478.42 q^{83} -440.386 q^{85} +136.594 q^{87} +1097.58 q^{89} -421.090 q^{91} -307.147 q^{93} +162.045 q^{95} -633.529 q^{97} -659.416 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{3} + 12 q^{5} - 14 q^{7} + 90 q^{9} - 88 q^{11} + 30 q^{13} + 30 q^{15} + 58 q^{17} - 190 q^{19} + 66 q^{21} - 184 q^{23} + 28 q^{25} - 432 q^{27} - 190 q^{29} - 60 q^{31} + 346 q^{33} - 192 q^{35}+ \cdots - 5986 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.963239 −0.185375 −0.0926877 0.995695i \(-0.529546\pi\)
−0.0926877 + 0.995695i \(0.529546\pi\)
\(4\) 0 0
\(5\) −5.79749 −0.518544 −0.259272 0.965804i \(-0.583483\pi\)
−0.259272 + 0.965804i \(0.583483\pi\)
\(6\) 0 0
\(7\) 15.5937 0.841980 0.420990 0.907065i \(-0.361683\pi\)
0.420990 + 0.907065i \(0.361683\pi\)
\(8\) 0 0
\(9\) −26.0722 −0.965636
\(10\) 0 0
\(11\) 25.2920 0.693256 0.346628 0.938003i \(-0.387327\pi\)
0.346628 + 0.938003i \(0.387327\pi\)
\(12\) 0 0
\(13\) −27.0039 −0.576117 −0.288059 0.957613i \(-0.593010\pi\)
−0.288059 + 0.957613i \(0.593010\pi\)
\(14\) 0 0
\(15\) 5.58437 0.0961252
\(16\) 0 0
\(17\) 75.9614 1.08373 0.541863 0.840467i \(-0.317719\pi\)
0.541863 + 0.840467i \(0.317719\pi\)
\(18\) 0 0
\(19\) −27.9509 −0.337494 −0.168747 0.985659i \(-0.553972\pi\)
−0.168747 + 0.985659i \(0.553972\pi\)
\(20\) 0 0
\(21\) −15.0205 −0.156082
\(22\) 0 0
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) −91.3891 −0.731113
\(26\) 0 0
\(27\) 51.1212 0.364381
\(28\) 0 0
\(29\) −141.807 −0.908031 −0.454015 0.890994i \(-0.650009\pi\)
−0.454015 + 0.890994i \(0.650009\pi\)
\(30\) 0 0
\(31\) 318.869 1.84744 0.923718 0.383073i \(-0.125134\pi\)
0.923718 + 0.383073i \(0.125134\pi\)
\(32\) 0 0
\(33\) −24.3622 −0.128513
\(34\) 0 0
\(35\) −90.4043 −0.436603
\(36\) 0 0
\(37\) −35.1933 −0.156371 −0.0781857 0.996939i \(-0.524913\pi\)
−0.0781857 + 0.996939i \(0.524913\pi\)
\(38\) 0 0
\(39\) 26.0112 0.106798
\(40\) 0 0
\(41\) −20.6356 −0.0786033 −0.0393016 0.999227i \(-0.512513\pi\)
−0.0393016 + 0.999227i \(0.512513\pi\)
\(42\) 0 0
\(43\) −181.307 −0.643000 −0.321500 0.946910i \(-0.604187\pi\)
−0.321500 + 0.946910i \(0.604187\pi\)
\(44\) 0 0
\(45\) 151.153 0.500724
\(46\) 0 0
\(47\) 423.443 1.31416 0.657080 0.753821i \(-0.271791\pi\)
0.657080 + 0.753821i \(0.271791\pi\)
\(48\) 0 0
\(49\) −99.8367 −0.291069
\(50\) 0 0
\(51\) −73.1690 −0.200896
\(52\) 0 0
\(53\) −167.525 −0.434176 −0.217088 0.976152i \(-0.569656\pi\)
−0.217088 + 0.976152i \(0.569656\pi\)
\(54\) 0 0
\(55\) −146.630 −0.359483
\(56\) 0 0
\(57\) 26.9234 0.0625630
\(58\) 0 0
\(59\) 72.6487 0.160306 0.0801530 0.996783i \(-0.474459\pi\)
0.0801530 + 0.996783i \(0.474459\pi\)
\(60\) 0 0
\(61\) 744.947 1.56362 0.781809 0.623518i \(-0.214297\pi\)
0.781809 + 0.623518i \(0.214297\pi\)
\(62\) 0 0
\(63\) −406.561 −0.813046
\(64\) 0 0
\(65\) 156.555 0.298742
\(66\) 0 0
\(67\) −538.772 −0.982410 −0.491205 0.871044i \(-0.663443\pi\)
−0.491205 + 0.871044i \(0.663443\pi\)
\(68\) 0 0
\(69\) 22.1545 0.0386534
\(70\) 0 0
\(71\) −737.505 −1.23276 −0.616378 0.787450i \(-0.711401\pi\)
−0.616378 + 0.787450i \(0.711401\pi\)
\(72\) 0 0
\(73\) 4.93206 0.00790759 0.00395380 0.999992i \(-0.498741\pi\)
0.00395380 + 0.999992i \(0.498741\pi\)
\(74\) 0 0
\(75\) 88.0295 0.135530
\(76\) 0 0
\(77\) 394.395 0.583708
\(78\) 0 0
\(79\) 216.545 0.308395 0.154197 0.988040i \(-0.450721\pi\)
0.154197 + 0.988040i \(0.450721\pi\)
\(80\) 0 0
\(81\) 654.707 0.898089
\(82\) 0 0
\(83\) −1478.42 −1.95515 −0.977576 0.210581i \(-0.932465\pi\)
−0.977576 + 0.210581i \(0.932465\pi\)
\(84\) 0 0
\(85\) −440.386 −0.561959
\(86\) 0 0
\(87\) 136.594 0.168327
\(88\) 0 0
\(89\) 1097.58 1.30723 0.653613 0.756829i \(-0.273252\pi\)
0.653613 + 0.756829i \(0.273252\pi\)
\(90\) 0 0
\(91\) −421.090 −0.485079
\(92\) 0 0
\(93\) −307.147 −0.342469
\(94\) 0 0
\(95\) 162.045 0.175005
\(96\) 0 0
\(97\) −633.529 −0.663146 −0.331573 0.943430i \(-0.607579\pi\)
−0.331573 + 0.943430i \(0.607579\pi\)
\(98\) 0 0
\(99\) −659.416 −0.669433
\(100\) 0 0
\(101\) −688.551 −0.678351 −0.339175 0.940723i \(-0.610148\pi\)
−0.339175 + 0.940723i \(0.610148\pi\)
\(102\) 0 0
\(103\) 1161.45 1.11108 0.555541 0.831489i \(-0.312511\pi\)
0.555541 + 0.831489i \(0.312511\pi\)
\(104\) 0 0
\(105\) 87.0810 0.0809355
\(106\) 0 0
\(107\) −1132.42 −1.02313 −0.511565 0.859244i \(-0.670934\pi\)
−0.511565 + 0.859244i \(0.670934\pi\)
\(108\) 0 0
\(109\) −233.810 −0.205458 −0.102729 0.994709i \(-0.532757\pi\)
−0.102729 + 0.994709i \(0.532757\pi\)
\(110\) 0 0
\(111\) 33.8995 0.0289874
\(112\) 0 0
\(113\) −1374.29 −1.14409 −0.572046 0.820222i \(-0.693850\pi\)
−0.572046 + 0.820222i \(0.693850\pi\)
\(114\) 0 0
\(115\) 133.342 0.108124
\(116\) 0 0
\(117\) 704.049 0.556320
\(118\) 0 0
\(119\) 1184.52 0.912476
\(120\) 0 0
\(121\) −691.316 −0.519396
\(122\) 0 0
\(123\) 19.8770 0.0145711
\(124\) 0 0
\(125\) 1254.51 0.897657
\(126\) 0 0
\(127\) 924.040 0.645632 0.322816 0.946462i \(-0.395370\pi\)
0.322816 + 0.946462i \(0.395370\pi\)
\(128\) 0 0
\(129\) 174.642 0.119196
\(130\) 0 0
\(131\) −2029.38 −1.35349 −0.676747 0.736215i \(-0.736611\pi\)
−0.676747 + 0.736215i \(0.736611\pi\)
\(132\) 0 0
\(133\) −435.858 −0.284163
\(134\) 0 0
\(135\) −296.375 −0.188947
\(136\) 0 0
\(137\) 1521.76 0.948996 0.474498 0.880257i \(-0.342630\pi\)
0.474498 + 0.880257i \(0.342630\pi\)
\(138\) 0 0
\(139\) −1506.73 −0.919417 −0.459708 0.888070i \(-0.652046\pi\)
−0.459708 + 0.888070i \(0.652046\pi\)
\(140\) 0 0
\(141\) −407.877 −0.243613
\(142\) 0 0
\(143\) −682.981 −0.399397
\(144\) 0 0
\(145\) 822.125 0.470853
\(146\) 0 0
\(147\) 96.1666 0.0539571
\(148\) 0 0
\(149\) 896.765 0.493059 0.246530 0.969135i \(-0.420710\pi\)
0.246530 + 0.969135i \(0.420710\pi\)
\(150\) 0 0
\(151\) −1166.44 −0.628633 −0.314316 0.949318i \(-0.601775\pi\)
−0.314316 + 0.949318i \(0.601775\pi\)
\(152\) 0 0
\(153\) −1980.48 −1.04648
\(154\) 0 0
\(155\) −1848.64 −0.957976
\(156\) 0 0
\(157\) 1924.53 0.978306 0.489153 0.872198i \(-0.337306\pi\)
0.489153 + 0.872198i \(0.337306\pi\)
\(158\) 0 0
\(159\) 161.367 0.0804856
\(160\) 0 0
\(161\) −358.655 −0.175565
\(162\) 0 0
\(163\) −2375.34 −1.14141 −0.570707 0.821153i \(-0.693331\pi\)
−0.570707 + 0.821153i \(0.693331\pi\)
\(164\) 0 0
\(165\) 141.240 0.0666394
\(166\) 0 0
\(167\) −387.710 −0.179652 −0.0898262 0.995957i \(-0.528631\pi\)
−0.0898262 + 0.995957i \(0.528631\pi\)
\(168\) 0 0
\(169\) −1467.79 −0.668089
\(170\) 0 0
\(171\) 728.741 0.325896
\(172\) 0 0
\(173\) −2879.18 −1.26532 −0.632660 0.774430i \(-0.718037\pi\)
−0.632660 + 0.774430i \(0.718037\pi\)
\(174\) 0 0
\(175\) −1425.09 −0.615582
\(176\) 0 0
\(177\) −69.9781 −0.0297168
\(178\) 0 0
\(179\) −635.069 −0.265181 −0.132590 0.991171i \(-0.542329\pi\)
−0.132590 + 0.991171i \(0.542329\pi\)
\(180\) 0 0
\(181\) −532.117 −0.218519 −0.109260 0.994013i \(-0.534848\pi\)
−0.109260 + 0.994013i \(0.534848\pi\)
\(182\) 0 0
\(183\) −717.562 −0.289856
\(184\) 0 0
\(185\) 204.033 0.0810853
\(186\) 0 0
\(187\) 1921.21 0.751299
\(188\) 0 0
\(189\) 797.168 0.306801
\(190\) 0 0
\(191\) −3890.10 −1.47370 −0.736852 0.676054i \(-0.763689\pi\)
−0.736852 + 0.676054i \(0.763689\pi\)
\(192\) 0 0
\(193\) −224.643 −0.0837832 −0.0418916 0.999122i \(-0.513338\pi\)
−0.0418916 + 0.999122i \(0.513338\pi\)
\(194\) 0 0
\(195\) −150.800 −0.0553794
\(196\) 0 0
\(197\) −4903.68 −1.77346 −0.886732 0.462284i \(-0.847030\pi\)
−0.886732 + 0.462284i \(0.847030\pi\)
\(198\) 0 0
\(199\) −3130.19 −1.11504 −0.557521 0.830163i \(-0.688247\pi\)
−0.557521 + 0.830163i \(0.688247\pi\)
\(200\) 0 0
\(201\) 518.966 0.182115
\(202\) 0 0
\(203\) −2211.29 −0.764544
\(204\) 0 0
\(205\) 119.635 0.0407592
\(206\) 0 0
\(207\) 599.660 0.201349
\(208\) 0 0
\(209\) −706.934 −0.233969
\(210\) 0 0
\(211\) −4087.22 −1.33354 −0.666768 0.745266i \(-0.732323\pi\)
−0.666768 + 0.745266i \(0.732323\pi\)
\(212\) 0 0
\(213\) 710.393 0.228523
\(214\) 0 0
\(215\) 1051.12 0.333424
\(216\) 0 0
\(217\) 4972.34 1.55551
\(218\) 0 0
\(219\) −4.75075 −0.00146587
\(220\) 0 0
\(221\) −2051.25 −0.624353
\(222\) 0 0
\(223\) 454.686 0.136538 0.0682692 0.997667i \(-0.478252\pi\)
0.0682692 + 0.997667i \(0.478252\pi\)
\(224\) 0 0
\(225\) 2382.71 0.705989
\(226\) 0 0
\(227\) 2912.76 0.851661 0.425830 0.904803i \(-0.359982\pi\)
0.425830 + 0.904803i \(0.359982\pi\)
\(228\) 0 0
\(229\) 2140.49 0.617676 0.308838 0.951115i \(-0.400060\pi\)
0.308838 + 0.951115i \(0.400060\pi\)
\(230\) 0 0
\(231\) −379.897 −0.108205
\(232\) 0 0
\(233\) −2820.37 −0.792998 −0.396499 0.918035i \(-0.629775\pi\)
−0.396499 + 0.918035i \(0.629775\pi\)
\(234\) 0 0
\(235\) −2454.91 −0.681449
\(236\) 0 0
\(237\) −208.584 −0.0571688
\(238\) 0 0
\(239\) −3656.67 −0.989667 −0.494834 0.868988i \(-0.664771\pi\)
−0.494834 + 0.868988i \(0.664771\pi\)
\(240\) 0 0
\(241\) −5033.21 −1.34530 −0.672651 0.739960i \(-0.734844\pi\)
−0.672651 + 0.739960i \(0.734844\pi\)
\(242\) 0 0
\(243\) −2010.91 −0.530864
\(244\) 0 0
\(245\) 578.803 0.150932
\(246\) 0 0
\(247\) 754.783 0.194436
\(248\) 0 0
\(249\) 1424.07 0.362437
\(250\) 0 0
\(251\) 7900.45 1.98674 0.993370 0.114961i \(-0.0366745\pi\)
0.993370 + 0.114961i \(0.0366745\pi\)
\(252\) 0 0
\(253\) −581.715 −0.144554
\(254\) 0 0
\(255\) 424.196 0.104173
\(256\) 0 0
\(257\) 3227.01 0.783250 0.391625 0.920125i \(-0.371913\pi\)
0.391625 + 0.920125i \(0.371913\pi\)
\(258\) 0 0
\(259\) −548.793 −0.131662
\(260\) 0 0
\(261\) 3697.22 0.876827
\(262\) 0 0
\(263\) 2252.34 0.528081 0.264041 0.964512i \(-0.414945\pi\)
0.264041 + 0.964512i \(0.414945\pi\)
\(264\) 0 0
\(265\) 971.225 0.225139
\(266\) 0 0
\(267\) −1057.23 −0.242328
\(268\) 0 0
\(269\) 2834.50 0.642462 0.321231 0.947001i \(-0.395903\pi\)
0.321231 + 0.947001i \(0.395903\pi\)
\(270\) 0 0
\(271\) −5134.97 −1.15102 −0.575511 0.817794i \(-0.695197\pi\)
−0.575511 + 0.817794i \(0.695197\pi\)
\(272\) 0 0
\(273\) 405.610 0.0899218
\(274\) 0 0
\(275\) −2311.41 −0.506848
\(276\) 0 0
\(277\) −6802.11 −1.47545 −0.737724 0.675103i \(-0.764099\pi\)
−0.737724 + 0.675103i \(0.764099\pi\)
\(278\) 0 0
\(279\) −8313.60 −1.78395
\(280\) 0 0
\(281\) −6923.59 −1.46985 −0.734923 0.678151i \(-0.762782\pi\)
−0.734923 + 0.678151i \(0.762782\pi\)
\(282\) 0 0
\(283\) −253.507 −0.0532488 −0.0266244 0.999646i \(-0.508476\pi\)
−0.0266244 + 0.999646i \(0.508476\pi\)
\(284\) 0 0
\(285\) −156.088 −0.0324417
\(286\) 0 0
\(287\) −321.785 −0.0661824
\(288\) 0 0
\(289\) 857.131 0.174462
\(290\) 0 0
\(291\) 610.240 0.122931
\(292\) 0 0
\(293\) 4711.13 0.939342 0.469671 0.882842i \(-0.344373\pi\)
0.469671 + 0.882842i \(0.344373\pi\)
\(294\) 0 0
\(295\) −421.180 −0.0831257
\(296\) 0 0
\(297\) 1292.96 0.252609
\(298\) 0 0
\(299\) 621.089 0.120129
\(300\) 0 0
\(301\) −2827.24 −0.541394
\(302\) 0 0
\(303\) 663.239 0.125750
\(304\) 0 0
\(305\) −4318.83 −0.810804
\(306\) 0 0
\(307\) 3136.97 0.583180 0.291590 0.956543i \(-0.405816\pi\)
0.291590 + 0.956543i \(0.405816\pi\)
\(308\) 0 0
\(309\) −1118.76 −0.205967
\(310\) 0 0
\(311\) −6117.79 −1.11546 −0.557730 0.830023i \(-0.688327\pi\)
−0.557730 + 0.830023i \(0.688327\pi\)
\(312\) 0 0
\(313\) −1124.42 −0.203054 −0.101527 0.994833i \(-0.532373\pi\)
−0.101527 + 0.994833i \(0.532373\pi\)
\(314\) 0 0
\(315\) 2357.04 0.421600
\(316\) 0 0
\(317\) 1970.60 0.349149 0.174574 0.984644i \(-0.444145\pi\)
0.174574 + 0.984644i \(0.444145\pi\)
\(318\) 0 0
\(319\) −3586.58 −0.629498
\(320\) 0 0
\(321\) 1090.79 0.189663
\(322\) 0 0
\(323\) −2123.19 −0.365751
\(324\) 0 0
\(325\) 2467.86 0.421207
\(326\) 0 0
\(327\) 225.214 0.0380868
\(328\) 0 0
\(329\) 6603.04 1.10650
\(330\) 0 0
\(331\) 3482.81 0.578345 0.289173 0.957277i \(-0.406620\pi\)
0.289173 + 0.957277i \(0.406620\pi\)
\(332\) 0 0
\(333\) 917.565 0.150998
\(334\) 0 0
\(335\) 3123.53 0.509422
\(336\) 0 0
\(337\) 2280.37 0.368604 0.184302 0.982870i \(-0.440998\pi\)
0.184302 + 0.982870i \(0.440998\pi\)
\(338\) 0 0
\(339\) 1323.77 0.212086
\(340\) 0 0
\(341\) 8064.82 1.28075
\(342\) 0 0
\(343\) −6905.46 −1.08705
\(344\) 0 0
\(345\) −128.441 −0.0200435
\(346\) 0 0
\(347\) 1575.82 0.243788 0.121894 0.992543i \(-0.461103\pi\)
0.121894 + 0.992543i \(0.461103\pi\)
\(348\) 0 0
\(349\) 826.377 0.126748 0.0633738 0.997990i \(-0.479814\pi\)
0.0633738 + 0.997990i \(0.479814\pi\)
\(350\) 0 0
\(351\) −1380.47 −0.209926
\(352\) 0 0
\(353\) 4271.66 0.644073 0.322036 0.946727i \(-0.395633\pi\)
0.322036 + 0.946727i \(0.395633\pi\)
\(354\) 0 0
\(355\) 4275.68 0.639238
\(356\) 0 0
\(357\) −1140.97 −0.169151
\(358\) 0 0
\(359\) 2312.24 0.339931 0.169965 0.985450i \(-0.445634\pi\)
0.169965 + 0.985450i \(0.445634\pi\)
\(360\) 0 0
\(361\) −6077.75 −0.886098
\(362\) 0 0
\(363\) 665.903 0.0962833
\(364\) 0 0
\(365\) −28.5936 −0.00410043
\(366\) 0 0
\(367\) −9873.11 −1.40428 −0.702142 0.712037i \(-0.747773\pi\)
−0.702142 + 0.712037i \(0.747773\pi\)
\(368\) 0 0
\(369\) 538.014 0.0759021
\(370\) 0 0
\(371\) −2612.33 −0.365568
\(372\) 0 0
\(373\) −10604.4 −1.47206 −0.736029 0.676950i \(-0.763301\pi\)
−0.736029 + 0.676950i \(0.763301\pi\)
\(374\) 0 0
\(375\) −1208.40 −0.166404
\(376\) 0 0
\(377\) 3829.34 0.523132
\(378\) 0 0
\(379\) −6553.06 −0.888148 −0.444074 0.895990i \(-0.646467\pi\)
−0.444074 + 0.895990i \(0.646467\pi\)
\(380\) 0 0
\(381\) −890.071 −0.119684
\(382\) 0 0
\(383\) 7584.99 1.01195 0.505973 0.862550i \(-0.331134\pi\)
0.505973 + 0.862550i \(0.331134\pi\)
\(384\) 0 0
\(385\) −2286.50 −0.302678
\(386\) 0 0
\(387\) 4727.06 0.620904
\(388\) 0 0
\(389\) 4659.70 0.607342 0.303671 0.952777i \(-0.401788\pi\)
0.303671 + 0.952777i \(0.401788\pi\)
\(390\) 0 0
\(391\) −1747.11 −0.225972
\(392\) 0 0
\(393\) 1954.78 0.250905
\(394\) 0 0
\(395\) −1255.42 −0.159916
\(396\) 0 0
\(397\) −861.297 −0.108885 −0.0544424 0.998517i \(-0.517338\pi\)
−0.0544424 + 0.998517i \(0.517338\pi\)
\(398\) 0 0
\(399\) 419.835 0.0526768
\(400\) 0 0
\(401\) 7647.62 0.952379 0.476189 0.879343i \(-0.342018\pi\)
0.476189 + 0.879343i \(0.342018\pi\)
\(402\) 0 0
\(403\) −8610.69 −1.06434
\(404\) 0 0
\(405\) −3795.66 −0.465698
\(406\) 0 0
\(407\) −890.107 −0.108405
\(408\) 0 0
\(409\) −15987.3 −1.93282 −0.966410 0.257005i \(-0.917264\pi\)
−0.966410 + 0.257005i \(0.917264\pi\)
\(410\) 0 0
\(411\) −1465.81 −0.175920
\(412\) 0 0
\(413\) 1132.86 0.134975
\(414\) 0 0
\(415\) 8571.13 1.01383
\(416\) 0 0
\(417\) 1451.34 0.170437
\(418\) 0 0
\(419\) 14798.1 1.72538 0.862688 0.505736i \(-0.168779\pi\)
0.862688 + 0.505736i \(0.168779\pi\)
\(420\) 0 0
\(421\) 7180.62 0.831263 0.415632 0.909533i \(-0.363561\pi\)
0.415632 + 0.909533i \(0.363561\pi\)
\(422\) 0 0
\(423\) −11040.1 −1.26900
\(424\) 0 0
\(425\) −6942.04 −0.792326
\(426\) 0 0
\(427\) 11616.5 1.31654
\(428\) 0 0
\(429\) 657.874 0.0740383
\(430\) 0 0
\(431\) 3904.27 0.436339 0.218169 0.975911i \(-0.429992\pi\)
0.218169 + 0.975911i \(0.429992\pi\)
\(432\) 0 0
\(433\) 5988.08 0.664594 0.332297 0.943175i \(-0.392176\pi\)
0.332297 + 0.943175i \(0.392176\pi\)
\(434\) 0 0
\(435\) −791.903 −0.0872846
\(436\) 0 0
\(437\) 642.871 0.0703723
\(438\) 0 0
\(439\) −6197.16 −0.673746 −0.336873 0.941550i \(-0.609369\pi\)
−0.336873 + 0.941550i \(0.609369\pi\)
\(440\) 0 0
\(441\) 2602.96 0.281067
\(442\) 0 0
\(443\) 2804.51 0.300782 0.150391 0.988627i \(-0.451947\pi\)
0.150391 + 0.988627i \(0.451947\pi\)
\(444\) 0 0
\(445\) −6363.20 −0.677854
\(446\) 0 0
\(447\) −863.799 −0.0914011
\(448\) 0 0
\(449\) 2534.47 0.266389 0.133195 0.991090i \(-0.457476\pi\)
0.133195 + 0.991090i \(0.457476\pi\)
\(450\) 0 0
\(451\) −521.914 −0.0544922
\(452\) 0 0
\(453\) 1123.56 0.116533
\(454\) 0 0
\(455\) 2441.27 0.251535
\(456\) 0 0
\(457\) 1846.14 0.188969 0.0944843 0.995526i \(-0.469880\pi\)
0.0944843 + 0.995526i \(0.469880\pi\)
\(458\) 0 0
\(459\) 3883.24 0.394889
\(460\) 0 0
\(461\) −8386.06 −0.847241 −0.423620 0.905840i \(-0.639241\pi\)
−0.423620 + 0.905840i \(0.639241\pi\)
\(462\) 0 0
\(463\) −8337.69 −0.836901 −0.418451 0.908240i \(-0.637427\pi\)
−0.418451 + 0.908240i \(0.637427\pi\)
\(464\) 0 0
\(465\) 1780.68 0.177585
\(466\) 0 0
\(467\) 4008.06 0.397154 0.198577 0.980085i \(-0.436368\pi\)
0.198577 + 0.980085i \(0.436368\pi\)
\(468\) 0 0
\(469\) −8401.45 −0.827170
\(470\) 0 0
\(471\) −1853.78 −0.181354
\(472\) 0 0
\(473\) −4585.60 −0.445764
\(474\) 0 0
\(475\) 2554.41 0.246746
\(476\) 0 0
\(477\) 4367.74 0.419256
\(478\) 0 0
\(479\) 15688.6 1.49652 0.748258 0.663408i \(-0.230891\pi\)
0.748258 + 0.663408i \(0.230891\pi\)
\(480\) 0 0
\(481\) 950.354 0.0900882
\(482\) 0 0
\(483\) 345.470 0.0325454
\(484\) 0 0
\(485\) 3672.88 0.343870
\(486\) 0 0
\(487\) −16389.1 −1.52497 −0.762487 0.647003i \(-0.776022\pi\)
−0.762487 + 0.647003i \(0.776022\pi\)
\(488\) 0 0
\(489\) 2288.02 0.211590
\(490\) 0 0
\(491\) −12191.8 −1.12059 −0.560293 0.828295i \(-0.689311\pi\)
−0.560293 + 0.828295i \(0.689311\pi\)
\(492\) 0 0
\(493\) −10771.9 −0.984056
\(494\) 0 0
\(495\) 3822.96 0.347130
\(496\) 0 0
\(497\) −11500.4 −1.03796
\(498\) 0 0
\(499\) −16889.6 −1.51520 −0.757598 0.652722i \(-0.773627\pi\)
−0.757598 + 0.652722i \(0.773627\pi\)
\(500\) 0 0
\(501\) 373.458 0.0333031
\(502\) 0 0
\(503\) 1648.20 0.146103 0.0730513 0.997328i \(-0.476726\pi\)
0.0730513 + 0.997328i \(0.476726\pi\)
\(504\) 0 0
\(505\) 3991.87 0.351754
\(506\) 0 0
\(507\) 1413.83 0.123847
\(508\) 0 0
\(509\) 4038.00 0.351633 0.175816 0.984423i \(-0.443744\pi\)
0.175816 + 0.984423i \(0.443744\pi\)
\(510\) 0 0
\(511\) 76.9091 0.00665804
\(512\) 0 0
\(513\) −1428.88 −0.122976
\(514\) 0 0
\(515\) −6733.52 −0.576145
\(516\) 0 0
\(517\) 10709.7 0.911049
\(518\) 0 0
\(519\) 2773.34 0.234559
\(520\) 0 0
\(521\) −2300.49 −0.193448 −0.0967240 0.995311i \(-0.530836\pi\)
−0.0967240 + 0.995311i \(0.530836\pi\)
\(522\) 0 0
\(523\) 5859.00 0.489859 0.244929 0.969541i \(-0.421235\pi\)
0.244929 + 0.969541i \(0.421235\pi\)
\(524\) 0 0
\(525\) 1372.71 0.114114
\(526\) 0 0
\(527\) 24221.7 2.00211
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −1894.11 −0.154797
\(532\) 0 0
\(533\) 557.240 0.0452847
\(534\) 0 0
\(535\) 6565.18 0.530538
\(536\) 0 0
\(537\) 611.724 0.0491580
\(538\) 0 0
\(539\) −2525.07 −0.201785
\(540\) 0 0
\(541\) 22814.9 1.81311 0.906553 0.422092i \(-0.138704\pi\)
0.906553 + 0.422092i \(0.138704\pi\)
\(542\) 0 0
\(543\) 512.556 0.0405081
\(544\) 0 0
\(545\) 1355.51 0.106539
\(546\) 0 0
\(547\) 7081.15 0.553506 0.276753 0.960941i \(-0.410742\pi\)
0.276753 + 0.960941i \(0.410742\pi\)
\(548\) 0 0
\(549\) −19422.4 −1.50989
\(550\) 0 0
\(551\) 3963.63 0.306455
\(552\) 0 0
\(553\) 3376.73 0.259662
\(554\) 0 0
\(555\) −196.532 −0.0150312
\(556\) 0 0
\(557\) 1526.87 0.116150 0.0580750 0.998312i \(-0.481504\pi\)
0.0580750 + 0.998312i \(0.481504\pi\)
\(558\) 0 0
\(559\) 4895.98 0.370444
\(560\) 0 0
\(561\) −1850.59 −0.139272
\(562\) 0 0
\(563\) −17867.4 −1.33752 −0.668759 0.743479i \(-0.733174\pi\)
−0.668759 + 0.743479i \(0.733174\pi\)
\(564\) 0 0
\(565\) 7967.44 0.593261
\(566\) 0 0
\(567\) 10209.3 0.756173
\(568\) 0 0
\(569\) 1888.06 0.139107 0.0695534 0.997578i \(-0.477843\pi\)
0.0695534 + 0.997578i \(0.477843\pi\)
\(570\) 0 0
\(571\) 13391.6 0.981475 0.490737 0.871308i \(-0.336727\pi\)
0.490737 + 0.871308i \(0.336727\pi\)
\(572\) 0 0
\(573\) 3747.09 0.273189
\(574\) 0 0
\(575\) 2101.95 0.152448
\(576\) 0 0
\(577\) −6168.96 −0.445090 −0.222545 0.974922i \(-0.571436\pi\)
−0.222545 + 0.974922i \(0.571436\pi\)
\(578\) 0 0
\(579\) 216.385 0.0155313
\(580\) 0 0
\(581\) −23054.0 −1.64620
\(582\) 0 0
\(583\) −4237.04 −0.300995
\(584\) 0 0
\(585\) −4081.72 −0.288476
\(586\) 0 0
\(587\) 6940.95 0.488047 0.244024 0.969769i \(-0.421533\pi\)
0.244024 + 0.969769i \(0.421533\pi\)
\(588\) 0 0
\(589\) −8912.68 −0.623498
\(590\) 0 0
\(591\) 4723.41 0.328757
\(592\) 0 0
\(593\) −6994.17 −0.484344 −0.242172 0.970233i \(-0.577860\pi\)
−0.242172 + 0.970233i \(0.577860\pi\)
\(594\) 0 0
\(595\) −6867.24 −0.473158
\(596\) 0 0
\(597\) 3015.12 0.206701
\(598\) 0 0
\(599\) 11522.0 0.785934 0.392967 0.919553i \(-0.371449\pi\)
0.392967 + 0.919553i \(0.371449\pi\)
\(600\) 0 0
\(601\) 5272.41 0.357847 0.178923 0.983863i \(-0.442739\pi\)
0.178923 + 0.983863i \(0.442739\pi\)
\(602\) 0 0
\(603\) 14047.0 0.948651
\(604\) 0 0
\(605\) 4007.90 0.269330
\(606\) 0 0
\(607\) 27509.3 1.83949 0.919743 0.392521i \(-0.128397\pi\)
0.919743 + 0.392521i \(0.128397\pi\)
\(608\) 0 0
\(609\) 2130.00 0.141728
\(610\) 0 0
\(611\) −11434.6 −0.757110
\(612\) 0 0
\(613\) 750.042 0.0494191 0.0247095 0.999695i \(-0.492134\pi\)
0.0247095 + 0.999695i \(0.492134\pi\)
\(614\) 0 0
\(615\) −115.237 −0.00755576
\(616\) 0 0
\(617\) 23823.7 1.55447 0.777234 0.629211i \(-0.216622\pi\)
0.777234 + 0.629211i \(0.216622\pi\)
\(618\) 0 0
\(619\) 24366.0 1.58215 0.791075 0.611719i \(-0.209522\pi\)
0.791075 + 0.611719i \(0.209522\pi\)
\(620\) 0 0
\(621\) −1175.79 −0.0759786
\(622\) 0 0
\(623\) 17115.3 1.10066
\(624\) 0 0
\(625\) 4150.60 0.265638
\(626\) 0 0
\(627\) 680.946 0.0433722
\(628\) 0 0
\(629\) −2673.33 −0.169464
\(630\) 0 0
\(631\) 24469.9 1.54379 0.771895 0.635751i \(-0.219309\pi\)
0.771895 + 0.635751i \(0.219309\pi\)
\(632\) 0 0
\(633\) 3936.97 0.247205
\(634\) 0 0
\(635\) −5357.12 −0.334789
\(636\) 0 0
\(637\) 2695.98 0.167690
\(638\) 0 0
\(639\) 19228.3 1.19039
\(640\) 0 0
\(641\) −9957.55 −0.613572 −0.306786 0.951779i \(-0.599254\pi\)
−0.306786 + 0.951779i \(0.599254\pi\)
\(642\) 0 0
\(643\) 5726.97 0.351243 0.175622 0.984458i \(-0.443806\pi\)
0.175622 + 0.984458i \(0.443806\pi\)
\(644\) 0 0
\(645\) −1012.48 −0.0618086
\(646\) 0 0
\(647\) 3278.53 0.199216 0.0996078 0.995027i \(-0.468241\pi\)
0.0996078 + 0.995027i \(0.468241\pi\)
\(648\) 0 0
\(649\) 1837.43 0.111133
\(650\) 0 0
\(651\) −4789.55 −0.288352
\(652\) 0 0
\(653\) 21747.0 1.30326 0.651628 0.758539i \(-0.274086\pi\)
0.651628 + 0.758539i \(0.274086\pi\)
\(654\) 0 0
\(655\) 11765.3 0.701846
\(656\) 0 0
\(657\) −128.590 −0.00763586
\(658\) 0 0
\(659\) −6140.69 −0.362986 −0.181493 0.983392i \(-0.558093\pi\)
−0.181493 + 0.983392i \(0.558093\pi\)
\(660\) 0 0
\(661\) 22278.8 1.31096 0.655479 0.755213i \(-0.272467\pi\)
0.655479 + 0.755213i \(0.272467\pi\)
\(662\) 0 0
\(663\) 1975.84 0.115740
\(664\) 0 0
\(665\) 2526.88 0.147351
\(666\) 0 0
\(667\) 3261.56 0.189337
\(668\) 0 0
\(669\) −437.972 −0.0253109
\(670\) 0 0
\(671\) 18841.2 1.08399
\(672\) 0 0
\(673\) 18127.3 1.03827 0.519134 0.854693i \(-0.326254\pi\)
0.519134 + 0.854693i \(0.326254\pi\)
\(674\) 0 0
\(675\) −4671.92 −0.266403
\(676\) 0 0
\(677\) 1644.29 0.0933460 0.0466730 0.998910i \(-0.485138\pi\)
0.0466730 + 0.998910i \(0.485138\pi\)
\(678\) 0 0
\(679\) −9879.06 −0.558356
\(680\) 0 0
\(681\) −2805.69 −0.157877
\(682\) 0 0
\(683\) 16616.0 0.930883 0.465441 0.885079i \(-0.345896\pi\)
0.465441 + 0.885079i \(0.345896\pi\)
\(684\) 0 0
\(685\) −8822.37 −0.492096
\(686\) 0 0
\(687\) −2061.81 −0.114502
\(688\) 0 0
\(689\) 4523.82 0.250136
\(690\) 0 0
\(691\) 12878.7 0.709014 0.354507 0.935053i \(-0.384649\pi\)
0.354507 + 0.935053i \(0.384649\pi\)
\(692\) 0 0
\(693\) −10282.7 −0.563649
\(694\) 0 0
\(695\) 8735.24 0.476758
\(696\) 0 0
\(697\) −1567.51 −0.0851844
\(698\) 0 0
\(699\) 2716.69 0.147002
\(700\) 0 0
\(701\) −13974.9 −0.752959 −0.376480 0.926425i \(-0.622866\pi\)
−0.376480 + 0.926425i \(0.622866\pi\)
\(702\) 0 0
\(703\) 983.684 0.0527743
\(704\) 0 0
\(705\) 2364.66 0.126324
\(706\) 0 0
\(707\) −10737.1 −0.571158
\(708\) 0 0
\(709\) −4977.21 −0.263643 −0.131822 0.991273i \(-0.542083\pi\)
−0.131822 + 0.991273i \(0.542083\pi\)
\(710\) 0 0
\(711\) −5645.79 −0.297797
\(712\) 0 0
\(713\) −7333.98 −0.385217
\(714\) 0 0
\(715\) 3959.58 0.207105
\(716\) 0 0
\(717\) 3522.25 0.183460
\(718\) 0 0
\(719\) 26016.5 1.34944 0.674722 0.738072i \(-0.264263\pi\)
0.674722 + 0.738072i \(0.264263\pi\)
\(720\) 0 0
\(721\) 18111.4 0.935509
\(722\) 0 0
\(723\) 4848.19 0.249386
\(724\) 0 0
\(725\) 12959.6 0.663873
\(726\) 0 0
\(727\) −22984.9 −1.17258 −0.586288 0.810103i \(-0.699411\pi\)
−0.586288 + 0.810103i \(0.699411\pi\)
\(728\) 0 0
\(729\) −15740.1 −0.799680
\(730\) 0 0
\(731\) −13772.3 −0.696836
\(732\) 0 0
\(733\) −12741.6 −0.642047 −0.321024 0.947071i \(-0.604027\pi\)
−0.321024 + 0.947071i \(0.604027\pi\)
\(734\) 0 0
\(735\) −557.525 −0.0279791
\(736\) 0 0
\(737\) −13626.6 −0.681062
\(738\) 0 0
\(739\) −12371.8 −0.615839 −0.307920 0.951412i \(-0.599633\pi\)
−0.307920 + 0.951412i \(0.599633\pi\)
\(740\) 0 0
\(741\) −727.036 −0.0360436
\(742\) 0 0
\(743\) 15596.6 0.770098 0.385049 0.922896i \(-0.374185\pi\)
0.385049 + 0.922896i \(0.374185\pi\)
\(744\) 0 0
\(745\) −5198.99 −0.255673
\(746\) 0 0
\(747\) 38545.6 1.88797
\(748\) 0 0
\(749\) −17658.6 −0.861456
\(750\) 0 0
\(751\) −15907.2 −0.772917 −0.386458 0.922307i \(-0.626302\pi\)
−0.386458 + 0.922307i \(0.626302\pi\)
\(752\) 0 0
\(753\) −7610.02 −0.368293
\(754\) 0 0
\(755\) 6762.43 0.325974
\(756\) 0 0
\(757\) 24564.2 1.17940 0.589698 0.807624i \(-0.299247\pi\)
0.589698 + 0.807624i \(0.299247\pi\)
\(758\) 0 0
\(759\) 560.331 0.0267967
\(760\) 0 0
\(761\) −3196.90 −0.152283 −0.0761417 0.997097i \(-0.524260\pi\)
−0.0761417 + 0.997097i \(0.524260\pi\)
\(762\) 0 0
\(763\) −3645.95 −0.172991
\(764\) 0 0
\(765\) 11481.8 0.542648
\(766\) 0 0
\(767\) −1961.80 −0.0923551
\(768\) 0 0
\(769\) −35102.3 −1.64606 −0.823031 0.567997i \(-0.807718\pi\)
−0.823031 + 0.567997i \(0.807718\pi\)
\(770\) 0 0
\(771\) −3108.38 −0.145195
\(772\) 0 0
\(773\) −16140.2 −0.750998 −0.375499 0.926823i \(-0.622529\pi\)
−0.375499 + 0.926823i \(0.622529\pi\)
\(774\) 0 0
\(775\) −29141.1 −1.35068
\(776\) 0 0
\(777\) 528.619 0.0244068
\(778\) 0 0
\(779\) 576.783 0.0265281
\(780\) 0 0
\(781\) −18652.9 −0.854616
\(782\) 0 0
\(783\) −7249.34 −0.330869
\(784\) 0 0
\(785\) −11157.4 −0.507294
\(786\) 0 0
\(787\) −29569.8 −1.33933 −0.669663 0.742665i \(-0.733561\pi\)
−0.669663 + 0.742665i \(0.733561\pi\)
\(788\) 0 0
\(789\) −2169.54 −0.0978933
\(790\) 0 0
\(791\) −21430.3 −0.963303
\(792\) 0 0
\(793\) −20116.5 −0.900828
\(794\) 0 0
\(795\) −935.522 −0.0417353
\(796\) 0 0
\(797\) −10435.7 −0.463803 −0.231901 0.972739i \(-0.574495\pi\)
−0.231901 + 0.972739i \(0.574495\pi\)
\(798\) 0 0
\(799\) 32165.3 1.42419
\(800\) 0 0
\(801\) −28616.3 −1.26230
\(802\) 0 0
\(803\) 124.742 0.00548199
\(804\) 0 0
\(805\) 2079.30 0.0910381
\(806\) 0 0
\(807\) −2730.30 −0.119097
\(808\) 0 0
\(809\) 29073.7 1.26350 0.631752 0.775170i \(-0.282336\pi\)
0.631752 + 0.775170i \(0.282336\pi\)
\(810\) 0 0
\(811\) −4533.07 −0.196273 −0.0981367 0.995173i \(-0.531288\pi\)
−0.0981367 + 0.995173i \(0.531288\pi\)
\(812\) 0 0
\(813\) 4946.20 0.213371
\(814\) 0 0
\(815\) 13771.0 0.591873
\(816\) 0 0
\(817\) 5067.69 0.217009
\(818\) 0 0
\(819\) 10978.7 0.468410
\(820\) 0 0
\(821\) −8267.86 −0.351462 −0.175731 0.984438i \(-0.556229\pi\)
−0.175731 + 0.984438i \(0.556229\pi\)
\(822\) 0 0
\(823\) 1310.08 0.0554879 0.0277440 0.999615i \(-0.491168\pi\)
0.0277440 + 0.999615i \(0.491168\pi\)
\(824\) 0 0
\(825\) 2226.44 0.0939572
\(826\) 0 0
\(827\) −40271.1 −1.69330 −0.846652 0.532147i \(-0.821385\pi\)
−0.846652 + 0.532147i \(0.821385\pi\)
\(828\) 0 0
\(829\) 38395.1 1.60858 0.804292 0.594235i \(-0.202545\pi\)
0.804292 + 0.594235i \(0.202545\pi\)
\(830\) 0 0
\(831\) 6552.05 0.273512
\(832\) 0 0
\(833\) −7583.74 −0.315439
\(834\) 0 0
\(835\) 2247.75 0.0931575
\(836\) 0 0
\(837\) 16300.9 0.673170
\(838\) 0 0
\(839\) −790.966 −0.0325473 −0.0162736 0.999868i \(-0.505180\pi\)
−0.0162736 + 0.999868i \(0.505180\pi\)
\(840\) 0 0
\(841\) −4279.79 −0.175480
\(842\) 0 0
\(843\) 6669.07 0.272473
\(844\) 0 0
\(845\) 8509.51 0.346433
\(846\) 0 0
\(847\) −10780.2 −0.437321
\(848\) 0 0
\(849\) 244.188 0.00987102
\(850\) 0 0
\(851\) 809.445 0.0326057
\(852\) 0 0
\(853\) −29265.1 −1.17470 −0.587350 0.809333i \(-0.699829\pi\)
−0.587350 + 0.809333i \(0.699829\pi\)
\(854\) 0 0
\(855\) −4224.87 −0.168991
\(856\) 0 0
\(857\) 24737.1 0.985999 0.493000 0.870029i \(-0.335900\pi\)
0.493000 + 0.870029i \(0.335900\pi\)
\(858\) 0 0
\(859\) 5563.86 0.220997 0.110498 0.993876i \(-0.464755\pi\)
0.110498 + 0.993876i \(0.464755\pi\)
\(860\) 0 0
\(861\) 309.956 0.0122686
\(862\) 0 0
\(863\) 3383.53 0.133461 0.0667305 0.997771i \(-0.478743\pi\)
0.0667305 + 0.997771i \(0.478743\pi\)
\(864\) 0 0
\(865\) 16692.0 0.656123
\(866\) 0 0
\(867\) −825.622 −0.0323409
\(868\) 0 0
\(869\) 5476.84 0.213796
\(870\) 0 0
\(871\) 14548.9 0.565983
\(872\) 0 0
\(873\) 16517.5 0.640357
\(874\) 0 0
\(875\) 19562.5 0.755810
\(876\) 0 0
\(877\) −29297.8 −1.12807 −0.564034 0.825752i \(-0.690751\pi\)
−0.564034 + 0.825752i \(0.690751\pi\)
\(878\) 0 0
\(879\) −4537.94 −0.174131
\(880\) 0 0
\(881\) 15974.0 0.610871 0.305436 0.952213i \(-0.401198\pi\)
0.305436 + 0.952213i \(0.401198\pi\)
\(882\) 0 0
\(883\) −43736.3 −1.66687 −0.833433 0.552621i \(-0.813628\pi\)
−0.833433 + 0.552621i \(0.813628\pi\)
\(884\) 0 0
\(885\) 405.697 0.0154095
\(886\) 0 0
\(887\) 14583.1 0.552032 0.276016 0.961153i \(-0.410986\pi\)
0.276016 + 0.961153i \(0.410986\pi\)
\(888\) 0 0
\(889\) 14409.2 0.543610
\(890\) 0 0
\(891\) 16558.8 0.622605
\(892\) 0 0
\(893\) −11835.6 −0.443521
\(894\) 0 0
\(895\) 3681.81 0.137508
\(896\) 0 0
\(897\) −598.257 −0.0222689
\(898\) 0 0
\(899\) −45217.8 −1.67753
\(900\) 0 0
\(901\) −12725.4 −0.470528
\(902\) 0 0
\(903\) 2723.31 0.100361
\(904\) 0 0
\(905\) 3084.95 0.113312
\(906\) 0 0
\(907\) 34233.8 1.25327 0.626635 0.779313i \(-0.284432\pi\)
0.626635 + 0.779313i \(0.284432\pi\)
\(908\) 0 0
\(909\) 17952.0 0.655040
\(910\) 0 0
\(911\) 13961.5 0.507756 0.253878 0.967236i \(-0.418294\pi\)
0.253878 + 0.967236i \(0.418294\pi\)
\(912\) 0 0
\(913\) −37392.2 −1.35542
\(914\) 0 0
\(915\) 4160.06 0.150303
\(916\) 0 0
\(917\) −31645.5 −1.13962
\(918\) 0 0
\(919\) −12100.2 −0.434330 −0.217165 0.976135i \(-0.569681\pi\)
−0.217165 + 0.976135i \(0.569681\pi\)
\(920\) 0 0
\(921\) −3021.65 −0.108107
\(922\) 0 0
\(923\) 19915.5 0.710212
\(924\) 0 0
\(925\) 3216.28 0.114325
\(926\) 0 0
\(927\) −30281.6 −1.07290
\(928\) 0 0
\(929\) −39336.8 −1.38924 −0.694618 0.719379i \(-0.744426\pi\)
−0.694618 + 0.719379i \(0.744426\pi\)
\(930\) 0 0
\(931\) 2790.53 0.0982340
\(932\) 0 0
\(933\) 5892.89 0.206779
\(934\) 0 0
\(935\) −11138.2 −0.389581
\(936\) 0 0
\(937\) −8756.73 −0.305304 −0.152652 0.988280i \(-0.548781\pi\)
−0.152652 + 0.988280i \(0.548781\pi\)
\(938\) 0 0
\(939\) 1083.08 0.0376412
\(940\) 0 0
\(941\) −1141.38 −0.0395408 −0.0197704 0.999805i \(-0.506294\pi\)
−0.0197704 + 0.999805i \(0.506294\pi\)
\(942\) 0 0
\(943\) 474.618 0.0163899
\(944\) 0 0
\(945\) −4621.58 −0.159090
\(946\) 0 0
\(947\) 49023.2 1.68220 0.841098 0.540883i \(-0.181910\pi\)
0.841098 + 0.540883i \(0.181910\pi\)
\(948\) 0 0
\(949\) −133.185 −0.00455570
\(950\) 0 0
\(951\) −1898.16 −0.0647236
\(952\) 0 0
\(953\) 6650.09 0.226042 0.113021 0.993593i \(-0.463947\pi\)
0.113021 + 0.993593i \(0.463947\pi\)
\(954\) 0 0
\(955\) 22552.8 0.764180
\(956\) 0 0
\(957\) 3454.73 0.116693
\(958\) 0 0
\(959\) 23729.8 0.799036
\(960\) 0 0
\(961\) 71886.3 2.41302
\(962\) 0 0
\(963\) 29524.6 0.987971
\(964\) 0 0
\(965\) 1302.37 0.0434452
\(966\) 0 0
\(967\) −24268.0 −0.807039 −0.403519 0.914971i \(-0.632213\pi\)
−0.403519 + 0.914971i \(0.632213\pi\)
\(968\) 0 0
\(969\) 2045.14 0.0678012
\(970\) 0 0
\(971\) −4819.80 −0.159294 −0.0796471 0.996823i \(-0.525379\pi\)
−0.0796471 + 0.996823i \(0.525379\pi\)
\(972\) 0 0
\(973\) −23495.4 −0.774131
\(974\) 0 0
\(975\) −2377.14 −0.0780813
\(976\) 0 0
\(977\) 34624.7 1.13382 0.566909 0.823780i \(-0.308139\pi\)
0.566909 + 0.823780i \(0.308139\pi\)
\(978\) 0 0
\(979\) 27759.9 0.906242
\(980\) 0 0
\(981\) 6095.92 0.198397
\(982\) 0 0
\(983\) −25428.2 −0.825061 −0.412531 0.910944i \(-0.635355\pi\)
−0.412531 + 0.910944i \(0.635355\pi\)
\(984\) 0 0
\(985\) 28429.0 0.919618
\(986\) 0 0
\(987\) −6360.31 −0.205117
\(988\) 0 0
\(989\) 4170.05 0.134075
\(990\) 0 0
\(991\) −59011.0 −1.89157 −0.945786 0.324792i \(-0.894706\pi\)
−0.945786 + 0.324792i \(0.894706\pi\)
\(992\) 0 0
\(993\) −3354.77 −0.107211
\(994\) 0 0
\(995\) 18147.3 0.578198
\(996\) 0 0
\(997\) 36222.9 1.15064 0.575321 0.817928i \(-0.304877\pi\)
0.575321 + 0.817928i \(0.304877\pi\)
\(998\) 0 0
\(999\) −1799.12 −0.0569787
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.4.a.bg.1.5 8
4.3 odd 2 1472.4.a.bh.1.4 8
8.3 odd 2 736.4.a.e.1.5 8
8.5 even 2 736.4.a.f.1.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
736.4.a.e.1.5 8 8.3 odd 2
736.4.a.f.1.4 yes 8 8.5 even 2
1472.4.a.bg.1.5 8 1.1 even 1 trivial
1472.4.a.bh.1.4 8 4.3 odd 2