Properties

Label 1472.4.a.bg.1.3
Level $1472$
Weight $4$
Character 1472.1
Self dual yes
Analytic conductor $86.851$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,4,Mod(1,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.8508115285\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 137x^{6} + 344x^{5} + 6175x^{4} - 7924x^{3} - 89643x^{2} + 45072x + 51084 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 736)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-5.87424\) of defining polynomial
Character \(\chi\) \(=\) 1472.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.87424 q^{3} -13.0818 q^{5} -35.1038 q^{7} +35.0036 q^{9} -66.4666 q^{11} +40.5066 q^{13} +103.009 q^{15} +39.8530 q^{17} -93.1529 q^{19} +276.415 q^{21} -23.0000 q^{23} +46.1334 q^{25} -63.0226 q^{27} -234.363 q^{29} +226.367 q^{31} +523.374 q^{33} +459.220 q^{35} +275.095 q^{37} -318.959 q^{39} +59.0584 q^{41} -184.026 q^{43} -457.911 q^{45} +506.104 q^{47} +889.275 q^{49} -313.812 q^{51} +8.25645 q^{53} +869.503 q^{55} +733.509 q^{57} +483.221 q^{59} -411.848 q^{61} -1228.76 q^{63} -529.899 q^{65} -324.945 q^{67} +181.108 q^{69} +674.173 q^{71} -752.991 q^{73} -363.265 q^{75} +2333.23 q^{77} -1125.07 q^{79} -448.843 q^{81} +136.505 q^{83} -521.349 q^{85} +1845.43 q^{87} -944.763 q^{89} -1421.94 q^{91} -1782.47 q^{93} +1218.61 q^{95} +271.386 q^{97} -2326.57 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{3} + 12 q^{5} - 14 q^{7} + 90 q^{9} - 88 q^{11} + 30 q^{13} + 30 q^{15} + 58 q^{17} - 190 q^{19} + 66 q^{21} - 184 q^{23} + 28 q^{25} - 432 q^{27} - 190 q^{29} - 60 q^{31} + 346 q^{33} - 192 q^{35}+ \cdots - 5986 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −7.87424 −1.51540 −0.757699 0.652604i \(-0.773676\pi\)
−0.757699 + 0.652604i \(0.773676\pi\)
\(4\) 0 0
\(5\) −13.0818 −1.17007 −0.585036 0.811008i \(-0.698920\pi\)
−0.585036 + 0.811008i \(0.698920\pi\)
\(6\) 0 0
\(7\) −35.1038 −1.89543 −0.947713 0.319125i \(-0.896611\pi\)
−0.947713 + 0.319125i \(0.896611\pi\)
\(8\) 0 0
\(9\) 35.0036 1.29643
\(10\) 0 0
\(11\) −66.4666 −1.82186 −0.910929 0.412563i \(-0.864634\pi\)
−0.910929 + 0.412563i \(0.864634\pi\)
\(12\) 0 0
\(13\) 40.5066 0.864194 0.432097 0.901827i \(-0.357774\pi\)
0.432097 + 0.901827i \(0.357774\pi\)
\(14\) 0 0
\(15\) 103.009 1.77312
\(16\) 0 0
\(17\) 39.8530 0.568575 0.284288 0.958739i \(-0.408243\pi\)
0.284288 + 0.958739i \(0.408243\pi\)
\(18\) 0 0
\(19\) −93.1529 −1.12478 −0.562388 0.826873i \(-0.690117\pi\)
−0.562388 + 0.826873i \(0.690117\pi\)
\(20\) 0 0
\(21\) 276.415 2.87232
\(22\) 0 0
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) 46.1334 0.369067
\(26\) 0 0
\(27\) −63.0226 −0.449211
\(28\) 0 0
\(29\) −234.363 −1.50069 −0.750345 0.661046i \(-0.770113\pi\)
−0.750345 + 0.661046i \(0.770113\pi\)
\(30\) 0 0
\(31\) 226.367 1.31151 0.655755 0.754974i \(-0.272351\pi\)
0.655755 + 0.754974i \(0.272351\pi\)
\(32\) 0 0
\(33\) 523.374 2.76084
\(34\) 0 0
\(35\) 459.220 2.21778
\(36\) 0 0
\(37\) 275.095 1.22231 0.611154 0.791512i \(-0.290706\pi\)
0.611154 + 0.791512i \(0.290706\pi\)
\(38\) 0 0
\(39\) −318.959 −1.30960
\(40\) 0 0
\(41\) 59.0584 0.224960 0.112480 0.993654i \(-0.464120\pi\)
0.112480 + 0.993654i \(0.464120\pi\)
\(42\) 0 0
\(43\) −184.026 −0.652644 −0.326322 0.945259i \(-0.605809\pi\)
−0.326322 + 0.945259i \(0.605809\pi\)
\(44\) 0 0
\(45\) −457.911 −1.51692
\(46\) 0 0
\(47\) 506.104 1.57070 0.785349 0.619053i \(-0.212483\pi\)
0.785349 + 0.619053i \(0.212483\pi\)
\(48\) 0 0
\(49\) 889.275 2.59264
\(50\) 0 0
\(51\) −313.812 −0.861618
\(52\) 0 0
\(53\) 8.25645 0.0213983 0.0106992 0.999943i \(-0.496594\pi\)
0.0106992 + 0.999943i \(0.496594\pi\)
\(54\) 0 0
\(55\) 869.503 2.13170
\(56\) 0 0
\(57\) 733.509 1.70448
\(58\) 0 0
\(59\) 483.221 1.06627 0.533136 0.846029i \(-0.321013\pi\)
0.533136 + 0.846029i \(0.321013\pi\)
\(60\) 0 0
\(61\) −411.848 −0.864454 −0.432227 0.901765i \(-0.642272\pi\)
−0.432227 + 0.901765i \(0.642272\pi\)
\(62\) 0 0
\(63\) −1228.76 −2.45729
\(64\) 0 0
\(65\) −529.899 −1.01117
\(66\) 0 0
\(67\) −324.945 −0.592513 −0.296256 0.955108i \(-0.595738\pi\)
−0.296256 + 0.955108i \(0.595738\pi\)
\(68\) 0 0
\(69\) 181.108 0.315982
\(70\) 0 0
\(71\) 674.173 1.12690 0.563448 0.826151i \(-0.309474\pi\)
0.563448 + 0.826151i \(0.309474\pi\)
\(72\) 0 0
\(73\) −752.991 −1.20727 −0.603637 0.797260i \(-0.706282\pi\)
−0.603637 + 0.797260i \(0.706282\pi\)
\(74\) 0 0
\(75\) −363.265 −0.559284
\(76\) 0 0
\(77\) 2333.23 3.45320
\(78\) 0 0
\(79\) −1125.07 −1.60228 −0.801140 0.598478i \(-0.795773\pi\)
−0.801140 + 0.598478i \(0.795773\pi\)
\(80\) 0 0
\(81\) −448.843 −0.615697
\(82\) 0 0
\(83\) 136.505 0.180522 0.0902610 0.995918i \(-0.471230\pi\)
0.0902610 + 0.995918i \(0.471230\pi\)
\(84\) 0 0
\(85\) −521.349 −0.665273
\(86\) 0 0
\(87\) 1845.43 2.27414
\(88\) 0 0
\(89\) −944.763 −1.12522 −0.562611 0.826722i \(-0.690203\pi\)
−0.562611 + 0.826722i \(0.690203\pi\)
\(90\) 0 0
\(91\) −1421.94 −1.63801
\(92\) 0 0
\(93\) −1782.47 −1.98746
\(94\) 0 0
\(95\) 1218.61 1.31607
\(96\) 0 0
\(97\) 271.386 0.284073 0.142036 0.989861i \(-0.454635\pi\)
0.142036 + 0.989861i \(0.454635\pi\)
\(98\) 0 0
\(99\) −2326.57 −2.36191
\(100\) 0 0
\(101\) 1776.73 1.75041 0.875204 0.483754i \(-0.160727\pi\)
0.875204 + 0.483754i \(0.160727\pi\)
\(102\) 0 0
\(103\) 240.423 0.229996 0.114998 0.993366i \(-0.463314\pi\)
0.114998 + 0.993366i \(0.463314\pi\)
\(104\) 0 0
\(105\) −3616.01 −3.36082
\(106\) 0 0
\(107\) 308.001 0.278276 0.139138 0.990273i \(-0.455567\pi\)
0.139138 + 0.990273i \(0.455567\pi\)
\(108\) 0 0
\(109\) 353.112 0.310294 0.155147 0.987891i \(-0.450415\pi\)
0.155147 + 0.987891i \(0.450415\pi\)
\(110\) 0 0
\(111\) −2166.16 −1.85228
\(112\) 0 0
\(113\) −449.483 −0.374193 −0.187096 0.982342i \(-0.559908\pi\)
−0.187096 + 0.982342i \(0.559908\pi\)
\(114\) 0 0
\(115\) 300.881 0.243977
\(116\) 0 0
\(117\) 1417.88 1.12037
\(118\) 0 0
\(119\) −1398.99 −1.07769
\(120\) 0 0
\(121\) 3086.81 2.31917
\(122\) 0 0
\(123\) −465.040 −0.340905
\(124\) 0 0
\(125\) 1031.72 0.738237
\(126\) 0 0
\(127\) 1259.21 0.879816 0.439908 0.898043i \(-0.355011\pi\)
0.439908 + 0.898043i \(0.355011\pi\)
\(128\) 0 0
\(129\) 1449.07 0.989016
\(130\) 0 0
\(131\) −1674.98 −1.11713 −0.558564 0.829461i \(-0.688648\pi\)
−0.558564 + 0.829461i \(0.688648\pi\)
\(132\) 0 0
\(133\) 3270.02 2.13193
\(134\) 0 0
\(135\) 824.449 0.525610
\(136\) 0 0
\(137\) −133.744 −0.0834051 −0.0417025 0.999130i \(-0.513278\pi\)
−0.0417025 + 0.999130i \(0.513278\pi\)
\(138\) 0 0
\(139\) 870.562 0.531224 0.265612 0.964080i \(-0.414426\pi\)
0.265612 + 0.964080i \(0.414426\pi\)
\(140\) 0 0
\(141\) −3985.18 −2.38023
\(142\) 0 0
\(143\) −2692.34 −1.57444
\(144\) 0 0
\(145\) 3065.88 1.75592
\(146\) 0 0
\(147\) −7002.36 −3.92888
\(148\) 0 0
\(149\) 1796.43 0.987714 0.493857 0.869543i \(-0.335587\pi\)
0.493857 + 0.869543i \(0.335587\pi\)
\(150\) 0 0
\(151\) 262.176 0.141295 0.0706477 0.997501i \(-0.477493\pi\)
0.0706477 + 0.997501i \(0.477493\pi\)
\(152\) 0 0
\(153\) 1395.00 0.737119
\(154\) 0 0
\(155\) −2961.29 −1.53456
\(156\) 0 0
\(157\) −953.475 −0.484685 −0.242343 0.970191i \(-0.577916\pi\)
−0.242343 + 0.970191i \(0.577916\pi\)
\(158\) 0 0
\(159\) −65.0132 −0.0324270
\(160\) 0 0
\(161\) 807.387 0.395224
\(162\) 0 0
\(163\) −2314.74 −1.11230 −0.556148 0.831083i \(-0.687721\pi\)
−0.556148 + 0.831083i \(0.687721\pi\)
\(164\) 0 0
\(165\) −6846.67 −3.23038
\(166\) 0 0
\(167\) −3085.96 −1.42993 −0.714966 0.699159i \(-0.753558\pi\)
−0.714966 + 0.699159i \(0.753558\pi\)
\(168\) 0 0
\(169\) −556.213 −0.253169
\(170\) 0 0
\(171\) −3260.69 −1.45820
\(172\) 0 0
\(173\) 2372.47 1.04263 0.521316 0.853364i \(-0.325441\pi\)
0.521316 + 0.853364i \(0.325441\pi\)
\(174\) 0 0
\(175\) −1619.46 −0.699539
\(176\) 0 0
\(177\) −3805.00 −1.61583
\(178\) 0 0
\(179\) 831.748 0.347306 0.173653 0.984807i \(-0.444443\pi\)
0.173653 + 0.984807i \(0.444443\pi\)
\(180\) 0 0
\(181\) −1530.78 −0.628628 −0.314314 0.949319i \(-0.601774\pi\)
−0.314314 + 0.949319i \(0.601774\pi\)
\(182\) 0 0
\(183\) 3242.99 1.30999
\(184\) 0 0
\(185\) −3598.74 −1.43019
\(186\) 0 0
\(187\) −2648.90 −1.03586
\(188\) 0 0
\(189\) 2212.33 0.851447
\(190\) 0 0
\(191\) 1277.79 0.484070 0.242035 0.970268i \(-0.422185\pi\)
0.242035 + 0.970268i \(0.422185\pi\)
\(192\) 0 0
\(193\) −1630.36 −0.608061 −0.304030 0.952662i \(-0.598332\pi\)
−0.304030 + 0.952662i \(0.598332\pi\)
\(194\) 0 0
\(195\) 4172.55 1.53232
\(196\) 0 0
\(197\) −2256.96 −0.816254 −0.408127 0.912925i \(-0.633818\pi\)
−0.408127 + 0.912925i \(0.633818\pi\)
\(198\) 0 0
\(199\) 1839.55 0.655288 0.327644 0.944801i \(-0.393745\pi\)
0.327644 + 0.944801i \(0.393745\pi\)
\(200\) 0 0
\(201\) 2558.69 0.897893
\(202\) 0 0
\(203\) 8227.01 2.84445
\(204\) 0 0
\(205\) −772.591 −0.263220
\(206\) 0 0
\(207\) −805.084 −0.270325
\(208\) 0 0
\(209\) 6191.56 2.04918
\(210\) 0 0
\(211\) 4418.46 1.44161 0.720804 0.693139i \(-0.243773\pi\)
0.720804 + 0.693139i \(0.243773\pi\)
\(212\) 0 0
\(213\) −5308.60 −1.70770
\(214\) 0 0
\(215\) 2407.39 0.763640
\(216\) 0 0
\(217\) −7946.35 −2.48587
\(218\) 0 0
\(219\) 5929.23 1.82950
\(220\) 0 0
\(221\) 1614.31 0.491359
\(222\) 0 0
\(223\) −3252.68 −0.976752 −0.488376 0.872633i \(-0.662411\pi\)
−0.488376 + 0.872633i \(0.662411\pi\)
\(224\) 0 0
\(225\) 1614.84 0.478470
\(226\) 0 0
\(227\) −704.737 −0.206057 −0.103029 0.994678i \(-0.532853\pi\)
−0.103029 + 0.994678i \(0.532853\pi\)
\(228\) 0 0
\(229\) −1803.87 −0.520537 −0.260269 0.965536i \(-0.583811\pi\)
−0.260269 + 0.965536i \(0.583811\pi\)
\(230\) 0 0
\(231\) −18372.4 −5.23297
\(232\) 0 0
\(233\) −5406.49 −1.52013 −0.760067 0.649845i \(-0.774834\pi\)
−0.760067 + 0.649845i \(0.774834\pi\)
\(234\) 0 0
\(235\) −6620.75 −1.83783
\(236\) 0 0
\(237\) 8859.05 2.42809
\(238\) 0 0
\(239\) 5261.38 1.42398 0.711988 0.702192i \(-0.247795\pi\)
0.711988 + 0.702192i \(0.247795\pi\)
\(240\) 0 0
\(241\) 1503.05 0.401743 0.200872 0.979618i \(-0.435623\pi\)
0.200872 + 0.979618i \(0.435623\pi\)
\(242\) 0 0
\(243\) 5235.91 1.38224
\(244\) 0 0
\(245\) −11633.3 −3.03357
\(246\) 0 0
\(247\) −3773.31 −0.972024
\(248\) 0 0
\(249\) −1074.87 −0.273563
\(250\) 0 0
\(251\) −7296.14 −1.83477 −0.917387 0.397996i \(-0.869706\pi\)
−0.917387 + 0.397996i \(0.869706\pi\)
\(252\) 0 0
\(253\) 1528.73 0.379884
\(254\) 0 0
\(255\) 4105.23 1.00815
\(256\) 0 0
\(257\) −1061.47 −0.257638 −0.128819 0.991668i \(-0.541119\pi\)
−0.128819 + 0.991668i \(0.541119\pi\)
\(258\) 0 0
\(259\) −9656.88 −2.31679
\(260\) 0 0
\(261\) −8203.54 −1.94554
\(262\) 0 0
\(263\) 748.926 0.175592 0.0877961 0.996138i \(-0.472018\pi\)
0.0877961 + 0.996138i \(0.472018\pi\)
\(264\) 0 0
\(265\) −108.009 −0.0250375
\(266\) 0 0
\(267\) 7439.29 1.70516
\(268\) 0 0
\(269\) −324.497 −0.0735500 −0.0367750 0.999324i \(-0.511708\pi\)
−0.0367750 + 0.999324i \(0.511708\pi\)
\(270\) 0 0
\(271\) −2872.18 −0.643809 −0.321905 0.946772i \(-0.604323\pi\)
−0.321905 + 0.946772i \(0.604323\pi\)
\(272\) 0 0
\(273\) 11196.7 2.48224
\(274\) 0 0
\(275\) −3066.33 −0.672388
\(276\) 0 0
\(277\) 5076.51 1.10115 0.550574 0.834787i \(-0.314409\pi\)
0.550574 + 0.834787i \(0.314409\pi\)
\(278\) 0 0
\(279\) 7923.68 1.70028
\(280\) 0 0
\(281\) −4594.57 −0.975406 −0.487703 0.873010i \(-0.662165\pi\)
−0.487703 + 0.873010i \(0.662165\pi\)
\(282\) 0 0
\(283\) 2410.70 0.506365 0.253183 0.967418i \(-0.418523\pi\)
0.253183 + 0.967418i \(0.418523\pi\)
\(284\) 0 0
\(285\) −9595.61 −1.99437
\(286\) 0 0
\(287\) −2073.17 −0.426396
\(288\) 0 0
\(289\) −3324.74 −0.676722
\(290\) 0 0
\(291\) −2136.96 −0.430483
\(292\) 0 0
\(293\) 6951.63 1.38607 0.693035 0.720904i \(-0.256273\pi\)
0.693035 + 0.720904i \(0.256273\pi\)
\(294\) 0 0
\(295\) −6321.40 −1.24761
\(296\) 0 0
\(297\) 4188.90 0.818400
\(298\) 0 0
\(299\) −931.652 −0.180197
\(300\) 0 0
\(301\) 6460.01 1.23704
\(302\) 0 0
\(303\) −13990.4 −2.65256
\(304\) 0 0
\(305\) 5387.71 1.01147
\(306\) 0 0
\(307\) −1003.23 −0.186506 −0.0932529 0.995642i \(-0.529727\pi\)
−0.0932529 + 0.995642i \(0.529727\pi\)
\(308\) 0 0
\(309\) −1893.15 −0.348535
\(310\) 0 0
\(311\) 6903.16 1.25866 0.629328 0.777140i \(-0.283330\pi\)
0.629328 + 0.777140i \(0.283330\pi\)
\(312\) 0 0
\(313\) 6660.12 1.20272 0.601362 0.798977i \(-0.294625\pi\)
0.601362 + 0.798977i \(0.294625\pi\)
\(314\) 0 0
\(315\) 16074.4 2.87520
\(316\) 0 0
\(317\) −1824.97 −0.323345 −0.161672 0.986844i \(-0.551689\pi\)
−0.161672 + 0.986844i \(0.551689\pi\)
\(318\) 0 0
\(319\) 15577.3 2.73405
\(320\) 0 0
\(321\) −2425.27 −0.421699
\(322\) 0 0
\(323\) −3712.43 −0.639520
\(324\) 0 0
\(325\) 1868.71 0.318945
\(326\) 0 0
\(327\) −2780.49 −0.470219
\(328\) 0 0
\(329\) −17766.2 −2.97714
\(330\) 0 0
\(331\) 1894.02 0.314515 0.157258 0.987558i \(-0.449735\pi\)
0.157258 + 0.987558i \(0.449735\pi\)
\(332\) 0 0
\(333\) 9629.33 1.58464
\(334\) 0 0
\(335\) 4250.86 0.693282
\(336\) 0 0
\(337\) −5973.37 −0.965549 −0.482774 0.875745i \(-0.660371\pi\)
−0.482774 + 0.875745i \(0.660371\pi\)
\(338\) 0 0
\(339\) 3539.33 0.567051
\(340\) 0 0
\(341\) −15045.9 −2.38938
\(342\) 0 0
\(343\) −19176.3 −3.01873
\(344\) 0 0
\(345\) −2369.21 −0.369722
\(346\) 0 0
\(347\) 7361.21 1.13882 0.569410 0.822054i \(-0.307172\pi\)
0.569410 + 0.822054i \(0.307172\pi\)
\(348\) 0 0
\(349\) 9820.75 1.50628 0.753141 0.657859i \(-0.228538\pi\)
0.753141 + 0.657859i \(0.228538\pi\)
\(350\) 0 0
\(351\) −2552.83 −0.388206
\(352\) 0 0
\(353\) 2395.23 0.361148 0.180574 0.983561i \(-0.442204\pi\)
0.180574 + 0.983561i \(0.442204\pi\)
\(354\) 0 0
\(355\) −8819.40 −1.31855
\(356\) 0 0
\(357\) 11016.0 1.63313
\(358\) 0 0
\(359\) −1119.80 −0.164626 −0.0823131 0.996607i \(-0.526231\pi\)
−0.0823131 + 0.996607i \(0.526231\pi\)
\(360\) 0 0
\(361\) 1818.47 0.265122
\(362\) 0 0
\(363\) −24306.3 −3.51446
\(364\) 0 0
\(365\) 9850.48 1.41260
\(366\) 0 0
\(367\) 8452.70 1.20225 0.601127 0.799153i \(-0.294718\pi\)
0.601127 + 0.799153i \(0.294718\pi\)
\(368\) 0 0
\(369\) 2067.26 0.291646
\(370\) 0 0
\(371\) −289.832 −0.0405589
\(372\) 0 0
\(373\) −2951.38 −0.409696 −0.204848 0.978794i \(-0.565670\pi\)
−0.204848 + 0.978794i \(0.565670\pi\)
\(374\) 0 0
\(375\) −8123.99 −1.11872
\(376\) 0 0
\(377\) −9493.24 −1.29689
\(378\) 0 0
\(379\) 5185.22 0.702762 0.351381 0.936233i \(-0.385712\pi\)
0.351381 + 0.936233i \(0.385712\pi\)
\(380\) 0 0
\(381\) −9915.30 −1.33327
\(382\) 0 0
\(383\) −7892.20 −1.05293 −0.526465 0.850197i \(-0.676483\pi\)
−0.526465 + 0.850197i \(0.676483\pi\)
\(384\) 0 0
\(385\) −30522.8 −4.04049
\(386\) 0 0
\(387\) −6441.58 −0.846109
\(388\) 0 0
\(389\) −1228.55 −0.160128 −0.0800641 0.996790i \(-0.525513\pi\)
−0.0800641 + 0.996790i \(0.525513\pi\)
\(390\) 0 0
\(391\) −916.619 −0.118556
\(392\) 0 0
\(393\) 13189.2 1.69289
\(394\) 0 0
\(395\) 14717.9 1.87478
\(396\) 0 0
\(397\) 1175.83 0.148648 0.0743240 0.997234i \(-0.476320\pi\)
0.0743240 + 0.997234i \(0.476320\pi\)
\(398\) 0 0
\(399\) −25748.9 −3.23072
\(400\) 0 0
\(401\) 10907.6 1.35836 0.679178 0.733974i \(-0.262337\pi\)
0.679178 + 0.733974i \(0.262337\pi\)
\(402\) 0 0
\(403\) 9169.38 1.13340
\(404\) 0 0
\(405\) 5871.68 0.720410
\(406\) 0 0
\(407\) −18284.6 −2.22687
\(408\) 0 0
\(409\) −5589.01 −0.675694 −0.337847 0.941201i \(-0.609699\pi\)
−0.337847 + 0.941201i \(0.609699\pi\)
\(410\) 0 0
\(411\) 1053.13 0.126392
\(412\) 0 0
\(413\) −16962.9 −2.02104
\(414\) 0 0
\(415\) −1785.72 −0.211224
\(416\) 0 0
\(417\) −6855.01 −0.805016
\(418\) 0 0
\(419\) 8169.39 0.952508 0.476254 0.879308i \(-0.341994\pi\)
0.476254 + 0.879308i \(0.341994\pi\)
\(420\) 0 0
\(421\) 7188.37 0.832161 0.416081 0.909328i \(-0.363403\pi\)
0.416081 + 0.909328i \(0.363403\pi\)
\(422\) 0 0
\(423\) 17715.5 2.03630
\(424\) 0 0
\(425\) 1838.55 0.209842
\(426\) 0 0
\(427\) 14457.4 1.63851
\(428\) 0 0
\(429\) 21200.1 2.38590
\(430\) 0 0
\(431\) 12185.9 1.36189 0.680947 0.732333i \(-0.261568\pi\)
0.680947 + 0.732333i \(0.261568\pi\)
\(432\) 0 0
\(433\) 6461.87 0.717177 0.358589 0.933496i \(-0.383258\pi\)
0.358589 + 0.933496i \(0.383258\pi\)
\(434\) 0 0
\(435\) −24141.5 −2.66091
\(436\) 0 0
\(437\) 2142.52 0.234532
\(438\) 0 0
\(439\) −12095.8 −1.31503 −0.657517 0.753439i \(-0.728393\pi\)
−0.657517 + 0.753439i \(0.728393\pi\)
\(440\) 0 0
\(441\) 31127.9 3.36118
\(442\) 0 0
\(443\) 8255.21 0.885366 0.442683 0.896678i \(-0.354027\pi\)
0.442683 + 0.896678i \(0.354027\pi\)
\(444\) 0 0
\(445\) 12359.2 1.31659
\(446\) 0 0
\(447\) −14145.5 −1.49678
\(448\) 0 0
\(449\) 10637.0 1.11802 0.559009 0.829162i \(-0.311182\pi\)
0.559009 + 0.829162i \(0.311182\pi\)
\(450\) 0 0
\(451\) −3925.41 −0.409846
\(452\) 0 0
\(453\) −2064.44 −0.214119
\(454\) 0 0
\(455\) 18601.5 1.91659
\(456\) 0 0
\(457\) 16881.0 1.72792 0.863962 0.503557i \(-0.167976\pi\)
0.863962 + 0.503557i \(0.167976\pi\)
\(458\) 0 0
\(459\) −2511.64 −0.255410
\(460\) 0 0
\(461\) 12873.6 1.30061 0.650306 0.759672i \(-0.274641\pi\)
0.650306 + 0.759672i \(0.274641\pi\)
\(462\) 0 0
\(463\) −3681.29 −0.369512 −0.184756 0.982784i \(-0.559149\pi\)
−0.184756 + 0.982784i \(0.559149\pi\)
\(464\) 0 0
\(465\) 23317.9 2.32547
\(466\) 0 0
\(467\) 10621.5 1.05247 0.526236 0.850338i \(-0.323603\pi\)
0.526236 + 0.850338i \(0.323603\pi\)
\(468\) 0 0
\(469\) 11406.8 1.12306
\(470\) 0 0
\(471\) 7507.89 0.734491
\(472\) 0 0
\(473\) 12231.6 1.18903
\(474\) 0 0
\(475\) −4297.46 −0.415118
\(476\) 0 0
\(477\) 289.006 0.0277414
\(478\) 0 0
\(479\) 8148.47 0.777271 0.388636 0.921392i \(-0.372946\pi\)
0.388636 + 0.921392i \(0.372946\pi\)
\(480\) 0 0
\(481\) 11143.2 1.05631
\(482\) 0 0
\(483\) −6357.56 −0.598921
\(484\) 0 0
\(485\) −3550.21 −0.332385
\(486\) 0 0
\(487\) −15874.3 −1.47707 −0.738535 0.674215i \(-0.764482\pi\)
−0.738535 + 0.674215i \(0.764482\pi\)
\(488\) 0 0
\(489\) 18226.8 1.68557
\(490\) 0 0
\(491\) −1478.97 −0.135937 −0.0679684 0.997687i \(-0.521652\pi\)
−0.0679684 + 0.997687i \(0.521652\pi\)
\(492\) 0 0
\(493\) −9340.06 −0.853255
\(494\) 0 0
\(495\) 30435.8 2.76361
\(496\) 0 0
\(497\) −23666.0 −2.13595
\(498\) 0 0
\(499\) 16863.5 1.51286 0.756429 0.654076i \(-0.226942\pi\)
0.756429 + 0.654076i \(0.226942\pi\)
\(500\) 0 0
\(501\) 24299.6 2.16692
\(502\) 0 0
\(503\) 13888.2 1.23110 0.615551 0.788097i \(-0.288933\pi\)
0.615551 + 0.788097i \(0.288933\pi\)
\(504\) 0 0
\(505\) −23242.8 −2.04810
\(506\) 0 0
\(507\) 4379.76 0.383652
\(508\) 0 0
\(509\) −7687.68 −0.669450 −0.334725 0.942316i \(-0.608644\pi\)
−0.334725 + 0.942316i \(0.608644\pi\)
\(510\) 0 0
\(511\) 26432.8 2.28830
\(512\) 0 0
\(513\) 5870.74 0.505262
\(514\) 0 0
\(515\) −3145.16 −0.269111
\(516\) 0 0
\(517\) −33639.0 −2.86159
\(518\) 0 0
\(519\) −18681.4 −1.58000
\(520\) 0 0
\(521\) −6311.16 −0.530704 −0.265352 0.964152i \(-0.585488\pi\)
−0.265352 + 0.964152i \(0.585488\pi\)
\(522\) 0 0
\(523\) −805.074 −0.0673105 −0.0336553 0.999434i \(-0.510715\pi\)
−0.0336553 + 0.999434i \(0.510715\pi\)
\(524\) 0 0
\(525\) 12752.0 1.06008
\(526\) 0 0
\(527\) 9021.42 0.745691
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 16914.5 1.38235
\(532\) 0 0
\(533\) 2392.26 0.194409
\(534\) 0 0
\(535\) −4029.20 −0.325603
\(536\) 0 0
\(537\) −6549.38 −0.526306
\(538\) 0 0
\(539\) −59107.1 −4.72342
\(540\) 0 0
\(541\) −20484.3 −1.62789 −0.813946 0.580940i \(-0.802685\pi\)
−0.813946 + 0.580940i \(0.802685\pi\)
\(542\) 0 0
\(543\) 12053.7 0.952622
\(544\) 0 0
\(545\) −4619.34 −0.363066
\(546\) 0 0
\(547\) 5933.69 0.463814 0.231907 0.972738i \(-0.425503\pi\)
0.231907 + 0.972738i \(0.425503\pi\)
\(548\) 0 0
\(549\) −14416.2 −1.12071
\(550\) 0 0
\(551\) 21831.6 1.68794
\(552\) 0 0
\(553\) 39494.1 3.03700
\(554\) 0 0
\(555\) 28337.3 2.16730
\(556\) 0 0
\(557\) 4701.32 0.357633 0.178816 0.983882i \(-0.442773\pi\)
0.178816 + 0.983882i \(0.442773\pi\)
\(558\) 0 0
\(559\) −7454.27 −0.564011
\(560\) 0 0
\(561\) 20858.0 1.56974
\(562\) 0 0
\(563\) 16968.6 1.27024 0.635118 0.772415i \(-0.280952\pi\)
0.635118 + 0.772415i \(0.280952\pi\)
\(564\) 0 0
\(565\) 5880.04 0.437832
\(566\) 0 0
\(567\) 15756.1 1.16701
\(568\) 0 0
\(569\) −3628.85 −0.267363 −0.133681 0.991024i \(-0.542680\pi\)
−0.133681 + 0.991024i \(0.542680\pi\)
\(570\) 0 0
\(571\) −18920.7 −1.38670 −0.693352 0.720599i \(-0.743867\pi\)
−0.693352 + 0.720599i \(0.743867\pi\)
\(572\) 0 0
\(573\) −10061.6 −0.733559
\(574\) 0 0
\(575\) −1061.07 −0.0769558
\(576\) 0 0
\(577\) 9551.63 0.689150 0.344575 0.938759i \(-0.388023\pi\)
0.344575 + 0.938759i \(0.388023\pi\)
\(578\) 0 0
\(579\) 12837.8 0.921454
\(580\) 0 0
\(581\) −4791.82 −0.342166
\(582\) 0 0
\(583\) −548.778 −0.0389847
\(584\) 0 0
\(585\) −18548.4 −1.31091
\(586\) 0 0
\(587\) −8874.67 −0.624015 −0.312007 0.950080i \(-0.601001\pi\)
−0.312007 + 0.950080i \(0.601001\pi\)
\(588\) 0 0
\(589\) −21086.8 −1.47515
\(590\) 0 0
\(591\) 17771.9 1.23695
\(592\) 0 0
\(593\) −17852.0 −1.23625 −0.618124 0.786080i \(-0.712107\pi\)
−0.618124 + 0.786080i \(0.712107\pi\)
\(594\) 0 0
\(595\) 18301.3 1.26098
\(596\) 0 0
\(597\) −14485.1 −0.993022
\(598\) 0 0
\(599\) 6049.93 0.412677 0.206339 0.978481i \(-0.433845\pi\)
0.206339 + 0.978481i \(0.433845\pi\)
\(600\) 0 0
\(601\) 28911.1 1.96224 0.981121 0.193397i \(-0.0619506\pi\)
0.981121 + 0.193397i \(0.0619506\pi\)
\(602\) 0 0
\(603\) −11374.3 −0.768152
\(604\) 0 0
\(605\) −40381.0 −2.71359
\(606\) 0 0
\(607\) −24725.2 −1.65332 −0.826660 0.562702i \(-0.809762\pi\)
−0.826660 + 0.562702i \(0.809762\pi\)
\(608\) 0 0
\(609\) −64781.4 −4.31047
\(610\) 0 0
\(611\) 20500.6 1.35739
\(612\) 0 0
\(613\) −16600.4 −1.09378 −0.546889 0.837205i \(-0.684188\pi\)
−0.546889 + 0.837205i \(0.684188\pi\)
\(614\) 0 0
\(615\) 6083.56 0.398883
\(616\) 0 0
\(617\) −8358.55 −0.545385 −0.272692 0.962101i \(-0.587914\pi\)
−0.272692 + 0.962101i \(0.587914\pi\)
\(618\) 0 0
\(619\) −12333.3 −0.800833 −0.400417 0.916333i \(-0.631135\pi\)
−0.400417 + 0.916333i \(0.631135\pi\)
\(620\) 0 0
\(621\) 1449.52 0.0936671
\(622\) 0 0
\(623\) 33164.7 2.13277
\(624\) 0 0
\(625\) −19263.4 −1.23286
\(626\) 0 0
\(627\) −48753.8 −3.10533
\(628\) 0 0
\(629\) 10963.4 0.694973
\(630\) 0 0
\(631\) 2383.28 0.150360 0.0751799 0.997170i \(-0.476047\pi\)
0.0751799 + 0.997170i \(0.476047\pi\)
\(632\) 0 0
\(633\) −34792.0 −2.18461
\(634\) 0 0
\(635\) −16472.7 −1.02945
\(636\) 0 0
\(637\) 36021.5 2.24054
\(638\) 0 0
\(639\) 23598.5 1.46094
\(640\) 0 0
\(641\) 18028.2 1.11087 0.555437 0.831559i \(-0.312551\pi\)
0.555437 + 0.831559i \(0.312551\pi\)
\(642\) 0 0
\(643\) −7755.80 −0.475675 −0.237837 0.971305i \(-0.576439\pi\)
−0.237837 + 0.971305i \(0.576439\pi\)
\(644\) 0 0
\(645\) −18956.4 −1.15722
\(646\) 0 0
\(647\) −9422.28 −0.572532 −0.286266 0.958150i \(-0.592414\pi\)
−0.286266 + 0.958150i \(0.592414\pi\)
\(648\) 0 0
\(649\) −32118.1 −1.94260
\(650\) 0 0
\(651\) 62571.4 3.76708
\(652\) 0 0
\(653\) 2650.31 0.158828 0.0794139 0.996842i \(-0.474695\pi\)
0.0794139 + 0.996842i \(0.474695\pi\)
\(654\) 0 0
\(655\) 21911.8 1.30712
\(656\) 0 0
\(657\) −26357.4 −1.56515
\(658\) 0 0
\(659\) −10595.0 −0.626286 −0.313143 0.949706i \(-0.601382\pi\)
−0.313143 + 0.949706i \(0.601382\pi\)
\(660\) 0 0
\(661\) −769.562 −0.0452836 −0.0226418 0.999744i \(-0.507208\pi\)
−0.0226418 + 0.999744i \(0.507208\pi\)
\(662\) 0 0
\(663\) −12711.5 −0.744604
\(664\) 0 0
\(665\) −42777.7 −2.49451
\(666\) 0 0
\(667\) 5390.34 0.312916
\(668\) 0 0
\(669\) 25612.4 1.48017
\(670\) 0 0
\(671\) 27374.1 1.57491
\(672\) 0 0
\(673\) −23807.2 −1.36360 −0.681798 0.731541i \(-0.738802\pi\)
−0.681798 + 0.731541i \(0.738802\pi\)
\(674\) 0 0
\(675\) −2907.45 −0.165789
\(676\) 0 0
\(677\) −32331.1 −1.83543 −0.917715 0.397238i \(-0.869969\pi\)
−0.917715 + 0.397238i \(0.869969\pi\)
\(678\) 0 0
\(679\) −9526.66 −0.538438
\(680\) 0 0
\(681\) 5549.27 0.312259
\(682\) 0 0
\(683\) 185.522 0.0103936 0.00519678 0.999986i \(-0.498346\pi\)
0.00519678 + 0.999986i \(0.498346\pi\)
\(684\) 0 0
\(685\) 1749.61 0.0975899
\(686\) 0 0
\(687\) 14204.1 0.788821
\(688\) 0 0
\(689\) 334.441 0.0184923
\(690\) 0 0
\(691\) 13929.2 0.766849 0.383425 0.923572i \(-0.374745\pi\)
0.383425 + 0.923572i \(0.374745\pi\)
\(692\) 0 0
\(693\) 81671.5 4.47683
\(694\) 0 0
\(695\) −11388.5 −0.621570
\(696\) 0 0
\(697\) 2353.66 0.127907
\(698\) 0 0
\(699\) 42572.0 2.30361
\(700\) 0 0
\(701\) 12484.8 0.672671 0.336336 0.941742i \(-0.390812\pi\)
0.336336 + 0.941742i \(0.390812\pi\)
\(702\) 0 0
\(703\) −25625.9 −1.37482
\(704\) 0 0
\(705\) 52133.4 2.78504
\(706\) 0 0
\(707\) −62369.9 −3.31777
\(708\) 0 0
\(709\) 36768.3 1.94762 0.973811 0.227360i \(-0.0730093\pi\)
0.973811 + 0.227360i \(0.0730093\pi\)
\(710\) 0 0
\(711\) −39381.5 −2.07724
\(712\) 0 0
\(713\) −5206.45 −0.273469
\(714\) 0 0
\(715\) 35220.6 1.84220
\(716\) 0 0
\(717\) −41429.3 −2.15789
\(718\) 0 0
\(719\) −19256.6 −0.998818 −0.499409 0.866366i \(-0.666449\pi\)
−0.499409 + 0.866366i \(0.666449\pi\)
\(720\) 0 0
\(721\) −8439.74 −0.435940
\(722\) 0 0
\(723\) −11835.4 −0.608801
\(724\) 0 0
\(725\) −10811.9 −0.553856
\(726\) 0 0
\(727\) 27245.2 1.38991 0.694957 0.719051i \(-0.255423\pi\)
0.694957 + 0.719051i \(0.255423\pi\)
\(728\) 0 0
\(729\) −29110.0 −1.47894
\(730\) 0 0
\(731\) −7333.99 −0.371077
\(732\) 0 0
\(733\) −25329.1 −1.27633 −0.638165 0.769899i \(-0.720306\pi\)
−0.638165 + 0.769899i \(0.720306\pi\)
\(734\) 0 0
\(735\) 91603.5 4.59707
\(736\) 0 0
\(737\) 21598.0 1.07947
\(738\) 0 0
\(739\) 25270.3 1.25789 0.628946 0.777449i \(-0.283487\pi\)
0.628946 + 0.777449i \(0.283487\pi\)
\(740\) 0 0
\(741\) 29712.0 1.47300
\(742\) 0 0
\(743\) 1676.06 0.0827573 0.0413787 0.999144i \(-0.486825\pi\)
0.0413787 + 0.999144i \(0.486825\pi\)
\(744\) 0 0
\(745\) −23500.5 −1.15570
\(746\) 0 0
\(747\) 4778.16 0.234034
\(748\) 0 0
\(749\) −10812.0 −0.527452
\(750\) 0 0
\(751\) −16502.4 −0.801838 −0.400919 0.916113i \(-0.631309\pi\)
−0.400919 + 0.916113i \(0.631309\pi\)
\(752\) 0 0
\(753\) 57451.6 2.78041
\(754\) 0 0
\(755\) −3429.74 −0.165326
\(756\) 0 0
\(757\) 8353.15 0.401057 0.200529 0.979688i \(-0.435734\pi\)
0.200529 + 0.979688i \(0.435734\pi\)
\(758\) 0 0
\(759\) −12037.6 −0.575675
\(760\) 0 0
\(761\) −36944.5 −1.75984 −0.879919 0.475123i \(-0.842404\pi\)
−0.879919 + 0.475123i \(0.842404\pi\)
\(762\) 0 0
\(763\) −12395.6 −0.588139
\(764\) 0 0
\(765\) −18249.1 −0.862481
\(766\) 0 0
\(767\) 19573.7 0.921466
\(768\) 0 0
\(769\) 8333.97 0.390807 0.195404 0.980723i \(-0.437398\pi\)
0.195404 + 0.980723i \(0.437398\pi\)
\(770\) 0 0
\(771\) 8358.31 0.390424
\(772\) 0 0
\(773\) 7701.50 0.358349 0.179174 0.983817i \(-0.442657\pi\)
0.179174 + 0.983817i \(0.442657\pi\)
\(774\) 0 0
\(775\) 10443.1 0.484035
\(776\) 0 0
\(777\) 76040.6 3.51086
\(778\) 0 0
\(779\) −5501.47 −0.253030
\(780\) 0 0
\(781\) −44810.0 −2.05305
\(782\) 0 0
\(783\) 14770.1 0.674128
\(784\) 0 0
\(785\) 12473.2 0.567116
\(786\) 0 0
\(787\) −40851.1 −1.85030 −0.925148 0.379606i \(-0.876060\pi\)
−0.925148 + 0.379606i \(0.876060\pi\)
\(788\) 0 0
\(789\) −5897.22 −0.266092
\(790\) 0 0
\(791\) 15778.5 0.709254
\(792\) 0 0
\(793\) −16682.6 −0.747056
\(794\) 0 0
\(795\) 850.490 0.0379419
\(796\) 0 0
\(797\) 9112.62 0.405001 0.202500 0.979282i \(-0.435093\pi\)
0.202500 + 0.979282i \(0.435093\pi\)
\(798\) 0 0
\(799\) 20169.8 0.893060
\(800\) 0 0
\(801\) −33070.1 −1.45877
\(802\) 0 0
\(803\) 50048.8 2.19948
\(804\) 0 0
\(805\) −10562.1 −0.462440
\(806\) 0 0
\(807\) 2555.17 0.111458
\(808\) 0 0
\(809\) 26676.0 1.15931 0.579653 0.814863i \(-0.303188\pi\)
0.579653 + 0.814863i \(0.303188\pi\)
\(810\) 0 0
\(811\) 3309.05 0.143275 0.0716377 0.997431i \(-0.477177\pi\)
0.0716377 + 0.997431i \(0.477177\pi\)
\(812\) 0 0
\(813\) 22616.2 0.975627
\(814\) 0 0
\(815\) 30280.9 1.30147
\(816\) 0 0
\(817\) 17142.6 0.734079
\(818\) 0 0
\(819\) −49772.9 −2.12357
\(820\) 0 0
\(821\) −10894.5 −0.463120 −0.231560 0.972821i \(-0.574383\pi\)
−0.231560 + 0.972821i \(0.574383\pi\)
\(822\) 0 0
\(823\) 3342.49 0.141570 0.0707849 0.997492i \(-0.477450\pi\)
0.0707849 + 0.997492i \(0.477450\pi\)
\(824\) 0 0
\(825\) 24145.0 1.01894
\(826\) 0 0
\(827\) 38646.4 1.62499 0.812496 0.582967i \(-0.198108\pi\)
0.812496 + 0.582967i \(0.198108\pi\)
\(828\) 0 0
\(829\) −1916.48 −0.0802919 −0.0401460 0.999194i \(-0.512782\pi\)
−0.0401460 + 0.999194i \(0.512782\pi\)
\(830\) 0 0
\(831\) −39973.6 −1.66868
\(832\) 0 0
\(833\) 35440.3 1.47411
\(834\) 0 0
\(835\) 40369.9 1.67312
\(836\) 0 0
\(837\) −14266.3 −0.589145
\(838\) 0 0
\(839\) −10090.7 −0.415222 −0.207611 0.978211i \(-0.566569\pi\)
−0.207611 + 0.978211i \(0.566569\pi\)
\(840\) 0 0
\(841\) 30536.8 1.25207
\(842\) 0 0
\(843\) 36178.7 1.47813
\(844\) 0 0
\(845\) 7276.27 0.296226
\(846\) 0 0
\(847\) −108359. −4.39581
\(848\) 0 0
\(849\) −18982.4 −0.767345
\(850\) 0 0
\(851\) −6327.19 −0.254869
\(852\) 0 0
\(853\) −22716.1 −0.911824 −0.455912 0.890025i \(-0.650687\pi\)
−0.455912 + 0.890025i \(0.650687\pi\)
\(854\) 0 0
\(855\) 42655.7 1.70619
\(856\) 0 0
\(857\) −26061.0 −1.03877 −0.519386 0.854540i \(-0.673839\pi\)
−0.519386 + 0.854540i \(0.673839\pi\)
\(858\) 0 0
\(859\) 8023.64 0.318700 0.159350 0.987222i \(-0.449060\pi\)
0.159350 + 0.987222i \(0.449060\pi\)
\(860\) 0 0
\(861\) 16324.7 0.646159
\(862\) 0 0
\(863\) 45634.6 1.80002 0.900011 0.435867i \(-0.143558\pi\)
0.900011 + 0.435867i \(0.143558\pi\)
\(864\) 0 0
\(865\) −31036.1 −1.21995
\(866\) 0 0
\(867\) 26179.8 1.02550
\(868\) 0 0
\(869\) 74779.5 2.91912
\(870\) 0 0
\(871\) −13162.4 −0.512046
\(872\) 0 0
\(873\) 9499.49 0.368281
\(874\) 0 0
\(875\) −36217.2 −1.39927
\(876\) 0 0
\(877\) −32265.7 −1.24234 −0.621172 0.783674i \(-0.713343\pi\)
−0.621172 + 0.783674i \(0.713343\pi\)
\(878\) 0 0
\(879\) −54738.8 −2.10045
\(880\) 0 0
\(881\) −10157.7 −0.388447 −0.194224 0.980957i \(-0.562219\pi\)
−0.194224 + 0.980957i \(0.562219\pi\)
\(882\) 0 0
\(883\) −42435.0 −1.61727 −0.808635 0.588310i \(-0.799793\pi\)
−0.808635 + 0.588310i \(0.799793\pi\)
\(884\) 0 0
\(885\) 49776.2 1.89063
\(886\) 0 0
\(887\) −5740.13 −0.217288 −0.108644 0.994081i \(-0.534651\pi\)
−0.108644 + 0.994081i \(0.534651\pi\)
\(888\) 0 0
\(889\) −44202.9 −1.66762
\(890\) 0 0
\(891\) 29833.1 1.12171
\(892\) 0 0
\(893\) −47145.1 −1.76668
\(894\) 0 0
\(895\) −10880.8 −0.406373
\(896\) 0 0
\(897\) 7336.05 0.273070
\(898\) 0 0
\(899\) −53052.0 −1.96817
\(900\) 0 0
\(901\) 329.044 0.0121665
\(902\) 0 0
\(903\) −50867.6 −1.87461
\(904\) 0 0
\(905\) 20025.3 0.735540
\(906\) 0 0
\(907\) 1897.29 0.0694583 0.0347291 0.999397i \(-0.488943\pi\)
0.0347291 + 0.999397i \(0.488943\pi\)
\(908\) 0 0
\(909\) 62192.0 2.26928
\(910\) 0 0
\(911\) −25938.8 −0.943349 −0.471674 0.881773i \(-0.656350\pi\)
−0.471674 + 0.881773i \(0.656350\pi\)
\(912\) 0 0
\(913\) −9073.00 −0.328885
\(914\) 0 0
\(915\) −42424.1 −1.53278
\(916\) 0 0
\(917\) 58798.2 2.11743
\(918\) 0 0
\(919\) 13202.4 0.473892 0.236946 0.971523i \(-0.423854\pi\)
0.236946 + 0.971523i \(0.423854\pi\)
\(920\) 0 0
\(921\) 7899.66 0.282631
\(922\) 0 0
\(923\) 27308.5 0.973857
\(924\) 0 0
\(925\) 12691.1 0.451113
\(926\) 0 0
\(927\) 8415.67 0.298174
\(928\) 0 0
\(929\) −7627.97 −0.269393 −0.134696 0.990887i \(-0.543006\pi\)
−0.134696 + 0.990887i \(0.543006\pi\)
\(930\) 0 0
\(931\) −82838.5 −2.91614
\(932\) 0 0
\(933\) −54357.1 −1.90737
\(934\) 0 0
\(935\) 34652.3 1.21203
\(936\) 0 0
\(937\) −12830.6 −0.447341 −0.223670 0.974665i \(-0.571804\pi\)
−0.223670 + 0.974665i \(0.571804\pi\)
\(938\) 0 0
\(939\) −52443.4 −1.82260
\(940\) 0 0
\(941\) 34812.2 1.20600 0.602999 0.797742i \(-0.293972\pi\)
0.602999 + 0.797742i \(0.293972\pi\)
\(942\) 0 0
\(943\) −1358.34 −0.0469075
\(944\) 0 0
\(945\) −28941.3 −0.996254
\(946\) 0 0
\(947\) 36412.9 1.24948 0.624742 0.780832i \(-0.285204\pi\)
0.624742 + 0.780832i \(0.285204\pi\)
\(948\) 0 0
\(949\) −30501.1 −1.04332
\(950\) 0 0
\(951\) 14370.2 0.489996
\(952\) 0 0
\(953\) 20178.9 0.685896 0.342948 0.939354i \(-0.388575\pi\)
0.342948 + 0.939354i \(0.388575\pi\)
\(954\) 0 0
\(955\) −16715.7 −0.566397
\(956\) 0 0
\(957\) −122659. −4.14317
\(958\) 0 0
\(959\) 4694.91 0.158088
\(960\) 0 0
\(961\) 21451.2 0.720056
\(962\) 0 0
\(963\) 10781.2 0.360766
\(964\) 0 0
\(965\) 21328.0 0.711474
\(966\) 0 0
\(967\) 46524.3 1.54718 0.773589 0.633688i \(-0.218460\pi\)
0.773589 + 0.633688i \(0.218460\pi\)
\(968\) 0 0
\(969\) 29232.5 0.969127
\(970\) 0 0
\(971\) 10042.0 0.331888 0.165944 0.986135i \(-0.446933\pi\)
0.165944 + 0.986135i \(0.446933\pi\)
\(972\) 0 0
\(973\) −30560.0 −1.00690
\(974\) 0 0
\(975\) −14714.7 −0.483329
\(976\) 0 0
\(977\) 27740.9 0.908402 0.454201 0.890899i \(-0.349925\pi\)
0.454201 + 0.890899i \(0.349925\pi\)
\(978\) 0 0
\(979\) 62795.2 2.04999
\(980\) 0 0
\(981\) 12360.2 0.402275
\(982\) 0 0
\(983\) −13613.6 −0.441716 −0.220858 0.975306i \(-0.570886\pi\)
−0.220858 + 0.975306i \(0.570886\pi\)
\(984\) 0 0
\(985\) 29525.2 0.955076
\(986\) 0 0
\(987\) 139895. 4.51156
\(988\) 0 0
\(989\) 4232.60 0.136086
\(990\) 0 0
\(991\) 35332.8 1.13258 0.566289 0.824207i \(-0.308379\pi\)
0.566289 + 0.824207i \(0.308379\pi\)
\(992\) 0 0
\(993\) −14913.9 −0.476616
\(994\) 0 0
\(995\) −24064.6 −0.766734
\(996\) 0 0
\(997\) −57488.9 −1.82617 −0.913085 0.407769i \(-0.866307\pi\)
−0.913085 + 0.407769i \(0.866307\pi\)
\(998\) 0 0
\(999\) −17337.2 −0.549074
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.4.a.bg.1.3 8
4.3 odd 2 1472.4.a.bh.1.6 8
8.3 odd 2 736.4.a.e.1.3 8
8.5 even 2 736.4.a.f.1.6 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
736.4.a.e.1.3 8 8.3 odd 2
736.4.a.f.1.6 yes 8 8.5 even 2
1472.4.a.bg.1.3 8 1.1 even 1 trivial
1472.4.a.bh.1.6 8 4.3 odd 2