Properties

Label 1472.4.a.bd.1.3
Level $1472$
Weight $4$
Character 1472.1
Self dual yes
Analytic conductor $86.851$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1472,4,Mod(1,1472)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1472.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1472, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,1,0,20,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.8508115285\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.167313.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 16x^{2} + 4x + 24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 184)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.42018\) of defining polynomial
Character \(\chi\) \(=\) 1472.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.911599 q^{3} +2.21395 q^{5} +0.592081 q^{7} -26.1690 q^{9} -44.0622 q^{11} -39.4794 q^{13} +2.01823 q^{15} -89.6532 q^{17} +15.7985 q^{19} +0.539741 q^{21} +23.0000 q^{23} -120.098 q^{25} -48.4688 q^{27} +227.961 q^{29} -83.0988 q^{31} -40.1670 q^{33} +1.31084 q^{35} +201.333 q^{37} -35.9894 q^{39} +364.105 q^{41} +79.8025 q^{43} -57.9368 q^{45} +162.306 q^{47} -342.649 q^{49} -81.7277 q^{51} +637.999 q^{53} -97.5513 q^{55} +14.4019 q^{57} +830.645 q^{59} -23.1201 q^{61} -15.4942 q^{63} -87.4054 q^{65} +689.266 q^{67} +20.9668 q^{69} -701.876 q^{71} +332.442 q^{73} -109.482 q^{75} -26.0884 q^{77} +208.245 q^{79} +662.379 q^{81} -93.9343 q^{83} -198.487 q^{85} +207.809 q^{87} +290.773 q^{89} -23.3750 q^{91} -75.7528 q^{93} +34.9770 q^{95} +721.288 q^{97} +1153.06 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} + 20 q^{5} + 10 q^{7} + 23 q^{9} - 30 q^{11} + 153 q^{13} + 136 q^{15} - 68 q^{17} - 120 q^{19} + 426 q^{21} + 92 q^{23} - 76 q^{25} + 43 q^{27} + 315 q^{29} - 249 q^{31} - 504 q^{33} + 224 q^{35}+ \cdots - 1470 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.911599 0.175437 0.0877186 0.996145i \(-0.472042\pi\)
0.0877186 + 0.996145i \(0.472042\pi\)
\(4\) 0 0
\(5\) 2.21395 0.198021 0.0990107 0.995086i \(-0.468432\pi\)
0.0990107 + 0.995086i \(0.468432\pi\)
\(6\) 0 0
\(7\) 0.592081 0.0319694 0.0159847 0.999872i \(-0.494912\pi\)
0.0159847 + 0.999872i \(0.494912\pi\)
\(8\) 0 0
\(9\) −26.1690 −0.969222
\(10\) 0 0
\(11\) −44.0622 −1.20775 −0.603875 0.797079i \(-0.706377\pi\)
−0.603875 + 0.797079i \(0.706377\pi\)
\(12\) 0 0
\(13\) −39.4794 −0.842279 −0.421140 0.906996i \(-0.638370\pi\)
−0.421140 + 0.906996i \(0.638370\pi\)
\(14\) 0 0
\(15\) 2.01823 0.0347403
\(16\) 0 0
\(17\) −89.6532 −1.27906 −0.639532 0.768764i \(-0.720872\pi\)
−0.639532 + 0.768764i \(0.720872\pi\)
\(18\) 0 0
\(19\) 15.7985 0.190759 0.0953794 0.995441i \(-0.469594\pi\)
0.0953794 + 0.995441i \(0.469594\pi\)
\(20\) 0 0
\(21\) 0.539741 0.00560862
\(22\) 0 0
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) −120.098 −0.960787
\(26\) 0 0
\(27\) −48.4688 −0.345475
\(28\) 0 0
\(29\) 227.961 1.45970 0.729850 0.683607i \(-0.239590\pi\)
0.729850 + 0.683607i \(0.239590\pi\)
\(30\) 0 0
\(31\) −83.0988 −0.481451 −0.240726 0.970593i \(-0.577385\pi\)
−0.240726 + 0.970593i \(0.577385\pi\)
\(32\) 0 0
\(33\) −40.1670 −0.211884
\(34\) 0 0
\(35\) 1.31084 0.00633063
\(36\) 0 0
\(37\) 201.333 0.894564 0.447282 0.894393i \(-0.352392\pi\)
0.447282 + 0.894393i \(0.352392\pi\)
\(38\) 0 0
\(39\) −35.9894 −0.147767
\(40\) 0 0
\(41\) 364.105 1.38692 0.693459 0.720496i \(-0.256086\pi\)
0.693459 + 0.720496i \(0.256086\pi\)
\(42\) 0 0
\(43\) 79.8025 0.283018 0.141509 0.989937i \(-0.454805\pi\)
0.141509 + 0.989937i \(0.454805\pi\)
\(44\) 0 0
\(45\) −57.9368 −0.191927
\(46\) 0 0
\(47\) 162.306 0.503719 0.251859 0.967764i \(-0.418958\pi\)
0.251859 + 0.967764i \(0.418958\pi\)
\(48\) 0 0
\(49\) −342.649 −0.998978
\(50\) 0 0
\(51\) −81.7277 −0.224396
\(52\) 0 0
\(53\) 637.999 1.65351 0.826754 0.562563i \(-0.190185\pi\)
0.826754 + 0.562563i \(0.190185\pi\)
\(54\) 0 0
\(55\) −97.5513 −0.239160
\(56\) 0 0
\(57\) 14.4019 0.0334662
\(58\) 0 0
\(59\) 830.645 1.83289 0.916447 0.400156i \(-0.131044\pi\)
0.916447 + 0.400156i \(0.131044\pi\)
\(60\) 0 0
\(61\) −23.1201 −0.0485283 −0.0242641 0.999706i \(-0.507724\pi\)
−0.0242641 + 0.999706i \(0.507724\pi\)
\(62\) 0 0
\(63\) −15.4942 −0.0309854
\(64\) 0 0
\(65\) −87.4054 −0.166789
\(66\) 0 0
\(67\) 689.266 1.25683 0.628413 0.777880i \(-0.283705\pi\)
0.628413 + 0.777880i \(0.283705\pi\)
\(68\) 0 0
\(69\) 20.9668 0.0365812
\(70\) 0 0
\(71\) −701.876 −1.17320 −0.586601 0.809876i \(-0.699534\pi\)
−0.586601 + 0.809876i \(0.699534\pi\)
\(72\) 0 0
\(73\) 332.442 0.533005 0.266502 0.963834i \(-0.414132\pi\)
0.266502 + 0.963834i \(0.414132\pi\)
\(74\) 0 0
\(75\) −109.482 −0.168558
\(76\) 0 0
\(77\) −26.0884 −0.0386110
\(78\) 0 0
\(79\) 208.245 0.296575 0.148287 0.988944i \(-0.452624\pi\)
0.148287 + 0.988944i \(0.452624\pi\)
\(80\) 0 0
\(81\) 662.379 0.908613
\(82\) 0 0
\(83\) −93.9343 −0.124224 −0.0621122 0.998069i \(-0.519784\pi\)
−0.0621122 + 0.998069i \(0.519784\pi\)
\(84\) 0 0
\(85\) −198.487 −0.253282
\(86\) 0 0
\(87\) 207.809 0.256086
\(88\) 0 0
\(89\) 290.773 0.346313 0.173157 0.984894i \(-0.444603\pi\)
0.173157 + 0.984894i \(0.444603\pi\)
\(90\) 0 0
\(91\) −23.3750 −0.0269271
\(92\) 0 0
\(93\) −75.7528 −0.0844645
\(94\) 0 0
\(95\) 34.9770 0.0377743
\(96\) 0 0
\(97\) 721.288 0.755007 0.377504 0.926008i \(-0.376783\pi\)
0.377504 + 0.926008i \(0.376783\pi\)
\(98\) 0 0
\(99\) 1153.06 1.17058
\(100\) 0 0
\(101\) 190.272 0.187453 0.0937267 0.995598i \(-0.470122\pi\)
0.0937267 + 0.995598i \(0.470122\pi\)
\(102\) 0 0
\(103\) −1528.28 −1.46200 −0.731001 0.682377i \(-0.760946\pi\)
−0.731001 + 0.682377i \(0.760946\pi\)
\(104\) 0 0
\(105\) 1.19496 0.00111063
\(106\) 0 0
\(107\) −1762.11 −1.59205 −0.796026 0.605262i \(-0.793068\pi\)
−0.796026 + 0.605262i \(0.793068\pi\)
\(108\) 0 0
\(109\) 178.049 0.156459 0.0782296 0.996935i \(-0.475073\pi\)
0.0782296 + 0.996935i \(0.475073\pi\)
\(110\) 0 0
\(111\) 183.534 0.156940
\(112\) 0 0
\(113\) −542.027 −0.451236 −0.225618 0.974216i \(-0.572440\pi\)
−0.225618 + 0.974216i \(0.572440\pi\)
\(114\) 0 0
\(115\) 50.9208 0.0412903
\(116\) 0 0
\(117\) 1033.14 0.816355
\(118\) 0 0
\(119\) −53.0820 −0.0408909
\(120\) 0 0
\(121\) 610.475 0.458659
\(122\) 0 0
\(123\) 331.917 0.243317
\(124\) 0 0
\(125\) −542.635 −0.388278
\(126\) 0 0
\(127\) 276.131 0.192935 0.0964673 0.995336i \(-0.469246\pi\)
0.0964673 + 0.995336i \(0.469246\pi\)
\(128\) 0 0
\(129\) 72.7479 0.0496519
\(130\) 0 0
\(131\) −2475.57 −1.65108 −0.825542 0.564341i \(-0.809130\pi\)
−0.825542 + 0.564341i \(0.809130\pi\)
\(132\) 0 0
\(133\) 9.35398 0.00609844
\(134\) 0 0
\(135\) −107.307 −0.0684114
\(136\) 0 0
\(137\) 37.7868 0.0235646 0.0117823 0.999931i \(-0.496249\pi\)
0.0117823 + 0.999931i \(0.496249\pi\)
\(138\) 0 0
\(139\) 975.089 0.595007 0.297503 0.954721i \(-0.403846\pi\)
0.297503 + 0.954721i \(0.403846\pi\)
\(140\) 0 0
\(141\) 147.958 0.0883711
\(142\) 0 0
\(143\) 1739.55 1.01726
\(144\) 0 0
\(145\) 504.694 0.289052
\(146\) 0 0
\(147\) −312.359 −0.175258
\(148\) 0 0
\(149\) 204.870 0.112642 0.0563209 0.998413i \(-0.482063\pi\)
0.0563209 + 0.998413i \(0.482063\pi\)
\(150\) 0 0
\(151\) 2905.20 1.56571 0.782853 0.622207i \(-0.213764\pi\)
0.782853 + 0.622207i \(0.213764\pi\)
\(152\) 0 0
\(153\) 2346.13 1.23970
\(154\) 0 0
\(155\) −183.976 −0.0953377
\(156\) 0 0
\(157\) 1749.50 0.889334 0.444667 0.895696i \(-0.353322\pi\)
0.444667 + 0.895696i \(0.353322\pi\)
\(158\) 0 0
\(159\) 581.599 0.290087
\(160\) 0 0
\(161\) 13.6179 0.00666608
\(162\) 0 0
\(163\) −2494.40 −1.19863 −0.599315 0.800513i \(-0.704560\pi\)
−0.599315 + 0.800513i \(0.704560\pi\)
\(164\) 0 0
\(165\) −88.9277 −0.0419576
\(166\) 0 0
\(167\) −620.316 −0.287434 −0.143717 0.989619i \(-0.545906\pi\)
−0.143717 + 0.989619i \(0.545906\pi\)
\(168\) 0 0
\(169\) −638.374 −0.290566
\(170\) 0 0
\(171\) −413.430 −0.184888
\(172\) 0 0
\(173\) 504.568 0.221743 0.110872 0.993835i \(-0.464636\pi\)
0.110872 + 0.993835i \(0.464636\pi\)
\(174\) 0 0
\(175\) −71.1080 −0.0307158
\(176\) 0 0
\(177\) 757.215 0.321558
\(178\) 0 0
\(179\) −3033.16 −1.26653 −0.633265 0.773935i \(-0.718286\pi\)
−0.633265 + 0.773935i \(0.718286\pi\)
\(180\) 0 0
\(181\) 455.262 0.186958 0.0934790 0.995621i \(-0.470201\pi\)
0.0934790 + 0.995621i \(0.470201\pi\)
\(182\) 0 0
\(183\) −21.0763 −0.00851367
\(184\) 0 0
\(185\) 445.740 0.177143
\(186\) 0 0
\(187\) 3950.31 1.54479
\(188\) 0 0
\(189\) −28.6975 −0.0110446
\(190\) 0 0
\(191\) 3231.26 1.22412 0.612058 0.790813i \(-0.290342\pi\)
0.612058 + 0.790813i \(0.290342\pi\)
\(192\) 0 0
\(193\) 2085.89 0.777956 0.388978 0.921247i \(-0.372828\pi\)
0.388978 + 0.921247i \(0.372828\pi\)
\(194\) 0 0
\(195\) −79.6787 −0.0292611
\(196\) 0 0
\(197\) 1227.57 0.443964 0.221982 0.975051i \(-0.428747\pi\)
0.221982 + 0.975051i \(0.428747\pi\)
\(198\) 0 0
\(199\) −160.852 −0.0572990 −0.0286495 0.999590i \(-0.509121\pi\)
−0.0286495 + 0.999590i \(0.509121\pi\)
\(200\) 0 0
\(201\) 628.334 0.220494
\(202\) 0 0
\(203\) 134.972 0.0466657
\(204\) 0 0
\(205\) 806.109 0.274639
\(206\) 0 0
\(207\) −601.887 −0.202097
\(208\) 0 0
\(209\) −696.115 −0.230389
\(210\) 0 0
\(211\) 2066.49 0.674231 0.337116 0.941463i \(-0.390549\pi\)
0.337116 + 0.941463i \(0.390549\pi\)
\(212\) 0 0
\(213\) −639.829 −0.205823
\(214\) 0 0
\(215\) 176.679 0.0560436
\(216\) 0 0
\(217\) −49.2013 −0.0153917
\(218\) 0 0
\(219\) 303.053 0.0935089
\(220\) 0 0
\(221\) 3539.46 1.07733
\(222\) 0 0
\(223\) −2918.95 −0.876536 −0.438268 0.898844i \(-0.644408\pi\)
−0.438268 + 0.898844i \(0.644408\pi\)
\(224\) 0 0
\(225\) 3142.85 0.931216
\(226\) 0 0
\(227\) −3072.13 −0.898256 −0.449128 0.893467i \(-0.648265\pi\)
−0.449128 + 0.893467i \(0.648265\pi\)
\(228\) 0 0
\(229\) 3007.05 0.867737 0.433868 0.900976i \(-0.357148\pi\)
0.433868 + 0.900976i \(0.357148\pi\)
\(230\) 0 0
\(231\) −23.7821 −0.00677381
\(232\) 0 0
\(233\) 5625.92 1.58183 0.790914 0.611927i \(-0.209605\pi\)
0.790914 + 0.611927i \(0.209605\pi\)
\(234\) 0 0
\(235\) 359.337 0.0997472
\(236\) 0 0
\(237\) 189.836 0.0520302
\(238\) 0 0
\(239\) 1533.72 0.415097 0.207548 0.978225i \(-0.433452\pi\)
0.207548 + 0.978225i \(0.433452\pi\)
\(240\) 0 0
\(241\) 1965.38 0.525316 0.262658 0.964889i \(-0.415401\pi\)
0.262658 + 0.964889i \(0.415401\pi\)
\(242\) 0 0
\(243\) 1912.48 0.504879
\(244\) 0 0
\(245\) −758.608 −0.197819
\(246\) 0 0
\(247\) −623.715 −0.160672
\(248\) 0 0
\(249\) −85.6304 −0.0217936
\(250\) 0 0
\(251\) −1342.89 −0.337700 −0.168850 0.985642i \(-0.554005\pi\)
−0.168850 + 0.985642i \(0.554005\pi\)
\(252\) 0 0
\(253\) −1013.43 −0.251833
\(254\) 0 0
\(255\) −180.941 −0.0444351
\(256\) 0 0
\(257\) 4699.24 1.14059 0.570293 0.821441i \(-0.306830\pi\)
0.570293 + 0.821441i \(0.306830\pi\)
\(258\) 0 0
\(259\) 119.205 0.0285987
\(260\) 0 0
\(261\) −5965.51 −1.41477
\(262\) 0 0
\(263\) −5578.08 −1.30783 −0.653914 0.756569i \(-0.726874\pi\)
−0.653914 + 0.756569i \(0.726874\pi\)
\(264\) 0 0
\(265\) 1412.50 0.327430
\(266\) 0 0
\(267\) 265.068 0.0607562
\(268\) 0 0
\(269\) 4775.55 1.08242 0.541209 0.840888i \(-0.317967\pi\)
0.541209 + 0.840888i \(0.317967\pi\)
\(270\) 0 0
\(271\) −6426.28 −1.44047 −0.720237 0.693728i \(-0.755967\pi\)
−0.720237 + 0.693728i \(0.755967\pi\)
\(272\) 0 0
\(273\) −21.3087 −0.00472402
\(274\) 0 0
\(275\) 5291.80 1.16039
\(276\) 0 0
\(277\) 2287.81 0.496249 0.248124 0.968728i \(-0.420186\pi\)
0.248124 + 0.968728i \(0.420186\pi\)
\(278\) 0 0
\(279\) 2174.61 0.466633
\(280\) 0 0
\(281\) −7904.63 −1.67812 −0.839058 0.544041i \(-0.816894\pi\)
−0.839058 + 0.544041i \(0.816894\pi\)
\(282\) 0 0
\(283\) −3873.86 −0.813699 −0.406850 0.913495i \(-0.633373\pi\)
−0.406850 + 0.913495i \(0.633373\pi\)
\(284\) 0 0
\(285\) 31.8850 0.00662702
\(286\) 0 0
\(287\) 215.580 0.0443389
\(288\) 0 0
\(289\) 3124.69 0.636005
\(290\) 0 0
\(291\) 657.525 0.132456
\(292\) 0 0
\(293\) 8432.22 1.68128 0.840640 0.541594i \(-0.182179\pi\)
0.840640 + 0.541594i \(0.182179\pi\)
\(294\) 0 0
\(295\) 1839.00 0.362952
\(296\) 0 0
\(297\) 2135.64 0.417247
\(298\) 0 0
\(299\) −908.027 −0.175627
\(300\) 0 0
\(301\) 47.2496 0.00904791
\(302\) 0 0
\(303\) 173.452 0.0328863
\(304\) 0 0
\(305\) −51.1867 −0.00960964
\(306\) 0 0
\(307\) 9341.35 1.73661 0.868305 0.496031i \(-0.165210\pi\)
0.868305 + 0.496031i \(0.165210\pi\)
\(308\) 0 0
\(309\) −1393.18 −0.256489
\(310\) 0 0
\(311\) −4888.06 −0.891242 −0.445621 0.895222i \(-0.647017\pi\)
−0.445621 + 0.895222i \(0.647017\pi\)
\(312\) 0 0
\(313\) 6333.38 1.14372 0.571859 0.820352i \(-0.306222\pi\)
0.571859 + 0.820352i \(0.306222\pi\)
\(314\) 0 0
\(315\) −34.3033 −0.00613578
\(316\) 0 0
\(317\) 5279.80 0.935467 0.467734 0.883870i \(-0.345071\pi\)
0.467734 + 0.883870i \(0.345071\pi\)
\(318\) 0 0
\(319\) −10044.5 −1.76295
\(320\) 0 0
\(321\) −1606.34 −0.279305
\(322\) 0 0
\(323\) −1416.38 −0.243993
\(324\) 0 0
\(325\) 4741.42 0.809251
\(326\) 0 0
\(327\) 162.310 0.0274488
\(328\) 0 0
\(329\) 96.0985 0.0161036
\(330\) 0 0
\(331\) 521.432 0.0865877 0.0432938 0.999062i \(-0.486215\pi\)
0.0432938 + 0.999062i \(0.486215\pi\)
\(332\) 0 0
\(333\) −5268.67 −0.867031
\(334\) 0 0
\(335\) 1526.00 0.248878
\(336\) 0 0
\(337\) −7697.66 −1.24427 −0.622134 0.782911i \(-0.713734\pi\)
−0.622134 + 0.782911i \(0.713734\pi\)
\(338\) 0 0
\(339\) −494.111 −0.0791635
\(340\) 0 0
\(341\) 3661.52 0.581473
\(342\) 0 0
\(343\) −405.960 −0.0639061
\(344\) 0 0
\(345\) 46.4193 0.00724386
\(346\) 0 0
\(347\) −6001.92 −0.928530 −0.464265 0.885696i \(-0.653682\pi\)
−0.464265 + 0.885696i \(0.653682\pi\)
\(348\) 0 0
\(349\) −3955.05 −0.606617 −0.303308 0.952892i \(-0.598091\pi\)
−0.303308 + 0.952892i \(0.598091\pi\)
\(350\) 0 0
\(351\) 1913.52 0.290986
\(352\) 0 0
\(353\) 765.163 0.115370 0.0576848 0.998335i \(-0.481628\pi\)
0.0576848 + 0.998335i \(0.481628\pi\)
\(354\) 0 0
\(355\) −1553.92 −0.232319
\(356\) 0 0
\(357\) −48.3895 −0.00717379
\(358\) 0 0
\(359\) 8630.55 1.26881 0.634406 0.773000i \(-0.281245\pi\)
0.634406 + 0.773000i \(0.281245\pi\)
\(360\) 0 0
\(361\) −6609.41 −0.963611
\(362\) 0 0
\(363\) 556.508 0.0804658
\(364\) 0 0
\(365\) 736.008 0.105546
\(366\) 0 0
\(367\) 9040.53 1.28586 0.642932 0.765924i \(-0.277718\pi\)
0.642932 + 0.765924i \(0.277718\pi\)
\(368\) 0 0
\(369\) −9528.25 −1.34423
\(370\) 0 0
\(371\) 377.748 0.0528617
\(372\) 0 0
\(373\) 2798.43 0.388464 0.194232 0.980956i \(-0.437778\pi\)
0.194232 + 0.980956i \(0.437778\pi\)
\(374\) 0 0
\(375\) −494.665 −0.0681184
\(376\) 0 0
\(377\) −8999.78 −1.22948
\(378\) 0 0
\(379\) 11763.4 1.59432 0.797158 0.603771i \(-0.206336\pi\)
0.797158 + 0.603771i \(0.206336\pi\)
\(380\) 0 0
\(381\) 251.721 0.0338479
\(382\) 0 0
\(383\) 7350.38 0.980645 0.490323 0.871541i \(-0.336879\pi\)
0.490323 + 0.871541i \(0.336879\pi\)
\(384\) 0 0
\(385\) −57.7583 −0.00764581
\(386\) 0 0
\(387\) −2088.35 −0.274307
\(388\) 0 0
\(389\) −13475.8 −1.75643 −0.878217 0.478263i \(-0.841267\pi\)
−0.878217 + 0.478263i \(0.841267\pi\)
\(390\) 0 0
\(391\) −2062.02 −0.266703
\(392\) 0 0
\(393\) −2256.73 −0.289662
\(394\) 0 0
\(395\) 461.043 0.0587281
\(396\) 0 0
\(397\) 12509.3 1.58141 0.790707 0.612195i \(-0.209713\pi\)
0.790707 + 0.612195i \(0.209713\pi\)
\(398\) 0 0
\(399\) 8.52707 0.00106989
\(400\) 0 0
\(401\) 3129.19 0.389687 0.194843 0.980834i \(-0.437580\pi\)
0.194843 + 0.980834i \(0.437580\pi\)
\(402\) 0 0
\(403\) 3280.70 0.405516
\(404\) 0 0
\(405\) 1466.47 0.179925
\(406\) 0 0
\(407\) −8871.15 −1.08041
\(408\) 0 0
\(409\) −961.985 −0.116301 −0.0581505 0.998308i \(-0.518520\pi\)
−0.0581505 + 0.998308i \(0.518520\pi\)
\(410\) 0 0
\(411\) 34.4464 0.00413411
\(412\) 0 0
\(413\) 491.809 0.0585965
\(414\) 0 0
\(415\) −207.966 −0.0245991
\(416\) 0 0
\(417\) 888.889 0.104386
\(418\) 0 0
\(419\) −9209.39 −1.07377 −0.536883 0.843657i \(-0.680398\pi\)
−0.536883 + 0.843657i \(0.680398\pi\)
\(420\) 0 0
\(421\) 7913.21 0.916071 0.458036 0.888934i \(-0.348553\pi\)
0.458036 + 0.888934i \(0.348553\pi\)
\(422\) 0 0
\(423\) −4247.39 −0.488215
\(424\) 0 0
\(425\) 10767.2 1.22891
\(426\) 0 0
\(427\) −13.6890 −0.00155142
\(428\) 0 0
\(429\) 1585.77 0.178466
\(430\) 0 0
\(431\) 14530.7 1.62394 0.811971 0.583698i \(-0.198395\pi\)
0.811971 + 0.583698i \(0.198395\pi\)
\(432\) 0 0
\(433\) −9133.35 −1.01367 −0.506837 0.862042i \(-0.669185\pi\)
−0.506837 + 0.862042i \(0.669185\pi\)
\(434\) 0 0
\(435\) 460.078 0.0507105
\(436\) 0 0
\(437\) 363.365 0.0397759
\(438\) 0 0
\(439\) 6418.48 0.697808 0.348904 0.937159i \(-0.386554\pi\)
0.348904 + 0.937159i \(0.386554\pi\)
\(440\) 0 0
\(441\) 8966.79 0.968231
\(442\) 0 0
\(443\) 9244.72 0.991489 0.495745 0.868468i \(-0.334895\pi\)
0.495745 + 0.868468i \(0.334895\pi\)
\(444\) 0 0
\(445\) 643.756 0.0685774
\(446\) 0 0
\(447\) 186.759 0.0197616
\(448\) 0 0
\(449\) 11826.4 1.24303 0.621515 0.783402i \(-0.286518\pi\)
0.621515 + 0.783402i \(0.286518\pi\)
\(450\) 0 0
\(451\) −16043.2 −1.67505
\(452\) 0 0
\(453\) 2648.37 0.274683
\(454\) 0 0
\(455\) −51.7511 −0.00533215
\(456\) 0 0
\(457\) 7907.62 0.809416 0.404708 0.914446i \(-0.367373\pi\)
0.404708 + 0.914446i \(0.367373\pi\)
\(458\) 0 0
\(459\) 4345.38 0.441885
\(460\) 0 0
\(461\) −4955.68 −0.500670 −0.250335 0.968159i \(-0.580541\pi\)
−0.250335 + 0.968159i \(0.580541\pi\)
\(462\) 0 0
\(463\) −13842.4 −1.38944 −0.694719 0.719282i \(-0.744471\pi\)
−0.694719 + 0.719282i \(0.744471\pi\)
\(464\) 0 0
\(465\) −167.713 −0.0167258
\(466\) 0 0
\(467\) −7500.26 −0.743192 −0.371596 0.928395i \(-0.621189\pi\)
−0.371596 + 0.928395i \(0.621189\pi\)
\(468\) 0 0
\(469\) 408.102 0.0401799
\(470\) 0 0
\(471\) 1594.84 0.156022
\(472\) 0 0
\(473\) −3516.27 −0.341815
\(474\) 0 0
\(475\) −1897.37 −0.183279
\(476\) 0 0
\(477\) −16695.8 −1.60262
\(478\) 0 0
\(479\) 20080.4 1.91545 0.957723 0.287691i \(-0.0928876\pi\)
0.957723 + 0.287691i \(0.0928876\pi\)
\(480\) 0 0
\(481\) −7948.50 −0.753472
\(482\) 0 0
\(483\) 12.4140 0.00116948
\(484\) 0 0
\(485\) 1596.89 0.149508
\(486\) 0 0
\(487\) −9758.80 −0.908035 −0.454018 0.890993i \(-0.650010\pi\)
−0.454018 + 0.890993i \(0.650010\pi\)
\(488\) 0 0
\(489\) −2273.90 −0.210284
\(490\) 0 0
\(491\) 3286.03 0.302029 0.151015 0.988532i \(-0.451746\pi\)
0.151015 + 0.988532i \(0.451746\pi\)
\(492\) 0 0
\(493\) −20437.4 −1.86705
\(494\) 0 0
\(495\) 2552.82 0.231799
\(496\) 0 0
\(497\) −415.568 −0.0375066
\(498\) 0 0
\(499\) −1092.31 −0.0979927 −0.0489964 0.998799i \(-0.515602\pi\)
−0.0489964 + 0.998799i \(0.515602\pi\)
\(500\) 0 0
\(501\) −565.479 −0.0504266
\(502\) 0 0
\(503\) −16200.1 −1.43603 −0.718017 0.696026i \(-0.754950\pi\)
−0.718017 + 0.696026i \(0.754950\pi\)
\(504\) 0 0
\(505\) 421.253 0.0371198
\(506\) 0 0
\(507\) −581.940 −0.0509761
\(508\) 0 0
\(509\) −16182.5 −1.40919 −0.704593 0.709612i \(-0.748870\pi\)
−0.704593 + 0.709612i \(0.748870\pi\)
\(510\) 0 0
\(511\) 196.832 0.0170398
\(512\) 0 0
\(513\) −765.732 −0.0659023
\(514\) 0 0
\(515\) −3383.54 −0.289508
\(516\) 0 0
\(517\) −7151.56 −0.608366
\(518\) 0 0
\(519\) 459.964 0.0389020
\(520\) 0 0
\(521\) 7129.58 0.599525 0.299763 0.954014i \(-0.403093\pi\)
0.299763 + 0.954014i \(0.403093\pi\)
\(522\) 0 0
\(523\) 12642.8 1.05704 0.528520 0.848921i \(-0.322747\pi\)
0.528520 + 0.848921i \(0.322747\pi\)
\(524\) 0 0
\(525\) −64.8220 −0.00538869
\(526\) 0 0
\(527\) 7450.08 0.615807
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −21737.1 −1.77648
\(532\) 0 0
\(533\) −14374.7 −1.16817
\(534\) 0 0
\(535\) −3901.22 −0.315261
\(536\) 0 0
\(537\) −2765.02 −0.222197
\(538\) 0 0
\(539\) 15097.9 1.20652
\(540\) 0 0
\(541\) 9070.56 0.720839 0.360419 0.932790i \(-0.382634\pi\)
0.360419 + 0.932790i \(0.382634\pi\)
\(542\) 0 0
\(543\) 415.017 0.0327994
\(544\) 0 0
\(545\) 394.192 0.0309823
\(546\) 0 0
\(547\) −8523.38 −0.666241 −0.333120 0.942884i \(-0.608102\pi\)
−0.333120 + 0.942884i \(0.608102\pi\)
\(548\) 0 0
\(549\) 605.030 0.0470347
\(550\) 0 0
\(551\) 3601.43 0.278451
\(552\) 0 0
\(553\) 123.298 0.00948131
\(554\) 0 0
\(555\) 406.336 0.0310775
\(556\) 0 0
\(557\) −5346.61 −0.406720 −0.203360 0.979104i \(-0.565186\pi\)
−0.203360 + 0.979104i \(0.565186\pi\)
\(558\) 0 0
\(559\) −3150.56 −0.238380
\(560\) 0 0
\(561\) 3601.10 0.271014
\(562\) 0 0
\(563\) 6453.26 0.483077 0.241539 0.970391i \(-0.422348\pi\)
0.241539 + 0.970391i \(0.422348\pi\)
\(564\) 0 0
\(565\) −1200.02 −0.0893543
\(566\) 0 0
\(567\) 392.182 0.0290478
\(568\) 0 0
\(569\) −10772.7 −0.793702 −0.396851 0.917883i \(-0.629897\pi\)
−0.396851 + 0.917883i \(0.629897\pi\)
\(570\) 0 0
\(571\) −7263.48 −0.532342 −0.266171 0.963926i \(-0.585759\pi\)
−0.266171 + 0.963926i \(0.585759\pi\)
\(572\) 0 0
\(573\) 2945.62 0.214755
\(574\) 0 0
\(575\) −2762.26 −0.200338
\(576\) 0 0
\(577\) −18974.9 −1.36904 −0.684519 0.728995i \(-0.739988\pi\)
−0.684519 + 0.728995i \(0.739988\pi\)
\(578\) 0 0
\(579\) 1901.49 0.136482
\(580\) 0 0
\(581\) −55.6168 −0.00397138
\(582\) 0 0
\(583\) −28111.6 −1.99702
\(584\) 0 0
\(585\) 2287.31 0.161656
\(586\) 0 0
\(587\) 15576.7 1.09527 0.547633 0.836719i \(-0.315529\pi\)
0.547633 + 0.836719i \(0.315529\pi\)
\(588\) 0 0
\(589\) −1312.83 −0.0918411
\(590\) 0 0
\(591\) 1119.05 0.0778879
\(592\) 0 0
\(593\) 16186.3 1.12090 0.560450 0.828188i \(-0.310628\pi\)
0.560450 + 0.828188i \(0.310628\pi\)
\(594\) 0 0
\(595\) −117.521 −0.00809728
\(596\) 0 0
\(597\) −146.633 −0.0100524
\(598\) 0 0
\(599\) −2758.10 −0.188135 −0.0940676 0.995566i \(-0.529987\pi\)
−0.0940676 + 0.995566i \(0.529987\pi\)
\(600\) 0 0
\(601\) 20723.3 1.40652 0.703261 0.710932i \(-0.251727\pi\)
0.703261 + 0.710932i \(0.251727\pi\)
\(602\) 0 0
\(603\) −18037.4 −1.21814
\(604\) 0 0
\(605\) 1351.56 0.0908243
\(606\) 0 0
\(607\) 27245.6 1.82185 0.910927 0.412567i \(-0.135368\pi\)
0.910927 + 0.412567i \(0.135368\pi\)
\(608\) 0 0
\(609\) 123.040 0.00818691
\(610\) 0 0
\(611\) −6407.76 −0.424272
\(612\) 0 0
\(613\) −27208.2 −1.79271 −0.896353 0.443341i \(-0.853793\pi\)
−0.896353 + 0.443341i \(0.853793\pi\)
\(614\) 0 0
\(615\) 734.848 0.0481820
\(616\) 0 0
\(617\) −13368.1 −0.872251 −0.436125 0.899886i \(-0.643650\pi\)
−0.436125 + 0.899886i \(0.643650\pi\)
\(618\) 0 0
\(619\) 15188.6 0.986240 0.493120 0.869961i \(-0.335856\pi\)
0.493120 + 0.869961i \(0.335856\pi\)
\(620\) 0 0
\(621\) −1114.78 −0.0720365
\(622\) 0 0
\(623\) 172.161 0.0110714
\(624\) 0 0
\(625\) 13810.9 0.883900
\(626\) 0 0
\(627\) −634.577 −0.0404188
\(628\) 0 0
\(629\) −18050.1 −1.14420
\(630\) 0 0
\(631\) 22687.4 1.43133 0.715665 0.698444i \(-0.246124\pi\)
0.715665 + 0.698444i \(0.246124\pi\)
\(632\) 0 0
\(633\) 1883.81 0.118285
\(634\) 0 0
\(635\) 611.341 0.0382052
\(636\) 0 0
\(637\) 13527.6 0.841418
\(638\) 0 0
\(639\) 18367.4 1.13709
\(640\) 0 0
\(641\) −18278.3 −1.12629 −0.563143 0.826360i \(-0.690408\pi\)
−0.563143 + 0.826360i \(0.690408\pi\)
\(642\) 0 0
\(643\) 6862.31 0.420876 0.210438 0.977607i \(-0.432511\pi\)
0.210438 + 0.977607i \(0.432511\pi\)
\(644\) 0 0
\(645\) 161.060 0.00983214
\(646\) 0 0
\(647\) −15451.9 −0.938913 −0.469456 0.882956i \(-0.655550\pi\)
−0.469456 + 0.882956i \(0.655550\pi\)
\(648\) 0 0
\(649\) −36600.0 −2.21368
\(650\) 0 0
\(651\) −44.8518 −0.00270028
\(652\) 0 0
\(653\) −2222.53 −0.133192 −0.0665959 0.997780i \(-0.521214\pi\)
−0.0665959 + 0.997780i \(0.521214\pi\)
\(654\) 0 0
\(655\) −5480.79 −0.326950
\(656\) 0 0
\(657\) −8699.66 −0.516600
\(658\) 0 0
\(659\) −21327.7 −1.26071 −0.630357 0.776305i \(-0.717092\pi\)
−0.630357 + 0.776305i \(0.717092\pi\)
\(660\) 0 0
\(661\) 33548.0 1.97408 0.987038 0.160486i \(-0.0513061\pi\)
0.987038 + 0.160486i \(0.0513061\pi\)
\(662\) 0 0
\(663\) 3226.57 0.189004
\(664\) 0 0
\(665\) 20.7092 0.00120762
\(666\) 0 0
\(667\) 5243.10 0.304369
\(668\) 0 0
\(669\) −2660.91 −0.153777
\(670\) 0 0
\(671\) 1018.72 0.0586100
\(672\) 0 0
\(673\) 4007.13 0.229515 0.114758 0.993394i \(-0.463391\pi\)
0.114758 + 0.993394i \(0.463391\pi\)
\(674\) 0 0
\(675\) 5821.02 0.331928
\(676\) 0 0
\(677\) −24051.8 −1.36541 −0.682707 0.730692i \(-0.739198\pi\)
−0.682707 + 0.730692i \(0.739198\pi\)
\(678\) 0 0
\(679\) 427.061 0.0241371
\(680\) 0 0
\(681\) −2800.55 −0.157588
\(682\) 0 0
\(683\) 7112.48 0.398465 0.199233 0.979952i \(-0.436155\pi\)
0.199233 + 0.979952i \(0.436155\pi\)
\(684\) 0 0
\(685\) 83.6581 0.00466629
\(686\) 0 0
\(687\) 2741.23 0.152233
\(688\) 0 0
\(689\) −25187.9 −1.39272
\(690\) 0 0
\(691\) −11373.1 −0.626124 −0.313062 0.949733i \(-0.601355\pi\)
−0.313062 + 0.949733i \(0.601355\pi\)
\(692\) 0 0
\(693\) 682.707 0.0374226
\(694\) 0 0
\(695\) 2158.79 0.117824
\(696\) 0 0
\(697\) −32643.2 −1.77396
\(698\) 0 0
\(699\) 5128.58 0.277512
\(700\) 0 0
\(701\) −21075.0 −1.13551 −0.567754 0.823198i \(-0.692187\pi\)
−0.567754 + 0.823198i \(0.692187\pi\)
\(702\) 0 0
\(703\) 3180.74 0.170646
\(704\) 0 0
\(705\) 327.571 0.0174994
\(706\) 0 0
\(707\) 112.657 0.00599277
\(708\) 0 0
\(709\) 33021.6 1.74916 0.874580 0.484882i \(-0.161137\pi\)
0.874580 + 0.484882i \(0.161137\pi\)
\(710\) 0 0
\(711\) −5449.56 −0.287446
\(712\) 0 0
\(713\) −1911.27 −0.100390
\(714\) 0 0
\(715\) 3851.27 0.201440
\(716\) 0 0
\(717\) 1398.14 0.0728234
\(718\) 0 0
\(719\) −22281.2 −1.15570 −0.577851 0.816143i \(-0.696108\pi\)
−0.577851 + 0.816143i \(0.696108\pi\)
\(720\) 0 0
\(721\) −904.868 −0.0467393
\(722\) 0 0
\(723\) 1791.64 0.0921600
\(724\) 0 0
\(725\) −27377.8 −1.40246
\(726\) 0 0
\(727\) −24966.4 −1.27366 −0.636832 0.771003i \(-0.719756\pi\)
−0.636832 + 0.771003i \(0.719756\pi\)
\(728\) 0 0
\(729\) −16140.8 −0.820038
\(730\) 0 0
\(731\) −7154.55 −0.361998
\(732\) 0 0
\(733\) 569.397 0.0286919 0.0143460 0.999897i \(-0.495433\pi\)
0.0143460 + 0.999897i \(0.495433\pi\)
\(734\) 0 0
\(735\) −691.546 −0.0347048
\(736\) 0 0
\(737\) −30370.6 −1.51793
\(738\) 0 0
\(739\) −6590.88 −0.328078 −0.164039 0.986454i \(-0.552452\pi\)
−0.164039 + 0.986454i \(0.552452\pi\)
\(740\) 0 0
\(741\) −568.577 −0.0281879
\(742\) 0 0
\(743\) 31525.6 1.55661 0.778305 0.627887i \(-0.216080\pi\)
0.778305 + 0.627887i \(0.216080\pi\)
\(744\) 0 0
\(745\) 453.572 0.0223055
\(746\) 0 0
\(747\) 2458.17 0.120401
\(748\) 0 0
\(749\) −1043.31 −0.0508969
\(750\) 0 0
\(751\) 28931.0 1.40573 0.702867 0.711321i \(-0.251903\pi\)
0.702867 + 0.711321i \(0.251903\pi\)
\(752\) 0 0
\(753\) −1224.18 −0.0592451
\(754\) 0 0
\(755\) 6431.95 0.310043
\(756\) 0 0
\(757\) −11377.9 −0.546284 −0.273142 0.961974i \(-0.588063\pi\)
−0.273142 + 0.961974i \(0.588063\pi\)
\(758\) 0 0
\(759\) −923.841 −0.0441809
\(760\) 0 0
\(761\) −8236.18 −0.392328 −0.196164 0.980571i \(-0.562848\pi\)
−0.196164 + 0.980571i \(0.562848\pi\)
\(762\) 0 0
\(763\) 105.420 0.00500190
\(764\) 0 0
\(765\) 5194.22 0.245487
\(766\) 0 0
\(767\) −32793.4 −1.54381
\(768\) 0 0
\(769\) 11253.6 0.527719 0.263860 0.964561i \(-0.415004\pi\)
0.263860 + 0.964561i \(0.415004\pi\)
\(770\) 0 0
\(771\) 4283.82 0.200101
\(772\) 0 0
\(773\) 10650.2 0.495553 0.247776 0.968817i \(-0.420300\pi\)
0.247776 + 0.968817i \(0.420300\pi\)
\(774\) 0 0
\(775\) 9980.04 0.462572
\(776\) 0 0
\(777\) 108.667 0.00501727
\(778\) 0 0
\(779\) 5752.30 0.264567
\(780\) 0 0
\(781\) 30926.2 1.41693
\(782\) 0 0
\(783\) −11049.0 −0.504290
\(784\) 0 0
\(785\) 3873.31 0.176107
\(786\) 0 0
\(787\) −23276.3 −1.05427 −0.527136 0.849781i \(-0.676734\pi\)
−0.527136 + 0.849781i \(0.676734\pi\)
\(788\) 0 0
\(789\) −5084.97 −0.229442
\(790\) 0 0
\(791\) −320.924 −0.0144257
\(792\) 0 0
\(793\) 912.769 0.0408744
\(794\) 0 0
\(795\) 1287.63 0.0574435
\(796\) 0 0
\(797\) 2322.42 0.103217 0.0516087 0.998667i \(-0.483565\pi\)
0.0516087 + 0.998667i \(0.483565\pi\)
\(798\) 0 0
\(799\) −14551.3 −0.644289
\(800\) 0 0
\(801\) −7609.23 −0.335654
\(802\) 0 0
\(803\) −14648.1 −0.643736
\(804\) 0 0
\(805\) 30.1493 0.00132003
\(806\) 0 0
\(807\) 4353.39 0.189897
\(808\) 0 0
\(809\) 10930.5 0.475024 0.237512 0.971385i \(-0.423668\pi\)
0.237512 + 0.971385i \(0.423668\pi\)
\(810\) 0 0
\(811\) −3850.82 −0.166733 −0.0833667 0.996519i \(-0.526567\pi\)
−0.0833667 + 0.996519i \(0.526567\pi\)
\(812\) 0 0
\(813\) −5858.19 −0.252713
\(814\) 0 0
\(815\) −5522.48 −0.237355
\(816\) 0 0
\(817\) 1260.76 0.0539882
\(818\) 0 0
\(819\) 611.701 0.0260984
\(820\) 0 0
\(821\) −6360.26 −0.270371 −0.135186 0.990820i \(-0.543163\pi\)
−0.135186 + 0.990820i \(0.543163\pi\)
\(822\) 0 0
\(823\) −22339.4 −0.946178 −0.473089 0.881015i \(-0.656861\pi\)
−0.473089 + 0.881015i \(0.656861\pi\)
\(824\) 0 0
\(825\) 4824.00 0.203576
\(826\) 0 0
\(827\) 40000.1 1.68191 0.840955 0.541106i \(-0.181994\pi\)
0.840955 + 0.541106i \(0.181994\pi\)
\(828\) 0 0
\(829\) 27206.2 1.13982 0.569910 0.821707i \(-0.306978\pi\)
0.569910 + 0.821707i \(0.306978\pi\)
\(830\) 0 0
\(831\) 2085.56 0.0870605
\(832\) 0 0
\(833\) 30719.6 1.27776
\(834\) 0 0
\(835\) −1373.35 −0.0569181
\(836\) 0 0
\(837\) 4027.70 0.166329
\(838\) 0 0
\(839\) −30155.3 −1.24086 −0.620428 0.784264i \(-0.713041\pi\)
−0.620428 + 0.784264i \(0.713041\pi\)
\(840\) 0 0
\(841\) 27577.3 1.13073
\(842\) 0 0
\(843\) −7205.85 −0.294404
\(844\) 0 0
\(845\) −1413.33 −0.0575383
\(846\) 0 0
\(847\) 361.451 0.0146630
\(848\) 0 0
\(849\) −3531.40 −0.142753
\(850\) 0 0
\(851\) 4630.65 0.186529
\(852\) 0 0
\(853\) 18469.2 0.741354 0.370677 0.928762i \(-0.379126\pi\)
0.370677 + 0.928762i \(0.379126\pi\)
\(854\) 0 0
\(855\) −915.312 −0.0366117
\(856\) 0 0
\(857\) −32360.5 −1.28986 −0.644932 0.764240i \(-0.723114\pi\)
−0.644932 + 0.764240i \(0.723114\pi\)
\(858\) 0 0
\(859\) 36501.0 1.44982 0.724911 0.688843i \(-0.241881\pi\)
0.724911 + 0.688843i \(0.241881\pi\)
\(860\) 0 0
\(861\) 196.522 0.00777870
\(862\) 0 0
\(863\) 708.078 0.0279296 0.0139648 0.999902i \(-0.495555\pi\)
0.0139648 + 0.999902i \(0.495555\pi\)
\(864\) 0 0
\(865\) 1117.09 0.0439099
\(866\) 0 0
\(867\) 2848.47 0.111579
\(868\) 0 0
\(869\) −9175.72 −0.358188
\(870\) 0 0
\(871\) −27211.9 −1.05860
\(872\) 0 0
\(873\) −18875.4 −0.731769
\(874\) 0 0
\(875\) −321.284 −0.0124130
\(876\) 0 0
\(877\) −12368.7 −0.476237 −0.238119 0.971236i \(-0.576531\pi\)
−0.238119 + 0.971236i \(0.576531\pi\)
\(878\) 0 0
\(879\) 7686.80 0.294959
\(880\) 0 0
\(881\) 27775.3 1.06217 0.531086 0.847318i \(-0.321784\pi\)
0.531086 + 0.847318i \(0.321784\pi\)
\(882\) 0 0
\(883\) 16798.0 0.640202 0.320101 0.947383i \(-0.396283\pi\)
0.320101 + 0.947383i \(0.396283\pi\)
\(884\) 0 0
\(885\) 1676.43 0.0636754
\(886\) 0 0
\(887\) −20731.8 −0.784786 −0.392393 0.919798i \(-0.628353\pi\)
−0.392393 + 0.919798i \(0.628353\pi\)
\(888\) 0 0
\(889\) 163.492 0.00616800
\(890\) 0 0
\(891\) −29185.8 −1.09738
\(892\) 0 0
\(893\) 2564.19 0.0960888
\(894\) 0 0
\(895\) −6715.25 −0.250800
\(896\) 0 0
\(897\) −827.756 −0.0308116
\(898\) 0 0
\(899\) −18943.3 −0.702775
\(900\) 0 0
\(901\) −57198.7 −2.11494
\(902\) 0 0
\(903\) 43.0727 0.00158734
\(904\) 0 0
\(905\) 1007.93 0.0370217
\(906\) 0 0
\(907\) 3295.84 0.120658 0.0603289 0.998179i \(-0.480785\pi\)
0.0603289 + 0.998179i \(0.480785\pi\)
\(908\) 0 0
\(909\) −4979.23 −0.181684
\(910\) 0 0
\(911\) 43398.7 1.57834 0.789168 0.614178i \(-0.210512\pi\)
0.789168 + 0.614178i \(0.210512\pi\)
\(912\) 0 0
\(913\) 4138.95 0.150032
\(914\) 0 0
\(915\) −46.6617 −0.00168589
\(916\) 0 0
\(917\) −1465.74 −0.0527841
\(918\) 0 0
\(919\) −6085.18 −0.218424 −0.109212 0.994018i \(-0.534833\pi\)
−0.109212 + 0.994018i \(0.534833\pi\)
\(920\) 0 0
\(921\) 8515.56 0.304666
\(922\) 0 0
\(923\) 27709.7 0.988164
\(924\) 0 0
\(925\) −24179.7 −0.859486
\(926\) 0 0
\(927\) 39993.6 1.41700
\(928\) 0 0
\(929\) −2445.73 −0.0863745 −0.0431872 0.999067i \(-0.513751\pi\)
−0.0431872 + 0.999067i \(0.513751\pi\)
\(930\) 0 0
\(931\) −5413.33 −0.190564
\(932\) 0 0
\(933\) −4455.95 −0.156357
\(934\) 0 0
\(935\) 8745.79 0.305901
\(936\) 0 0
\(937\) −31333.5 −1.09244 −0.546222 0.837641i \(-0.683934\pi\)
−0.546222 + 0.837641i \(0.683934\pi\)
\(938\) 0 0
\(939\) 5773.50 0.200651
\(940\) 0 0
\(941\) −6917.40 −0.239640 −0.119820 0.992796i \(-0.538232\pi\)
−0.119820 + 0.992796i \(0.538232\pi\)
\(942\) 0 0
\(943\) 8374.41 0.289192
\(944\) 0 0
\(945\) −63.5347 −0.00218707
\(946\) 0 0
\(947\) 14798.9 0.507814 0.253907 0.967229i \(-0.418284\pi\)
0.253907 + 0.967229i \(0.418284\pi\)
\(948\) 0 0
\(949\) −13124.6 −0.448939
\(950\) 0 0
\(951\) 4813.06 0.164116
\(952\) 0 0
\(953\) 27008.8 0.918049 0.459024 0.888424i \(-0.348199\pi\)
0.459024 + 0.888424i \(0.348199\pi\)
\(954\) 0 0
\(955\) 7153.85 0.242401
\(956\) 0 0
\(957\) −9156.52 −0.309288
\(958\) 0 0
\(959\) 22.3729 0.000753345 0
\(960\) 0 0
\(961\) −22885.6 −0.768205
\(962\) 0 0
\(963\) 46112.6 1.54305
\(964\) 0 0
\(965\) 4618.05 0.154052
\(966\) 0 0
\(967\) −30982.1 −1.03032 −0.515158 0.857095i \(-0.672267\pi\)
−0.515158 + 0.857095i \(0.672267\pi\)
\(968\) 0 0
\(969\) −1291.17 −0.0428054
\(970\) 0 0
\(971\) −11197.3 −0.370070 −0.185035 0.982732i \(-0.559240\pi\)
−0.185035 + 0.982732i \(0.559240\pi\)
\(972\) 0 0
\(973\) 577.332 0.0190220
\(974\) 0 0
\(975\) 4322.27 0.141973
\(976\) 0 0
\(977\) 35631.1 1.16678 0.583388 0.812194i \(-0.301727\pi\)
0.583388 + 0.812194i \(0.301727\pi\)
\(978\) 0 0
\(979\) −12812.1 −0.418259
\(980\) 0 0
\(981\) −4659.38 −0.151644
\(982\) 0 0
\(983\) −59201.0 −1.92087 −0.960437 0.278497i \(-0.910164\pi\)
−0.960437 + 0.278497i \(0.910164\pi\)
\(984\) 0 0
\(985\) 2717.78 0.0879145
\(986\) 0 0
\(987\) 87.6032 0.00282517
\(988\) 0 0
\(989\) 1835.46 0.0590133
\(990\) 0 0
\(991\) 49053.2 1.57238 0.786189 0.617986i \(-0.212051\pi\)
0.786189 + 0.617986i \(0.212051\pi\)
\(992\) 0 0
\(993\) 475.337 0.0151907
\(994\) 0 0
\(995\) −356.118 −0.0113464
\(996\) 0 0
\(997\) 58201.2 1.84880 0.924399 0.381428i \(-0.124567\pi\)
0.924399 + 0.381428i \(0.124567\pi\)
\(998\) 0 0
\(999\) −9758.34 −0.309049
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.4.a.bd.1.3 4
4.3 odd 2 1472.4.a.ba.1.2 4
8.3 odd 2 184.4.a.e.1.3 4
8.5 even 2 368.4.a.n.1.2 4
24.11 even 2 1656.4.a.n.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
184.4.a.e.1.3 4 8.3 odd 2
368.4.a.n.1.2 4 8.5 even 2
1472.4.a.ba.1.2 4 4.3 odd 2
1472.4.a.bd.1.3 4 1.1 even 1 trivial
1656.4.a.n.1.2 4 24.11 even 2