Properties

Label 1472.4.a.bd.1.1
Level $1472$
Weight $4$
Character 1472.1
Self dual yes
Analytic conductor $86.851$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1472,4,Mod(1,1472)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1472.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1472, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,1,0,20,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.8508115285\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.167313.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 16x^{2} + 4x + 24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 184)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.19877\) of defining polynomial
Character \(\chi\) \(=\) 1472.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.81151 q^{3} +3.75144 q^{5} -31.3950 q^{7} +34.0197 q^{9} +11.5069 q^{11} +48.7341 q^{13} -29.3045 q^{15} -46.4231 q^{17} -77.9077 q^{19} +245.243 q^{21} +23.0000 q^{23} -110.927 q^{25} -54.8345 q^{27} +213.000 q^{29} -207.799 q^{31} -89.8865 q^{33} -117.777 q^{35} -197.651 q^{37} -380.687 q^{39} -383.696 q^{41} -437.399 q^{43} +127.623 q^{45} +156.104 q^{47} +642.648 q^{49} +362.634 q^{51} -12.0337 q^{53} +43.1676 q^{55} +608.577 q^{57} -559.360 q^{59} +37.7365 q^{61} -1068.05 q^{63} +182.823 q^{65} -30.4246 q^{67} -179.665 q^{69} +398.612 q^{71} -877.484 q^{73} +866.505 q^{75} -361.260 q^{77} -632.926 q^{79} -490.192 q^{81} +622.703 q^{83} -174.154 q^{85} -1663.85 q^{87} -780.748 q^{89} -1530.01 q^{91} +1623.23 q^{93} -292.267 q^{95} +964.791 q^{97} +391.462 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} + 20 q^{5} + 10 q^{7} + 23 q^{9} - 30 q^{11} + 153 q^{13} + 136 q^{15} - 68 q^{17} - 120 q^{19} + 426 q^{21} + 92 q^{23} - 76 q^{25} + 43 q^{27} + 315 q^{29} - 249 q^{31} - 504 q^{33} + 224 q^{35}+ \cdots - 1470 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −7.81151 −1.50333 −0.751663 0.659547i \(-0.770748\pi\)
−0.751663 + 0.659547i \(0.770748\pi\)
\(4\) 0 0
\(5\) 3.75144 0.335539 0.167770 0.985826i \(-0.446343\pi\)
0.167770 + 0.985826i \(0.446343\pi\)
\(6\) 0 0
\(7\) −31.3950 −1.69517 −0.847586 0.530658i \(-0.821945\pi\)
−0.847586 + 0.530658i \(0.821945\pi\)
\(8\) 0 0
\(9\) 34.0197 1.25999
\(10\) 0 0
\(11\) 11.5069 0.315406 0.157703 0.987487i \(-0.449591\pi\)
0.157703 + 0.987487i \(0.449591\pi\)
\(12\) 0 0
\(13\) 48.7341 1.03972 0.519862 0.854251i \(-0.325984\pi\)
0.519862 + 0.854251i \(0.325984\pi\)
\(14\) 0 0
\(15\) −29.3045 −0.504425
\(16\) 0 0
\(17\) −46.4231 −0.662309 −0.331154 0.943577i \(-0.607438\pi\)
−0.331154 + 0.943577i \(0.607438\pi\)
\(18\) 0 0
\(19\) −77.9077 −0.940698 −0.470349 0.882481i \(-0.655872\pi\)
−0.470349 + 0.882481i \(0.655872\pi\)
\(20\) 0 0
\(21\) 245.243 2.54840
\(22\) 0 0
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) −110.927 −0.887413
\(26\) 0 0
\(27\) −54.8345 −0.390849
\(28\) 0 0
\(29\) 213.000 1.36390 0.681950 0.731399i \(-0.261132\pi\)
0.681950 + 0.731399i \(0.261132\pi\)
\(30\) 0 0
\(31\) −207.799 −1.20393 −0.601965 0.798522i \(-0.705615\pi\)
−0.601965 + 0.798522i \(0.705615\pi\)
\(32\) 0 0
\(33\) −89.8865 −0.474158
\(34\) 0 0
\(35\) −117.777 −0.568797
\(36\) 0 0
\(37\) −197.651 −0.878204 −0.439102 0.898437i \(-0.644703\pi\)
−0.439102 + 0.898437i \(0.644703\pi\)
\(38\) 0 0
\(39\) −380.687 −1.56304
\(40\) 0 0
\(41\) −383.696 −1.46154 −0.730771 0.682623i \(-0.760839\pi\)
−0.730771 + 0.682623i \(0.760839\pi\)
\(42\) 0 0
\(43\) −437.399 −1.55123 −0.775613 0.631209i \(-0.782559\pi\)
−0.775613 + 0.631209i \(0.782559\pi\)
\(44\) 0 0
\(45\) 127.623 0.422776
\(46\) 0 0
\(47\) 156.104 0.484470 0.242235 0.970218i \(-0.422120\pi\)
0.242235 + 0.970218i \(0.422120\pi\)
\(48\) 0 0
\(49\) 642.648 1.87361
\(50\) 0 0
\(51\) 362.634 0.995666
\(52\) 0 0
\(53\) −12.0337 −0.0311879 −0.0155939 0.999878i \(-0.504964\pi\)
−0.0155939 + 0.999878i \(0.504964\pi\)
\(54\) 0 0
\(55\) 43.1676 0.105831
\(56\) 0 0
\(57\) 608.577 1.41418
\(58\) 0 0
\(59\) −559.360 −1.23428 −0.617140 0.786854i \(-0.711709\pi\)
−0.617140 + 0.786854i \(0.711709\pi\)
\(60\) 0 0
\(61\) 37.7365 0.0792075 0.0396037 0.999215i \(-0.487390\pi\)
0.0396037 + 0.999215i \(0.487390\pi\)
\(62\) 0 0
\(63\) −1068.05 −2.13590
\(64\) 0 0
\(65\) 182.823 0.348868
\(66\) 0 0
\(67\) −30.4246 −0.0554771 −0.0277385 0.999615i \(-0.508831\pi\)
−0.0277385 + 0.999615i \(0.508831\pi\)
\(68\) 0 0
\(69\) −179.665 −0.313465
\(70\) 0 0
\(71\) 398.612 0.666290 0.333145 0.942876i \(-0.391890\pi\)
0.333145 + 0.942876i \(0.391890\pi\)
\(72\) 0 0
\(73\) −877.484 −1.40687 −0.703436 0.710758i \(-0.748352\pi\)
−0.703436 + 0.710758i \(0.748352\pi\)
\(74\) 0 0
\(75\) 866.505 1.33407
\(76\) 0 0
\(77\) −361.260 −0.534668
\(78\) 0 0
\(79\) −632.926 −0.901389 −0.450694 0.892678i \(-0.648824\pi\)
−0.450694 + 0.892678i \(0.648824\pi\)
\(80\) 0 0
\(81\) −490.192 −0.672416
\(82\) 0 0
\(83\) 622.703 0.823501 0.411750 0.911297i \(-0.364918\pi\)
0.411750 + 0.911297i \(0.364918\pi\)
\(84\) 0 0
\(85\) −174.154 −0.222231
\(86\) 0 0
\(87\) −1663.85 −2.05039
\(88\) 0 0
\(89\) −780.748 −0.929878 −0.464939 0.885343i \(-0.653924\pi\)
−0.464939 + 0.885343i \(0.653924\pi\)
\(90\) 0 0
\(91\) −1530.01 −1.76251
\(92\) 0 0
\(93\) 1623.23 1.80990
\(94\) 0 0
\(95\) −292.267 −0.315641
\(96\) 0 0
\(97\) 964.791 1.00989 0.504947 0.863150i \(-0.331512\pi\)
0.504947 + 0.863150i \(0.331512\pi\)
\(98\) 0 0
\(99\) 391.462 0.397408
\(100\) 0 0
\(101\) 913.863 0.900324 0.450162 0.892947i \(-0.351366\pi\)
0.450162 + 0.892947i \(0.351366\pi\)
\(102\) 0 0
\(103\) 1233.53 1.18004 0.590018 0.807390i \(-0.299121\pi\)
0.590018 + 0.807390i \(0.299121\pi\)
\(104\) 0 0
\(105\) 920.014 0.855087
\(106\) 0 0
\(107\) 638.848 0.577194 0.288597 0.957451i \(-0.406811\pi\)
0.288597 + 0.957451i \(0.406811\pi\)
\(108\) 0 0
\(109\) −1851.20 −1.62672 −0.813361 0.581760i \(-0.802364\pi\)
−0.813361 + 0.581760i \(0.802364\pi\)
\(110\) 0 0
\(111\) 1543.95 1.32023
\(112\) 0 0
\(113\) 1159.21 0.965042 0.482521 0.875885i \(-0.339721\pi\)
0.482521 + 0.875885i \(0.339721\pi\)
\(114\) 0 0
\(115\) 86.2832 0.0699648
\(116\) 0 0
\(117\) 1657.92 1.31004
\(118\) 0 0
\(119\) 1457.45 1.12273
\(120\) 0 0
\(121\) −1198.59 −0.900519
\(122\) 0 0
\(123\) 2997.24 2.19717
\(124\) 0 0
\(125\) −885.066 −0.633302
\(126\) 0 0
\(127\) −2524.72 −1.76404 −0.882020 0.471212i \(-0.843817\pi\)
−0.882020 + 0.471212i \(0.843817\pi\)
\(128\) 0 0
\(129\) 3416.75 2.33200
\(130\) 0 0
\(131\) −399.064 −0.266156 −0.133078 0.991106i \(-0.542486\pi\)
−0.133078 + 0.991106i \(0.542486\pi\)
\(132\) 0 0
\(133\) 2445.92 1.59464
\(134\) 0 0
\(135\) −205.709 −0.131145
\(136\) 0 0
\(137\) 728.680 0.454418 0.227209 0.973846i \(-0.427040\pi\)
0.227209 + 0.973846i \(0.427040\pi\)
\(138\) 0 0
\(139\) −1142.70 −0.697283 −0.348642 0.937256i \(-0.613357\pi\)
−0.348642 + 0.937256i \(0.613357\pi\)
\(140\) 0 0
\(141\) −1219.41 −0.728316
\(142\) 0 0
\(143\) 560.779 0.327935
\(144\) 0 0
\(145\) 799.058 0.457642
\(146\) 0 0
\(147\) −5020.05 −2.81664
\(148\) 0 0
\(149\) −640.678 −0.352258 −0.176129 0.984367i \(-0.556358\pi\)
−0.176129 + 0.984367i \(0.556358\pi\)
\(150\) 0 0
\(151\) −39.3746 −0.0212203 −0.0106101 0.999944i \(-0.503377\pi\)
−0.0106101 + 0.999944i \(0.503377\pi\)
\(152\) 0 0
\(153\) −1579.30 −0.834502
\(154\) 0 0
\(155\) −779.547 −0.403966
\(156\) 0 0
\(157\) 3500.50 1.77943 0.889715 0.456517i \(-0.150903\pi\)
0.889715 + 0.456517i \(0.150903\pi\)
\(158\) 0 0
\(159\) 94.0015 0.0468856
\(160\) 0 0
\(161\) −722.086 −0.353468
\(162\) 0 0
\(163\) 2831.67 1.36069 0.680347 0.732890i \(-0.261829\pi\)
0.680347 + 0.732890i \(0.261829\pi\)
\(164\) 0 0
\(165\) −337.204 −0.159099
\(166\) 0 0
\(167\) 3956.82 1.83346 0.916730 0.399508i \(-0.130819\pi\)
0.916730 + 0.399508i \(0.130819\pi\)
\(168\) 0 0
\(169\) 178.010 0.0810239
\(170\) 0 0
\(171\) −2650.40 −1.18527
\(172\) 0 0
\(173\) 3074.04 1.35095 0.675477 0.737381i \(-0.263938\pi\)
0.675477 + 0.737381i \(0.263938\pi\)
\(174\) 0 0
\(175\) 3482.55 1.50432
\(176\) 0 0
\(177\) 4369.45 1.85552
\(178\) 0 0
\(179\) −2236.25 −0.933773 −0.466887 0.884317i \(-0.654624\pi\)
−0.466887 + 0.884317i \(0.654624\pi\)
\(180\) 0 0
\(181\) −1496.39 −0.614506 −0.307253 0.951628i \(-0.599410\pi\)
−0.307253 + 0.951628i \(0.599410\pi\)
\(182\) 0 0
\(183\) −294.779 −0.119075
\(184\) 0 0
\(185\) −741.475 −0.294672
\(186\) 0 0
\(187\) −534.187 −0.208896
\(188\) 0 0
\(189\) 1721.53 0.662555
\(190\) 0 0
\(191\) 4891.23 1.85297 0.926485 0.376333i \(-0.122815\pi\)
0.926485 + 0.376333i \(0.122815\pi\)
\(192\) 0 0
\(193\) 2496.29 0.931020 0.465510 0.885043i \(-0.345871\pi\)
0.465510 + 0.885043i \(0.345871\pi\)
\(194\) 0 0
\(195\) −1428.13 −0.524462
\(196\) 0 0
\(197\) −3009.45 −1.08840 −0.544198 0.838957i \(-0.683166\pi\)
−0.544198 + 0.838957i \(0.683166\pi\)
\(198\) 0 0
\(199\) −4856.74 −1.73008 −0.865039 0.501705i \(-0.832706\pi\)
−0.865039 + 0.501705i \(0.832706\pi\)
\(200\) 0 0
\(201\) 237.662 0.0834001
\(202\) 0 0
\(203\) −6687.14 −2.31205
\(204\) 0 0
\(205\) −1439.41 −0.490405
\(206\) 0 0
\(207\) 782.453 0.262726
\(208\) 0 0
\(209\) −896.478 −0.296702
\(210\) 0 0
\(211\) 747.857 0.244003 0.122001 0.992530i \(-0.461069\pi\)
0.122001 + 0.992530i \(0.461069\pi\)
\(212\) 0 0
\(213\) −3113.76 −1.00165
\(214\) 0 0
\(215\) −1640.88 −0.520497
\(216\) 0 0
\(217\) 6523.86 2.04087
\(218\) 0 0
\(219\) 6854.47 2.11499
\(220\) 0 0
\(221\) −2262.38 −0.688617
\(222\) 0 0
\(223\) −3721.68 −1.11759 −0.558794 0.829306i \(-0.688736\pi\)
−0.558794 + 0.829306i \(0.688736\pi\)
\(224\) 0 0
\(225\) −3773.69 −1.11813
\(226\) 0 0
\(227\) 5991.25 1.75178 0.875888 0.482514i \(-0.160276\pi\)
0.875888 + 0.482514i \(0.160276\pi\)
\(228\) 0 0
\(229\) 2389.83 0.689627 0.344813 0.938671i \(-0.387942\pi\)
0.344813 + 0.938671i \(0.387942\pi\)
\(230\) 0 0
\(231\) 2821.99 0.803780
\(232\) 0 0
\(233\) −2345.92 −0.659597 −0.329799 0.944051i \(-0.606981\pi\)
−0.329799 + 0.944051i \(0.606981\pi\)
\(234\) 0 0
\(235\) 585.615 0.162559
\(236\) 0 0
\(237\) 4944.11 1.35508
\(238\) 0 0
\(239\) 4849.51 1.31251 0.656253 0.754541i \(-0.272140\pi\)
0.656253 + 0.754541i \(0.272140\pi\)
\(240\) 0 0
\(241\) 3746.89 1.00149 0.500743 0.865596i \(-0.333060\pi\)
0.500743 + 0.865596i \(0.333060\pi\)
\(242\) 0 0
\(243\) 5309.67 1.40171
\(244\) 0 0
\(245\) 2410.86 0.628669
\(246\) 0 0
\(247\) −3796.76 −0.978065
\(248\) 0 0
\(249\) −4864.25 −1.23799
\(250\) 0 0
\(251\) 5670.90 1.42607 0.713036 0.701127i \(-0.247320\pi\)
0.713036 + 0.701127i \(0.247320\pi\)
\(252\) 0 0
\(253\) 264.659 0.0657667
\(254\) 0 0
\(255\) 1360.40 0.334085
\(256\) 0 0
\(257\) 4028.82 0.977864 0.488932 0.872322i \(-0.337387\pi\)
0.488932 + 0.872322i \(0.337387\pi\)
\(258\) 0 0
\(259\) 6205.25 1.48871
\(260\) 0 0
\(261\) 7246.20 1.71850
\(262\) 0 0
\(263\) −6801.68 −1.59471 −0.797357 0.603508i \(-0.793769\pi\)
−0.797357 + 0.603508i \(0.793769\pi\)
\(264\) 0 0
\(265\) −45.1438 −0.0104648
\(266\) 0 0
\(267\) 6098.82 1.39791
\(268\) 0 0
\(269\) 1840.94 0.417263 0.208632 0.977994i \(-0.433099\pi\)
0.208632 + 0.977994i \(0.433099\pi\)
\(270\) 0 0
\(271\) 5021.45 1.12558 0.562789 0.826601i \(-0.309728\pi\)
0.562789 + 0.826601i \(0.309728\pi\)
\(272\) 0 0
\(273\) 11951.7 2.64963
\(274\) 0 0
\(275\) −1276.42 −0.279896
\(276\) 0 0
\(277\) −959.651 −0.208158 −0.104079 0.994569i \(-0.533190\pi\)
−0.104079 + 0.994569i \(0.533190\pi\)
\(278\) 0 0
\(279\) −7069.27 −1.51694
\(280\) 0 0
\(281\) 3635.74 0.771851 0.385925 0.922530i \(-0.373882\pi\)
0.385925 + 0.922530i \(0.373882\pi\)
\(282\) 0 0
\(283\) 3294.45 0.691996 0.345998 0.938235i \(-0.387540\pi\)
0.345998 + 0.938235i \(0.387540\pi\)
\(284\) 0 0
\(285\) 2283.04 0.474512
\(286\) 0 0
\(287\) 12046.1 2.47756
\(288\) 0 0
\(289\) −2757.90 −0.561347
\(290\) 0 0
\(291\) −7536.48 −1.51820
\(292\) 0 0
\(293\) 713.186 0.142200 0.0711002 0.997469i \(-0.477349\pi\)
0.0711002 + 0.997469i \(0.477349\pi\)
\(294\) 0 0
\(295\) −2098.41 −0.414149
\(296\) 0 0
\(297\) −630.977 −0.123276
\(298\) 0 0
\(299\) 1120.88 0.216797
\(300\) 0 0
\(301\) 13732.1 2.62959
\(302\) 0 0
\(303\) −7138.65 −1.35348
\(304\) 0 0
\(305\) 141.566 0.0265772
\(306\) 0 0
\(307\) 1588.95 0.295395 0.147697 0.989033i \(-0.452814\pi\)
0.147697 + 0.989033i \(0.452814\pi\)
\(308\) 0 0
\(309\) −9635.76 −1.77398
\(310\) 0 0
\(311\) 2724.74 0.496804 0.248402 0.968657i \(-0.420095\pi\)
0.248402 + 0.968657i \(0.420095\pi\)
\(312\) 0 0
\(313\) −3641.80 −0.657656 −0.328828 0.944390i \(-0.606654\pi\)
−0.328828 + 0.944390i \(0.606654\pi\)
\(314\) 0 0
\(315\) −4006.73 −0.716678
\(316\) 0 0
\(317\) 9030.62 1.60003 0.800016 0.599978i \(-0.204824\pi\)
0.800016 + 0.599978i \(0.204824\pi\)
\(318\) 0 0
\(319\) 2450.97 0.430182
\(320\) 0 0
\(321\) −4990.37 −0.867711
\(322\) 0 0
\(323\) 3616.72 0.623032
\(324\) 0 0
\(325\) −5405.91 −0.922664
\(326\) 0 0
\(327\) 14460.7 2.44549
\(328\) 0 0
\(329\) −4900.88 −0.821259
\(330\) 0 0
\(331\) −4751.67 −0.789049 −0.394525 0.918885i \(-0.629091\pi\)
−0.394525 + 0.918885i \(0.629091\pi\)
\(332\) 0 0
\(333\) −6724.02 −1.10653
\(334\) 0 0
\(335\) −114.136 −0.0186147
\(336\) 0 0
\(337\) 3159.87 0.510769 0.255384 0.966840i \(-0.417798\pi\)
0.255384 + 0.966840i \(0.417798\pi\)
\(338\) 0 0
\(339\) −9055.21 −1.45077
\(340\) 0 0
\(341\) −2391.13 −0.379727
\(342\) 0 0
\(343\) −9407.44 −1.48092
\(344\) 0 0
\(345\) −674.002 −0.105180
\(346\) 0 0
\(347\) 6117.73 0.946446 0.473223 0.880943i \(-0.343090\pi\)
0.473223 + 0.880943i \(0.343090\pi\)
\(348\) 0 0
\(349\) 4063.16 0.623198 0.311599 0.950214i \(-0.399135\pi\)
0.311599 + 0.950214i \(0.399135\pi\)
\(350\) 0 0
\(351\) −2672.31 −0.406374
\(352\) 0 0
\(353\) 6253.73 0.942925 0.471462 0.881886i \(-0.343726\pi\)
0.471462 + 0.881886i \(0.343726\pi\)
\(354\) 0 0
\(355\) 1495.37 0.223566
\(356\) 0 0
\(357\) −11384.9 −1.68782
\(358\) 0 0
\(359\) 631.825 0.0928871 0.0464436 0.998921i \(-0.485211\pi\)
0.0464436 + 0.998921i \(0.485211\pi\)
\(360\) 0 0
\(361\) −789.386 −0.115088
\(362\) 0 0
\(363\) 9362.80 1.35377
\(364\) 0 0
\(365\) −3291.83 −0.472061
\(366\) 0 0
\(367\) −11790.6 −1.67702 −0.838510 0.544886i \(-0.816573\pi\)
−0.838510 + 0.544886i \(0.816573\pi\)
\(368\) 0 0
\(369\) −13053.2 −1.84153
\(370\) 0 0
\(371\) 377.799 0.0528688
\(372\) 0 0
\(373\) −270.355 −0.0375294 −0.0187647 0.999824i \(-0.505973\pi\)
−0.0187647 + 0.999824i \(0.505973\pi\)
\(374\) 0 0
\(375\) 6913.70 0.952059
\(376\) 0 0
\(377\) 10380.4 1.41808
\(378\) 0 0
\(379\) 2658.36 0.360293 0.180146 0.983640i \(-0.442343\pi\)
0.180146 + 0.983640i \(0.442343\pi\)
\(380\) 0 0
\(381\) 19721.9 2.65193
\(382\) 0 0
\(383\) −1697.17 −0.226426 −0.113213 0.993571i \(-0.536114\pi\)
−0.113213 + 0.993571i \(0.536114\pi\)
\(384\) 0 0
\(385\) −1355.25 −0.179402
\(386\) 0 0
\(387\) −14880.2 −1.95453
\(388\) 0 0
\(389\) 11725.4 1.52828 0.764142 0.645048i \(-0.223163\pi\)
0.764142 + 0.645048i \(0.223163\pi\)
\(390\) 0 0
\(391\) −1067.73 −0.138101
\(392\) 0 0
\(393\) 3117.29 0.400119
\(394\) 0 0
\(395\) −2374.39 −0.302451
\(396\) 0 0
\(397\) −4556.25 −0.576000 −0.288000 0.957630i \(-0.592990\pi\)
−0.288000 + 0.957630i \(0.592990\pi\)
\(398\) 0 0
\(399\) −19106.3 −2.39727
\(400\) 0 0
\(401\) −8709.84 −1.08466 −0.542330 0.840166i \(-0.682458\pi\)
−0.542330 + 0.840166i \(0.682458\pi\)
\(402\) 0 0
\(403\) −10126.9 −1.25175
\(404\) 0 0
\(405\) −1838.93 −0.225622
\(406\) 0 0
\(407\) −2274.35 −0.276991
\(408\) 0 0
\(409\) −10137.7 −1.22561 −0.612805 0.790234i \(-0.709959\pi\)
−0.612805 + 0.790234i \(0.709959\pi\)
\(410\) 0 0
\(411\) −5692.09 −0.683139
\(412\) 0 0
\(413\) 17561.1 2.09232
\(414\) 0 0
\(415\) 2336.04 0.276317
\(416\) 0 0
\(417\) 8926.20 1.04824
\(418\) 0 0
\(419\) −13645.4 −1.59099 −0.795494 0.605962i \(-0.792788\pi\)
−0.795494 + 0.605962i \(0.792788\pi\)
\(420\) 0 0
\(421\) −6845.15 −0.792428 −0.396214 0.918158i \(-0.629676\pi\)
−0.396214 + 0.918158i \(0.629676\pi\)
\(422\) 0 0
\(423\) 5310.60 0.610426
\(424\) 0 0
\(425\) 5149.56 0.587741
\(426\) 0 0
\(427\) −1184.74 −0.134270
\(428\) 0 0
\(429\) −4380.53 −0.492993
\(430\) 0 0
\(431\) 3120.80 0.348778 0.174389 0.984677i \(-0.444205\pi\)
0.174389 + 0.984677i \(0.444205\pi\)
\(432\) 0 0
\(433\) −16153.2 −1.79278 −0.896392 0.443262i \(-0.853821\pi\)
−0.896392 + 0.443262i \(0.853821\pi\)
\(434\) 0 0
\(435\) −6241.85 −0.687985
\(436\) 0 0
\(437\) −1791.88 −0.196149
\(438\) 0 0
\(439\) 2925.81 0.318090 0.159045 0.987271i \(-0.449159\pi\)
0.159045 + 0.987271i \(0.449159\pi\)
\(440\) 0 0
\(441\) 21862.7 2.36073
\(442\) 0 0
\(443\) −10398.5 −1.11523 −0.557615 0.830100i \(-0.688283\pi\)
−0.557615 + 0.830100i \(0.688283\pi\)
\(444\) 0 0
\(445\) −2928.93 −0.312011
\(446\) 0 0
\(447\) 5004.66 0.529558
\(448\) 0 0
\(449\) 14520.4 1.52619 0.763094 0.646288i \(-0.223679\pi\)
0.763094 + 0.646288i \(0.223679\pi\)
\(450\) 0 0
\(451\) −4415.16 −0.460979
\(452\) 0 0
\(453\) 307.575 0.0319010
\(454\) 0 0
\(455\) −5739.74 −0.591391
\(456\) 0 0
\(457\) −10207.9 −1.04487 −0.522435 0.852679i \(-0.674976\pi\)
−0.522435 + 0.852679i \(0.674976\pi\)
\(458\) 0 0
\(459\) 2545.59 0.258862
\(460\) 0 0
\(461\) 745.399 0.0753074 0.0376537 0.999291i \(-0.488012\pi\)
0.0376537 + 0.999291i \(0.488012\pi\)
\(462\) 0 0
\(463\) −6284.87 −0.630848 −0.315424 0.948951i \(-0.602147\pi\)
−0.315424 + 0.948951i \(0.602147\pi\)
\(464\) 0 0
\(465\) 6089.44 0.607293
\(466\) 0 0
\(467\) −16886.2 −1.67324 −0.836619 0.547785i \(-0.815471\pi\)
−0.836619 + 0.547785i \(0.815471\pi\)
\(468\) 0 0
\(469\) 955.183 0.0940431
\(470\) 0 0
\(471\) −27344.2 −2.67506
\(472\) 0 0
\(473\) −5033.11 −0.489266
\(474\) 0 0
\(475\) 8642.04 0.834788
\(476\) 0 0
\(477\) −409.384 −0.0392964
\(478\) 0 0
\(479\) −9966.58 −0.950699 −0.475349 0.879797i \(-0.657678\pi\)
−0.475349 + 0.879797i \(0.657678\pi\)
\(480\) 0 0
\(481\) −9632.32 −0.913089
\(482\) 0 0
\(483\) 5640.58 0.531377
\(484\) 0 0
\(485\) 3619.36 0.338859
\(486\) 0 0
\(487\) −5453.97 −0.507480 −0.253740 0.967272i \(-0.581661\pi\)
−0.253740 + 0.967272i \(0.581661\pi\)
\(488\) 0 0
\(489\) −22119.6 −2.04557
\(490\) 0 0
\(491\) 12259.1 1.12678 0.563389 0.826192i \(-0.309497\pi\)
0.563389 + 0.826192i \(0.309497\pi\)
\(492\) 0 0
\(493\) −9888.11 −0.903323
\(494\) 0 0
\(495\) 1468.55 0.133346
\(496\) 0 0
\(497\) −12514.4 −1.12948
\(498\) 0 0
\(499\) −305.167 −0.0273770 −0.0136885 0.999906i \(-0.504357\pi\)
−0.0136885 + 0.999906i \(0.504357\pi\)
\(500\) 0 0
\(501\) −30908.7 −2.75629
\(502\) 0 0
\(503\) 12300.1 1.09033 0.545163 0.838330i \(-0.316468\pi\)
0.545163 + 0.838330i \(0.316468\pi\)
\(504\) 0 0
\(505\) 3428.31 0.302094
\(506\) 0 0
\(507\) −1390.52 −0.121805
\(508\) 0 0
\(509\) −6855.35 −0.596971 −0.298485 0.954414i \(-0.596481\pi\)
−0.298485 + 0.954414i \(0.596481\pi\)
\(510\) 0 0
\(511\) 27548.6 2.38489
\(512\) 0 0
\(513\) 4272.03 0.367670
\(514\) 0 0
\(515\) 4627.53 0.395948
\(516\) 0 0
\(517\) 1796.27 0.152805
\(518\) 0 0
\(519\) −24012.9 −2.03093
\(520\) 0 0
\(521\) −19811.8 −1.66597 −0.832986 0.553293i \(-0.813371\pi\)
−0.832986 + 0.553293i \(0.813371\pi\)
\(522\) 0 0
\(523\) −154.428 −0.0129114 −0.00645572 0.999979i \(-0.502055\pi\)
−0.00645572 + 0.999979i \(0.502055\pi\)
\(524\) 0 0
\(525\) −27203.9 −2.26148
\(526\) 0 0
\(527\) 9646.67 0.797373
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −19029.3 −1.55518
\(532\) 0 0
\(533\) −18699.0 −1.51960
\(534\) 0 0
\(535\) 2396.60 0.193671
\(536\) 0 0
\(537\) 17468.5 1.40377
\(538\) 0 0
\(539\) 7394.90 0.590948
\(540\) 0 0
\(541\) 6393.60 0.508100 0.254050 0.967191i \(-0.418237\pi\)
0.254050 + 0.967191i \(0.418237\pi\)
\(542\) 0 0
\(543\) 11689.0 0.923802
\(544\) 0 0
\(545\) −6944.67 −0.545829
\(546\) 0 0
\(547\) 23211.0 1.81431 0.907157 0.420793i \(-0.138248\pi\)
0.907157 + 0.420793i \(0.138248\pi\)
\(548\) 0 0
\(549\) 1283.78 0.0998006
\(550\) 0 0
\(551\) −16594.3 −1.28302
\(552\) 0 0
\(553\) 19870.7 1.52801
\(554\) 0 0
\(555\) 5792.04 0.442988
\(556\) 0 0
\(557\) −14698.2 −1.11810 −0.559052 0.829132i \(-0.688835\pi\)
−0.559052 + 0.829132i \(0.688835\pi\)
\(558\) 0 0
\(559\) −21316.2 −1.61284
\(560\) 0 0
\(561\) 4172.80 0.314039
\(562\) 0 0
\(563\) 18682.6 1.39854 0.699271 0.714856i \(-0.253508\pi\)
0.699271 + 0.714856i \(0.253508\pi\)
\(564\) 0 0
\(565\) 4348.73 0.323809
\(566\) 0 0
\(567\) 15389.6 1.13986
\(568\) 0 0
\(569\) −7458.00 −0.549483 −0.274741 0.961518i \(-0.588592\pi\)
−0.274741 + 0.961518i \(0.588592\pi\)
\(570\) 0 0
\(571\) −1508.50 −0.110558 −0.0552792 0.998471i \(-0.517605\pi\)
−0.0552792 + 0.998471i \(0.517605\pi\)
\(572\) 0 0
\(573\) −38207.9 −2.78562
\(574\) 0 0
\(575\) −2551.31 −0.185038
\(576\) 0 0
\(577\) −20029.2 −1.44511 −0.722554 0.691314i \(-0.757032\pi\)
−0.722554 + 0.691314i \(0.757032\pi\)
\(578\) 0 0
\(579\) −19499.8 −1.39963
\(580\) 0 0
\(581\) −19549.8 −1.39598
\(582\) 0 0
\(583\) −138.471 −0.00983685
\(584\) 0 0
\(585\) 6219.59 0.439570
\(586\) 0 0
\(587\) 3763.95 0.264659 0.132330 0.991206i \(-0.457754\pi\)
0.132330 + 0.991206i \(0.457754\pi\)
\(588\) 0 0
\(589\) 16189.2 1.13253
\(590\) 0 0
\(591\) 23508.3 1.63621
\(592\) 0 0
\(593\) 22874.3 1.58404 0.792020 0.610495i \(-0.209029\pi\)
0.792020 + 0.610495i \(0.209029\pi\)
\(594\) 0 0
\(595\) 5467.55 0.376719
\(596\) 0 0
\(597\) 37938.5 2.60087
\(598\) 0 0
\(599\) 10605.7 0.723432 0.361716 0.932288i \(-0.382191\pi\)
0.361716 + 0.932288i \(0.382191\pi\)
\(600\) 0 0
\(601\) 4268.95 0.289740 0.144870 0.989451i \(-0.453724\pi\)
0.144870 + 0.989451i \(0.453724\pi\)
\(602\) 0 0
\(603\) −1035.04 −0.0699005
\(604\) 0 0
\(605\) −4496.45 −0.302160
\(606\) 0 0
\(607\) 16509.1 1.10393 0.551964 0.833868i \(-0.313879\pi\)
0.551964 + 0.833868i \(0.313879\pi\)
\(608\) 0 0
\(609\) 52236.7 3.47576
\(610\) 0 0
\(611\) 7607.57 0.503714
\(612\) 0 0
\(613\) 11429.3 0.753057 0.376529 0.926405i \(-0.377118\pi\)
0.376529 + 0.926405i \(0.377118\pi\)
\(614\) 0 0
\(615\) 11244.0 0.737238
\(616\) 0 0
\(617\) −20123.2 −1.31301 −0.656507 0.754320i \(-0.727967\pi\)
−0.656507 + 0.754320i \(0.727967\pi\)
\(618\) 0 0
\(619\) −16879.9 −1.09606 −0.548028 0.836460i \(-0.684621\pi\)
−0.548028 + 0.836460i \(0.684621\pi\)
\(620\) 0 0
\(621\) −1261.19 −0.0814975
\(622\) 0 0
\(623\) 24511.6 1.57630
\(624\) 0 0
\(625\) 10545.6 0.674916
\(626\) 0 0
\(627\) 7002.85 0.446040
\(628\) 0 0
\(629\) 9175.55 0.581642
\(630\) 0 0
\(631\) −459.538 −0.0289919 −0.0144960 0.999895i \(-0.504614\pi\)
−0.0144960 + 0.999895i \(0.504614\pi\)
\(632\) 0 0
\(633\) −5841.90 −0.366816
\(634\) 0 0
\(635\) −9471.37 −0.591905
\(636\) 0 0
\(637\) 31318.8 1.94803
\(638\) 0 0
\(639\) 13560.7 0.839518
\(640\) 0 0
\(641\) 13339.7 0.821973 0.410986 0.911641i \(-0.365184\pi\)
0.410986 + 0.911641i \(0.365184\pi\)
\(642\) 0 0
\(643\) 23541.6 1.44384 0.721920 0.691976i \(-0.243260\pi\)
0.721920 + 0.691976i \(0.243260\pi\)
\(644\) 0 0
\(645\) 12817.7 0.782477
\(646\) 0 0
\(647\) 24094.0 1.46404 0.732018 0.681285i \(-0.238579\pi\)
0.732018 + 0.681285i \(0.238579\pi\)
\(648\) 0 0
\(649\) −6436.51 −0.389299
\(650\) 0 0
\(651\) −50961.2 −3.06809
\(652\) 0 0
\(653\) −21867.4 −1.31047 −0.655235 0.755425i \(-0.727431\pi\)
−0.655235 + 0.755425i \(0.727431\pi\)
\(654\) 0 0
\(655\) −1497.07 −0.0893057
\(656\) 0 0
\(657\) −29851.7 −1.77264
\(658\) 0 0
\(659\) 10425.9 0.616290 0.308145 0.951339i \(-0.400292\pi\)
0.308145 + 0.951339i \(0.400292\pi\)
\(660\) 0 0
\(661\) −10419.3 −0.613108 −0.306554 0.951853i \(-0.599176\pi\)
−0.306554 + 0.951853i \(0.599176\pi\)
\(662\) 0 0
\(663\) 17672.6 1.03522
\(664\) 0 0
\(665\) 9175.71 0.535066
\(666\) 0 0
\(667\) 4899.00 0.284393
\(668\) 0 0
\(669\) 29072.0 1.68010
\(670\) 0 0
\(671\) 434.230 0.0249825
\(672\) 0 0
\(673\) −30039.8 −1.72058 −0.860289 0.509806i \(-0.829717\pi\)
−0.860289 + 0.509806i \(0.829717\pi\)
\(674\) 0 0
\(675\) 6082.61 0.346844
\(676\) 0 0
\(677\) 5832.80 0.331126 0.165563 0.986199i \(-0.447056\pi\)
0.165563 + 0.986199i \(0.447056\pi\)
\(678\) 0 0
\(679\) −30289.6 −1.71194
\(680\) 0 0
\(681\) −46800.7 −2.63349
\(682\) 0 0
\(683\) 31858.1 1.78480 0.892399 0.451247i \(-0.149021\pi\)
0.892399 + 0.451247i \(0.149021\pi\)
\(684\) 0 0
\(685\) 2733.60 0.152475
\(686\) 0 0
\(687\) −18668.2 −1.03673
\(688\) 0 0
\(689\) −586.452 −0.0324268
\(690\) 0 0
\(691\) 29510.2 1.62463 0.812315 0.583219i \(-0.198207\pi\)
0.812315 + 0.583219i \(0.198207\pi\)
\(692\) 0 0
\(693\) −12290.0 −0.673675
\(694\) 0 0
\(695\) −4286.77 −0.233966
\(696\) 0 0
\(697\) 17812.3 0.967991
\(698\) 0 0
\(699\) 18325.2 0.991590
\(700\) 0 0
\(701\) −24576.4 −1.32416 −0.662082 0.749431i \(-0.730327\pi\)
−0.662082 + 0.749431i \(0.730327\pi\)
\(702\) 0 0
\(703\) 15398.5 0.826125
\(704\) 0 0
\(705\) −4574.53 −0.244379
\(706\) 0 0
\(707\) −28690.7 −1.52620
\(708\) 0 0
\(709\) −5175.41 −0.274142 −0.137071 0.990561i \(-0.543769\pi\)
−0.137071 + 0.990561i \(0.543769\pi\)
\(710\) 0 0
\(711\) −21531.9 −1.13574
\(712\) 0 0
\(713\) −4779.38 −0.251037
\(714\) 0 0
\(715\) 2103.73 0.110035
\(716\) 0 0
\(717\) −37882.0 −1.97312
\(718\) 0 0
\(719\) 8032.65 0.416644 0.208322 0.978060i \(-0.433200\pi\)
0.208322 + 0.978060i \(0.433200\pi\)
\(720\) 0 0
\(721\) −38726.8 −2.00036
\(722\) 0 0
\(723\) −29268.9 −1.50556
\(724\) 0 0
\(725\) −23627.4 −1.21034
\(726\) 0 0
\(727\) 13611.5 0.694393 0.347196 0.937792i \(-0.387134\pi\)
0.347196 + 0.937792i \(0.387134\pi\)
\(728\) 0 0
\(729\) −28241.4 −1.43481
\(730\) 0 0
\(731\) 20305.4 1.02739
\(732\) 0 0
\(733\) 26923.2 1.35666 0.678329 0.734759i \(-0.262705\pi\)
0.678329 + 0.734759i \(0.262705\pi\)
\(734\) 0 0
\(735\) −18832.4 −0.945095
\(736\) 0 0
\(737\) −350.094 −0.0174978
\(738\) 0 0
\(739\) 14164.4 0.705068 0.352534 0.935799i \(-0.385320\pi\)
0.352534 + 0.935799i \(0.385320\pi\)
\(740\) 0 0
\(741\) 29658.4 1.47035
\(742\) 0 0
\(743\) −18114.8 −0.894438 −0.447219 0.894425i \(-0.647585\pi\)
−0.447219 + 0.894425i \(0.647585\pi\)
\(744\) 0 0
\(745\) −2403.47 −0.118196
\(746\) 0 0
\(747\) 21184.2 1.03760
\(748\) 0 0
\(749\) −20056.7 −0.978444
\(750\) 0 0
\(751\) 24952.2 1.21241 0.606204 0.795309i \(-0.292692\pi\)
0.606204 + 0.795309i \(0.292692\pi\)
\(752\) 0 0
\(753\) −44298.3 −2.14385
\(754\) 0 0
\(755\) −147.712 −0.00712023
\(756\) 0 0
\(757\) 25869.3 1.24205 0.621027 0.783790i \(-0.286716\pi\)
0.621027 + 0.783790i \(0.286716\pi\)
\(758\) 0 0
\(759\) −2067.39 −0.0988688
\(760\) 0 0
\(761\) 39174.5 1.86606 0.933031 0.359796i \(-0.117154\pi\)
0.933031 + 0.359796i \(0.117154\pi\)
\(762\) 0 0
\(763\) 58118.4 2.75757
\(764\) 0 0
\(765\) −5924.65 −0.280008
\(766\) 0 0
\(767\) −27259.9 −1.28331
\(768\) 0 0
\(769\) −14544.5 −0.682038 −0.341019 0.940056i \(-0.610772\pi\)
−0.341019 + 0.940056i \(0.610772\pi\)
\(770\) 0 0
\(771\) −31471.2 −1.47005
\(772\) 0 0
\(773\) −39420.3 −1.83422 −0.917109 0.398637i \(-0.869483\pi\)
−0.917109 + 0.398637i \(0.869483\pi\)
\(774\) 0 0
\(775\) 23050.5 1.06838
\(776\) 0 0
\(777\) −48472.4 −2.23801
\(778\) 0 0
\(779\) 29892.8 1.37487
\(780\) 0 0
\(781\) 4586.80 0.210152
\(782\) 0 0
\(783\) −11679.8 −0.533078
\(784\) 0 0
\(785\) 13131.9 0.597069
\(786\) 0 0
\(787\) −9491.24 −0.429894 −0.214947 0.976626i \(-0.568958\pi\)
−0.214947 + 0.976626i \(0.568958\pi\)
\(788\) 0 0
\(789\) 53131.4 2.39737
\(790\) 0 0
\(791\) −36393.6 −1.63591
\(792\) 0 0
\(793\) 1839.05 0.0823539
\(794\) 0 0
\(795\) 352.642 0.0157320
\(796\) 0 0
\(797\) 12185.9 0.541591 0.270795 0.962637i \(-0.412713\pi\)
0.270795 + 0.962637i \(0.412713\pi\)
\(798\) 0 0
\(799\) −7246.81 −0.320868
\(800\) 0 0
\(801\) −26560.8 −1.17164
\(802\) 0 0
\(803\) −10097.1 −0.443736
\(804\) 0 0
\(805\) −2708.86 −0.118602
\(806\) 0 0
\(807\) −14380.5 −0.627283
\(808\) 0 0
\(809\) 2498.29 0.108573 0.0542863 0.998525i \(-0.482712\pi\)
0.0542863 + 0.998525i \(0.482712\pi\)
\(810\) 0 0
\(811\) 18005.8 0.779615 0.389808 0.920896i \(-0.372541\pi\)
0.389808 + 0.920896i \(0.372541\pi\)
\(812\) 0 0
\(813\) −39225.1 −1.69211
\(814\) 0 0
\(815\) 10622.8 0.456567
\(816\) 0 0
\(817\) 34076.7 1.45923
\(818\) 0 0
\(819\) −52050.4 −2.22074
\(820\) 0 0
\(821\) 39469.4 1.67782 0.838912 0.544267i \(-0.183192\pi\)
0.838912 + 0.544267i \(0.183192\pi\)
\(822\) 0 0
\(823\) 12730.6 0.539198 0.269599 0.962973i \(-0.413109\pi\)
0.269599 + 0.962973i \(0.413109\pi\)
\(824\) 0 0
\(825\) 9970.80 0.420774
\(826\) 0 0
\(827\) −10536.3 −0.443027 −0.221513 0.975157i \(-0.571100\pi\)
−0.221513 + 0.975157i \(0.571100\pi\)
\(828\) 0 0
\(829\) −21400.9 −0.896602 −0.448301 0.893883i \(-0.647971\pi\)
−0.448301 + 0.893883i \(0.647971\pi\)
\(830\) 0 0
\(831\) 7496.32 0.312930
\(832\) 0 0
\(833\) −29833.7 −1.24091
\(834\) 0 0
\(835\) 14843.8 0.615198
\(836\) 0 0
\(837\) 11394.6 0.470554
\(838\) 0 0
\(839\) 13113.2 0.539591 0.269795 0.962918i \(-0.413044\pi\)
0.269795 + 0.962918i \(0.413044\pi\)
\(840\) 0 0
\(841\) 20980.0 0.860224
\(842\) 0 0
\(843\) −28400.6 −1.16034
\(844\) 0 0
\(845\) 667.793 0.0271867
\(846\) 0 0
\(847\) 37629.8 1.52653
\(848\) 0 0
\(849\) −25734.7 −1.04030
\(850\) 0 0
\(851\) −4545.96 −0.183118
\(852\) 0 0
\(853\) 962.614 0.0386392 0.0193196 0.999813i \(-0.493850\pi\)
0.0193196 + 0.999813i \(0.493850\pi\)
\(854\) 0 0
\(855\) −9942.82 −0.397704
\(856\) 0 0
\(857\) −27608.2 −1.10044 −0.550221 0.835019i \(-0.685457\pi\)
−0.550221 + 0.835019i \(0.685457\pi\)
\(858\) 0 0
\(859\) −14922.2 −0.592713 −0.296356 0.955077i \(-0.595772\pi\)
−0.296356 + 0.955077i \(0.595772\pi\)
\(860\) 0 0
\(861\) −94098.5 −3.72459
\(862\) 0 0
\(863\) −25684.7 −1.01311 −0.506557 0.862206i \(-0.669082\pi\)
−0.506557 + 0.862206i \(0.669082\pi\)
\(864\) 0 0
\(865\) 11532.1 0.453299
\(866\) 0 0
\(867\) 21543.4 0.843888
\(868\) 0 0
\(869\) −7283.03 −0.284304
\(870\) 0 0
\(871\) −1482.72 −0.0576808
\(872\) 0 0
\(873\) 32821.9 1.27246
\(874\) 0 0
\(875\) 27786.7 1.07356
\(876\) 0 0
\(877\) −24651.7 −0.949179 −0.474590 0.880207i \(-0.657404\pi\)
−0.474590 + 0.880207i \(0.657404\pi\)
\(878\) 0 0
\(879\) −5571.06 −0.213774
\(880\) 0 0
\(881\) −2333.94 −0.0892535 −0.0446267 0.999004i \(-0.514210\pi\)
−0.0446267 + 0.999004i \(0.514210\pi\)
\(882\) 0 0
\(883\) −19670.6 −0.749681 −0.374841 0.927089i \(-0.622303\pi\)
−0.374841 + 0.927089i \(0.622303\pi\)
\(884\) 0 0
\(885\) 16391.7 0.622602
\(886\) 0 0
\(887\) 21451.1 0.812016 0.406008 0.913870i \(-0.366921\pi\)
0.406008 + 0.913870i \(0.366921\pi\)
\(888\) 0 0
\(889\) 79263.8 2.99035
\(890\) 0 0
\(891\) −5640.60 −0.212084
\(892\) 0 0
\(893\) −12161.7 −0.455739
\(894\) 0 0
\(895\) −8389.18 −0.313318
\(896\) 0 0
\(897\) −8755.79 −0.325917
\(898\) 0 0
\(899\) −44261.2 −1.64204
\(900\) 0 0
\(901\) 558.642 0.0206560
\(902\) 0 0
\(903\) −107269. −3.95314
\(904\) 0 0
\(905\) −5613.61 −0.206191
\(906\) 0 0
\(907\) 2902.17 0.106246 0.0531229 0.998588i \(-0.483082\pi\)
0.0531229 + 0.998588i \(0.483082\pi\)
\(908\) 0 0
\(909\) 31089.3 1.13440
\(910\) 0 0
\(911\) −8321.85 −0.302651 −0.151326 0.988484i \(-0.548354\pi\)
−0.151326 + 0.988484i \(0.548354\pi\)
\(912\) 0 0
\(913\) 7165.40 0.259737
\(914\) 0 0
\(915\) −1105.85 −0.0399543
\(916\) 0 0
\(917\) 12528.6 0.451180
\(918\) 0 0
\(919\) 25339.9 0.909559 0.454780 0.890604i \(-0.349718\pi\)
0.454780 + 0.890604i \(0.349718\pi\)
\(920\) 0 0
\(921\) −12412.1 −0.444074
\(922\) 0 0
\(923\) 19426.0 0.692757
\(924\) 0 0
\(925\) 21924.7 0.779330
\(926\) 0 0
\(927\) 41964.5 1.48683
\(928\) 0 0
\(929\) −2468.08 −0.0871638 −0.0435819 0.999050i \(-0.513877\pi\)
−0.0435819 + 0.999050i \(0.513877\pi\)
\(930\) 0 0
\(931\) −50067.2 −1.76250
\(932\) 0 0
\(933\) −21284.3 −0.746858
\(934\) 0 0
\(935\) −2003.97 −0.0700929
\(936\) 0 0
\(937\) 511.833 0.0178451 0.00892255 0.999960i \(-0.497160\pi\)
0.00892255 + 0.999960i \(0.497160\pi\)
\(938\) 0 0
\(939\) 28447.9 0.988672
\(940\) 0 0
\(941\) −12986.8 −0.449900 −0.224950 0.974370i \(-0.572222\pi\)
−0.224950 + 0.974370i \(0.572222\pi\)
\(942\) 0 0
\(943\) −8825.00 −0.304752
\(944\) 0 0
\(945\) 6458.23 0.222313
\(946\) 0 0
\(947\) 8230.45 0.282422 0.141211 0.989980i \(-0.454900\pi\)
0.141211 + 0.989980i \(0.454900\pi\)
\(948\) 0 0
\(949\) −42763.3 −1.46276
\(950\) 0 0
\(951\) −70542.8 −2.40537
\(952\) 0 0
\(953\) 21749.1 0.739269 0.369634 0.929177i \(-0.379483\pi\)
0.369634 + 0.929177i \(0.379483\pi\)
\(954\) 0 0
\(955\) 18349.2 0.621744
\(956\) 0 0
\(957\) −19145.8 −0.646705
\(958\) 0 0
\(959\) −22876.9 −0.770317
\(960\) 0 0
\(961\) 13389.5 0.449448
\(962\) 0 0
\(963\) 21733.4 0.727259
\(964\) 0 0
\(965\) 9364.69 0.312394
\(966\) 0 0
\(967\) 1523.85 0.0506760 0.0253380 0.999679i \(-0.491934\pi\)
0.0253380 + 0.999679i \(0.491934\pi\)
\(968\) 0 0
\(969\) −28252.0 −0.936621
\(970\) 0 0
\(971\) −36956.9 −1.22143 −0.610713 0.791852i \(-0.709117\pi\)
−0.610713 + 0.791852i \(0.709117\pi\)
\(972\) 0 0
\(973\) 35875.0 1.18202
\(974\) 0 0
\(975\) 42228.3 1.38706
\(976\) 0 0
\(977\) 10253.2 0.335751 0.167875 0.985808i \(-0.446309\pi\)
0.167875 + 0.985808i \(0.446309\pi\)
\(978\) 0 0
\(979\) −8984.01 −0.293289
\(980\) 0 0
\(981\) −62977.2 −2.04965
\(982\) 0 0
\(983\) −1973.81 −0.0640434 −0.0320217 0.999487i \(-0.510195\pi\)
−0.0320217 + 0.999487i \(0.510195\pi\)
\(984\) 0 0
\(985\) −11289.8 −0.365200
\(986\) 0 0
\(987\) 38283.3 1.23462
\(988\) 0 0
\(989\) −10060.2 −0.323453
\(990\) 0 0
\(991\) 41195.2 1.32049 0.660247 0.751049i \(-0.270452\pi\)
0.660247 + 0.751049i \(0.270452\pi\)
\(992\) 0 0
\(993\) 37117.7 1.18620
\(994\) 0 0
\(995\) −18219.8 −0.580509
\(996\) 0 0
\(997\) 34156.8 1.08501 0.542505 0.840052i \(-0.317476\pi\)
0.542505 + 0.840052i \(0.317476\pi\)
\(998\) 0 0
\(999\) 10838.1 0.343245
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.4.a.bd.1.1 4
4.3 odd 2 1472.4.a.ba.1.4 4
8.3 odd 2 184.4.a.e.1.1 4
8.5 even 2 368.4.a.n.1.4 4
24.11 even 2 1656.4.a.n.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
184.4.a.e.1.1 4 8.3 odd 2
368.4.a.n.1.4 4 8.5 even 2
1472.4.a.ba.1.4 4 4.3 odd 2
1472.4.a.bd.1.1 4 1.1 even 1 trivial
1656.4.a.n.1.3 4 24.11 even 2