Properties

Label 1472.4.a.b
Level $1472$
Weight $4$
Character orbit 1472.a
Self dual yes
Analytic conductor $86.851$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1472,4,Mod(1,1472)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1472.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1472, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,-8,0,4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.8508115285\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 184)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 8 q^{3} + 4 q^{5} - 4 q^{7} + 37 q^{9} - 26 q^{11} - 70 q^{13} - 32 q^{15} + 94 q^{17} - 54 q^{19} + 32 q^{21} - 23 q^{23} - 109 q^{25} - 80 q^{27} + 86 q^{29} - 144 q^{31} + 208 q^{33} - 16 q^{35}+ \cdots - 962 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −8.00000 0 4.00000 0 −4.00000 0 37.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1472.4.a.b 1
4.b odd 2 1 1472.4.a.i 1
8.b even 2 1 184.4.a.b 1
8.d odd 2 1 368.4.a.a 1
24.h odd 2 1 1656.4.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
184.4.a.b 1 8.b even 2 1
368.4.a.a 1 8.d odd 2 1
1472.4.a.b 1 1.a even 1 1 trivial
1472.4.a.i 1 4.b odd 2 1
1656.4.a.c 1 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 8 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1472))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 8 \) Copy content Toggle raw display
$5$ \( T - 4 \) Copy content Toggle raw display
$7$ \( T + 4 \) Copy content Toggle raw display
$11$ \( T + 26 \) Copy content Toggle raw display
$13$ \( T + 70 \) Copy content Toggle raw display
$17$ \( T - 94 \) Copy content Toggle raw display
$19$ \( T + 54 \) Copy content Toggle raw display
$23$ \( T + 23 \) Copy content Toggle raw display
$29$ \( T - 86 \) Copy content Toggle raw display
$31$ \( T + 144 \) Copy content Toggle raw display
$37$ \( T - 172 \) Copy content Toggle raw display
$41$ \( T + 42 \) Copy content Toggle raw display
$43$ \( T + 386 \) Copy content Toggle raw display
$47$ \( T + 80 \) Copy content Toggle raw display
$53$ \( T - 108 \) Copy content Toggle raw display
$59$ \( T + 164 \) Copy content Toggle raw display
$61$ \( T - 400 \) Copy content Toggle raw display
$67$ \( T + 398 \) Copy content Toggle raw display
$71$ \( T + 320 \) Copy content Toggle raw display
$73$ \( T + 810 \) Copy content Toggle raw display
$79$ \( T + 204 \) Copy content Toggle raw display
$83$ \( T + 102 \) Copy content Toggle raw display
$89$ \( T - 1018 \) Copy content Toggle raw display
$97$ \( T + 1370 \) Copy content Toggle raw display
show more
show less