Properties

Label 1472.2.j.c
Level $1472$
Weight $2$
Character orbit 1472.j
Analytic conductor $11.754$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,2,Mod(369,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.369");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1472.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7539791775\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.221124989353984.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 2 x^{10} + 2 x^{9} + 12 x^{8} - 8 x^{7} - 14 x^{6} - 16 x^{5} + 48 x^{4} + 16 x^{3} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 368)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + ( - \beta_{11} + \beta_{10} + 2 \beta_{8} + \cdots - 1) q^{5} - \beta_{2} q^{7} - \beta_{6} q^{9} + (2 \beta_{11} - 2 \beta_{10} + \cdots - 2 \beta_{2}) q^{11} + ( - \beta_{9} - 2 \beta_{7} - \beta_{6} + \cdots + 2) q^{13}+ \cdots + (2 \beta_{9} + 3 \beta_{7} - \beta_{6} + \cdots - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{3} - 4 q^{5} + 4 q^{11} + 18 q^{13} - 8 q^{17} + 8 q^{19} + 8 q^{21} - 14 q^{27} + 2 q^{29} - 20 q^{31} - 36 q^{33} - 4 q^{35} - 4 q^{37} - 20 q^{43} - 20 q^{45} + 16 q^{47} + 52 q^{49} + 4 q^{51}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 2 x^{11} - 2 x^{10} + 2 x^{9} + 12 x^{8} - 8 x^{7} - 14 x^{6} - 16 x^{5} + 48 x^{4} + 16 x^{3} + \cdots + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{11} + 2\nu^{10} - 2\nu^{9} + 2\nu^{8} - 12\nu^{7} + 8\nu^{6} + 2\nu^{5} + 24\nu^{4} - 32\nu^{3} - 64\nu + 96 ) / 32 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{11} - 2 \nu^{10} - 2 \nu^{9} + 2 \nu^{8} + 12 \nu^{7} - 8 \nu^{6} - 14 \nu^{5} - 16 \nu^{4} + \cdots - 64 ) / 32 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - \nu^{11} - 2 \nu^{10} + 10 \nu^{9} - 2 \nu^{8} - 4 \nu^{7} - 24 \nu^{6} + 30 \nu^{5} + 8 \nu^{4} + \cdots + 64 \nu ) / 32 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 3 \nu^{11} + \nu^{10} + 6 \nu^{9} + 12 \nu^{8} - 26 \nu^{7} - 16 \nu^{6} + 2 \nu^{5} + 86 \nu^{4} + \cdots + 144 ) / 16 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 3 \nu^{11} + \nu^{10} + 14 \nu^{9} - 26 \nu^{7} - 24 \nu^{6} + 42 \nu^{5} + 70 \nu^{4} - 20 \nu^{3} + \cdots + 128 ) / 16 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 4 \nu^{11} - \nu^{10} - 12 \nu^{9} - 10 \nu^{8} + 34 \nu^{7} + 24 \nu^{6} - 24 \nu^{5} - 98 \nu^{4} + \cdots - 160 ) / 16 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 2 \nu^{11} + 2 \nu^{10} + 5 \nu^{9} + 2 \nu^{8} - 18 \nu^{7} - 6 \nu^{6} + 16 \nu^{5} + 44 \nu^{4} + \cdots + 72 ) / 8 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 9 \nu^{11} + 6 \nu^{10} + 26 \nu^{9} + 22 \nu^{8} - 100 \nu^{7} - 40 \nu^{6} + 62 \nu^{5} + \cdots + 576 ) / 32 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 9 \nu^{11} - 2 \nu^{10} - 34 \nu^{9} - 22 \nu^{8} + 92 \nu^{7} + 72 \nu^{6} - 78 \nu^{5} - 272 \nu^{4} + \cdots - 512 ) / 32 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 13 \nu^{11} + 10 \nu^{10} + 30 \nu^{9} + 30 \nu^{8} - 116 \nu^{7} - 48 \nu^{6} + 70 \nu^{5} + \cdots + 544 ) / 32 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 7 \nu^{11} + 3 \nu^{10} + 24 \nu^{9} + 12 \nu^{8} - 66 \nu^{7} - 44 \nu^{6} + 66 \nu^{5} + \cdots + 336 ) / 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{9} + \beta_{8} + \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{11} + \beta_{10} - \beta_{9} + \beta_{8} - \beta_{6} - \beta_{5} - 3\beta_{4} + 2\beta_{2} - \beta _1 + 2 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{6} - \beta_{4} - \beta_{3} + \beta_{2} + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{10} + \beta_{8} - \beta_{7} - 2\beta_{4} - \beta_{3} + 2\beta_{2} - \beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2\beta_{11} + \beta_{10} - \beta_{9} - 2\beta_{8} - \beta_{7} - \beta_{6} - 2\beta_{5} - 3\beta_{4} - 2\beta_{3} + 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{10} + 3\beta_{9} + \beta_{8} - 3\beta_{7} - 2\beta_{6} + 2\beta_{5} - 2\beta_{2} + \beta _1 - 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 4\beta_{10} + \beta_{9} - \beta_{8} - 4\beta_{7} + 2\beta_{6} + 2\beta_{5} + \beta_{3} - \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( \beta_{11} + 3 \beta_{10} + 7 \beta_{9} - \beta_{8} - 4 \beta_{7} - \beta_{6} + \beta_{5} + 5 \beta_{4} + \cdots + 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 14 \beta_{11} + 8 \beta_{10} + 6 \beta_{9} + 10 \beta_{8} - 6 \beta_{7} - 4 \beta_{6} + 10 \beta_{5} + \cdots - 4 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 10 \beta_{11} + 8 \beta_{10} + 4 \beta_{9} - 2 \beta_{8} + 2 \beta_{7} + 2 \beta_{6} + 10 \beta_{5} + \cdots + 18 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 14 \beta_{11} + 8 \beta_{10} + 12 \beta_{9} + 18 \beta_{8} - 6 \beta_{7} + 10 \beta_{5} + 28 \beta_{3} + \cdots - 22 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1472\mathbb{Z}\right)^\times\).

\(n\) \(645\) \(833\) \(1151\)
\(\chi(n)\) \(\beta_{7}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
369.1
1.35092 0.418349i
1.09121 + 0.899589i
−1.18970 + 0.764606i
−0.518742 1.31564i
1.41072 0.0993495i
−1.14441 0.830857i
1.35092 + 0.418349i
1.09121 0.899589i
−1.18970 0.764606i
−0.518742 + 1.31564i
1.41072 + 0.0993495i
−1.14441 + 0.830857i
0 −1.49351 + 1.49351i 0 −1.17219 1.17219i 0 0.836699i 0 1.46112i 0
369.2 0 −1.19673 + 1.19673i 0 0.672033 + 0.672033i 0 1.79918i 0 0.135652i 0
369.3 0 −0.631541 + 0.631541i 0 −2.74053 2.74053i 0 1.52921i 0 2.20231i 0
369.4 0 −0.339667 + 0.339667i 0 1.46929 + 1.46929i 0 2.63128i 0 2.76925i 0
369.5 0 0.955624 0.955624i 0 2.38359 + 2.38359i 0 0.198699i 0 1.17357i 0
369.6 0 1.70582 1.70582i 0 −2.61219 2.61219i 0 1.66171i 0 2.81967i 0
1105.1 0 −1.49351 1.49351i 0 −1.17219 + 1.17219i 0 0.836699i 0 1.46112i 0
1105.2 0 −1.19673 1.19673i 0 0.672033 0.672033i 0 1.79918i 0 0.135652i 0
1105.3 0 −0.631541 0.631541i 0 −2.74053 + 2.74053i 0 1.52921i 0 2.20231i 0
1105.4 0 −0.339667 0.339667i 0 1.46929 1.46929i 0 2.63128i 0 2.76925i 0
1105.5 0 0.955624 + 0.955624i 0 2.38359 2.38359i 0 0.198699i 0 1.17357i 0
1105.6 0 1.70582 + 1.70582i 0 −2.61219 + 2.61219i 0 1.66171i 0 2.81967i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 369.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
16.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1472.2.j.c 12
4.b odd 2 1 368.2.j.c 12
16.e even 4 1 inner 1472.2.j.c 12
16.f odd 4 1 368.2.j.c 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
368.2.j.c 12 4.b odd 2 1
368.2.j.c 12 16.f odd 4 1
1472.2.j.c 12 1.a even 1 1 trivial
1472.2.j.c 12 16.e even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} + 2 T_{3}^{11} + 2 T_{3}^{10} + 2 T_{3}^{9} + 35 T_{3}^{8} + 76 T_{3}^{7} + 84 T_{3}^{6} + \cdots + 25 \) acting on \(S_{2}^{\mathrm{new}}(1472, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( T^{12} + 2 T^{11} + \cdots + 25 \) Copy content Toggle raw display
$5$ \( T^{12} + 4 T^{11} + \cdots + 24964 \) Copy content Toggle raw display
$7$ \( T^{12} + 16 T^{10} + \cdots + 4 \) Copy content Toggle raw display
$11$ \( T^{12} - 4 T^{11} + \cdots + 14884 \) Copy content Toggle raw display
$13$ \( T^{12} - 18 T^{11} + \cdots + 25 \) Copy content Toggle raw display
$17$ \( (T^{6} + 4 T^{5} + \cdots + 202)^{2} \) Copy content Toggle raw display
$19$ \( T^{12} - 8 T^{11} + \cdots + 576 \) Copy content Toggle raw display
$23$ \( (T^{2} + 1)^{6} \) Copy content Toggle raw display
$29$ \( T^{12} - 2 T^{11} + \cdots + 16641 \) Copy content Toggle raw display
$31$ \( (T^{6} + 10 T^{5} + \cdots - 3727)^{2} \) Copy content Toggle raw display
$37$ \( T^{12} + 4 T^{11} + \cdots + 30140100 \) Copy content Toggle raw display
$41$ \( T^{12} + 238 T^{10} + \cdots + 4995225 \) Copy content Toggle raw display
$43$ \( T^{12} + \cdots + 2437989376 \) Copy content Toggle raw display
$47$ \( (T^{6} - 8 T^{5} + \cdots - 51211)^{2} \) Copy content Toggle raw display
$53$ \( T^{12} + \cdots + 10123579456 \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 17761425984 \) Copy content Toggle raw display
$61$ \( T^{12} - 12 T^{11} + \cdots + 2304 \) Copy content Toggle raw display
$67$ \( T^{12} - 4 T^{11} + \cdots + 438244 \) Copy content Toggle raw display
$71$ \( T^{12} + \cdots + 138180025 \) Copy content Toggle raw display
$73$ \( T^{12} + \cdots + 1176284209 \) Copy content Toggle raw display
$79$ \( (T^{6} - 2 T^{5} + \cdots - 120)^{2} \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 1492276900 \) Copy content Toggle raw display
$89$ \( T^{12} + \cdots + 3846976576 \) Copy content Toggle raw display
$97$ \( (T^{6} - 18 T^{5} + \cdots - 123118)^{2} \) Copy content Toggle raw display
show more
show less