Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1472,2,Mod(735,1472)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1472, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1472.735");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1472 = 2^{6} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1472.h (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(11.7539791775\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | 8.0.73358639104.3 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - 6x^{6} + 18x^{4} - 96x^{2} + 256 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{23}]\) |
Coefficient ring index: | \( 2^{10} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{2}]$ |
Embedding invariants
Embedding label | 735.3 | ||
Root | \(1.24541 + 1.56491i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 1472.735 |
Dual form | 1472.2.h.a.735.4 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1472\mathbb{Z}\right)^\times\).
\(n\) | \(645\) | \(833\) | \(1151\) |
\(\chi(n)\) | \(-1\) | \(-1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | −0.639012 | −0.285775 | −0.142888 | − | 0.989739i | \(-0.545639\pi\) | ||||
−0.142888 | + | 0.989739i | \(0.545639\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | −3.00000 | −1.00000 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | − 5.62065i | − 1.69469i | −0.531044 | − | 0.847344i | \(-0.678200\pi\) | ||||
0.531044 | − | 0.847344i | \(-0.321800\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 6.89867i | 1.58266i | 0.611387 | + | 0.791332i | \(0.290612\pi\) | ||||
−0.611387 | + | 0.791332i | \(0.709388\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 4.79583i | 1.00000i | ||||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −4.59166 | −0.918333 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 9.59166i | 1.72271i | 0.508001 | + | 0.861357i | \(0.330385\pi\) | ||||
−0.508001 | + | 0.861357i | \(0.669615\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 11.8803 | 1.95311 | 0.976555 | − | 0.215268i | \(-0.0690625\pi\) | ||||
0.976555 | + | 0.215268i | \(0.0690625\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −9.59166 | −1.49797 | −0.748983 | − | 0.662589i | \(-0.769458\pi\) | ||||
−0.748983 | + | 0.662589i | \(0.769458\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 4.34262i | 0.662244i | 0.943588 | + | 0.331122i | \(0.107427\pi\) | ||||
−0.943588 | + | 0.331122i | \(0.892573\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 1.91704 | 0.285775 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 2.00000i | 0.291730i | 0.989305 | + | 0.145865i | \(0.0465965\pi\) | ||||
−0.989305 | + | 0.145865i | \(0.953403\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −7.00000 | −1.00000 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −13.1583 | −1.80744 | −0.903718 | − | 0.428129i | \(-0.859173\pi\) | ||||
−0.903718 | + | 0.428129i | \(0.859173\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 3.59166i | 0.484300i | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −10.6023 | −1.35748 | −0.678741 | − | 0.734377i | \(-0.737474\pi\) | ||||
−0.678741 | + | 0.734377i | \(0.737474\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 8.17670i | − 0.998942i | −0.866330 | − | 0.499471i | \(-0.833528\pi\) | ||||
0.866330 | − | 0.499471i | \(-0.166472\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 10.0000i | 1.18678i | 0.804914 | + | 0.593391i | \(0.202211\pi\) | ||||
−0.804914 | + | 0.593391i | \(0.797789\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −9.59166 | −1.12262 | −0.561310 | − | 0.827606i | \(-0.689702\pi\) | ||||
−0.561310 | + | 0.827606i | \(0.689702\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 9.00000 | 1.00000 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | − 18.1400i | − 1.99112i | −0.0941309 | − | 0.995560i | \(-0.530007\pi\) | ||||
0.0941309 | − | 0.995560i | \(-0.469993\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | − 4.40834i | − 0.452286i | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 16.8619i | 1.69469i | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 19.4180i | 1.87721i | 0.344997 | + | 0.938604i | \(0.387880\pi\) | ||||
−0.344997 | + | 0.938604i | \(0.612120\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 14.4364 | 1.38275 | 0.691376 | − | 0.722495i | \(-0.257005\pi\) | ||||
0.691376 | + | 0.722495i | \(0.257005\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | − 3.06460i | − 0.285775i | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −20.5917 | −1.87197 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 6.12919 | 0.548212 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 18.0000i | 1.59724i | 0.601834 | + | 0.798621i | \(0.294437\pi\) | ||||
−0.601834 | + | 0.798621i | \(0.705563\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 24.3996 | 1.99889 | 0.999447 | − | 0.0332381i | \(-0.0105820\pi\) | ||||
0.999447 | + | 0.0332381i | \(0.0105820\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 9.59166i | 0.780558i | 0.920697 | + | 0.390279i | \(0.127622\pi\) | ||||
−0.920697 | + | 0.390279i | \(0.872378\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | − 6.12919i | − 0.492309i | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −23.1216 | −1.84530 | −0.922652 | − | 0.385633i | \(-0.873983\pi\) | ||||
−0.922652 | + | 0.385633i | \(0.873983\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | − 22.0000i | − 1.70241i | −0.524832 | − | 0.851206i | \(-0.675872\pi\) | ||||
0.524832 | − | 0.851206i | \(-0.324128\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 13.0000 | 1.00000 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | − 20.6960i | − 1.58266i | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −25.6776 | −1.90860 | −0.954302 | − | 0.298843i | \(-0.903399\pi\) | ||||
−0.954302 | + | 0.298843i | \(0.903399\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | −7.59166 | −0.558150 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −6.00000 | −0.431889 | −0.215945 | − | 0.976406i | \(-0.569283\pi\) | ||||
−0.215945 | + | 0.976406i | \(0.569283\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 6.12919 | 0.428081 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | − 14.3875i | − 1.00000i | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 38.7750 | 2.68212 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | − 2.77499i | − 0.189253i | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 9.59166i | 0.642305i | 0.947027 | + | 0.321153i | \(0.104070\pi\) | ||||
−0.947027 | + | 0.321153i | \(0.895930\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 13.7750 | 0.918333 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 1.78657i | 0.118579i | 0.998241 | + | 0.0592894i | \(0.0188835\pi\) | ||||
−0.998241 | + | 0.0592894i | \(0.981117\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −8.04623 | −0.531710 | −0.265855 | − | 0.964013i | \(-0.585654\pi\) | ||||
−0.265855 | + | 0.964013i | \(0.585654\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −14.0000 | −0.917170 | −0.458585 | − | 0.888650i | \(-0.651644\pi\) | ||||
−0.458585 | + | 0.888650i | \(0.651644\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | − 1.27802i | − 0.0833692i | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | − 28.7750i | − 1.86130i | −0.365911 | − | 0.930650i | \(-0.619243\pi\) | ||||
0.365911 | − | 0.930650i | \(-0.380757\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 4.47309 | 0.285775 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 14.3059i | 0.902980i | 0.892276 | + | 0.451490i | \(0.149107\pi\) | ||||
−0.892276 | + | 0.451490i | \(0.850893\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 26.9557 | 1.69469 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 28.7750 | 1.79493 | 0.897467 | − | 0.441081i | \(-0.145405\pi\) | ||||
0.897467 | + | 0.441081i | \(0.145405\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 8.40834 | 0.516520 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | − 30.0000i | − 1.82237i | −0.411997 | − | 0.911185i | \(-0.635169\pi\) | ||||
0.411997 | − | 0.911185i | \(-0.364831\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 25.8081i | 1.55629i | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | − 28.7750i | − 1.72271i | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − 10.7327i | − 0.637996i | −0.947755 | − | 0.318998i | \(-0.896654\pi\) | ||||
0.947755 | − | 0.318998i | \(-0.103346\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 17.0000 | 1.00000 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −20.5655 | −1.20145 | −0.600726 | − | 0.799455i | \(-0.705122\pi\) | ||||
−0.600726 | + | 0.799455i | \(0.705122\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 6.77499 | 0.387935 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 9.59166i | 0.543893i | 0.962312 | + | 0.271947i | \(0.0876674\pi\) | ||||
−0.962312 | + | 0.271947i | \(0.912333\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | −35.6409 | −1.95311 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 5.22501i | 0.285473i | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 53.9113 | 2.91946 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 26.0000 | 1.38384 | 0.691920 | − | 0.721974i | \(-0.256765\pi\) | ||||
0.691920 | + | 0.721974i | \(0.256765\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | − 6.39012i | − 0.339153i | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −28.5917 | −1.50482 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 6.12919 | 0.320817 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 28.7750 | 1.49797 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 6.76820 | 0.350444 | 0.175222 | − | 0.984529i | \(-0.443936\pi\) | ||||
0.175222 | + | 0.984529i | \(0.443936\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | − 0.508546i | − 0.0261223i | −0.999915 | − | 0.0130611i | \(-0.995842\pi\) | ||||
0.999915 | − | 0.0130611i | \(-0.00415761\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | − 13.0279i | − 0.662244i | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −38.1970 | −1.93666 | −0.968331 | − | 0.249668i | \(-0.919678\pi\) | ||||
−0.968331 | + | 0.249668i | \(0.919678\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | −5.75111 | −0.285775 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | − 66.7750i | − 3.30991i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −30.0000 | −1.48340 | −0.741702 | − | 0.670729i | \(-0.765981\pi\) | ||||
−0.741702 | + | 0.670729i | \(0.765981\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 11.5917i | 0.569012i | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | − 23.2521i | − 1.13594i | −0.823050 | − | 0.567969i | \(-0.807729\pi\) | ||||
0.823050 | − | 0.567969i | \(-0.192271\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 19.2875 | 0.940016 | 0.470008 | − | 0.882662i | \(-0.344251\pi\) | ||||
0.470008 | + | 0.882662i | \(0.344251\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | − 6.00000i | − 0.291730i | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | −33.0849 | −1.58266 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 10.0000i | 0.477274i | 0.971109 | + | 0.238637i | \(0.0767006\pi\) | ||||
−0.971109 | + | 0.238637i | \(0.923299\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 21.0000 | 1.00000 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 28.7750 | 1.35798 | 0.678988 | − | 0.734150i | \(-0.262419\pi\) | ||||
0.678988 | + | 0.734150i | \(0.262419\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 53.9113i | 2.53859i | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − 14.0000i | − 0.650635i | −0.945605 | − | 0.325318i | \(-0.894529\pi\) | ||||
0.945605 | − | 0.325318i | \(-0.105471\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 43.1786i | − 1.99807i | −0.0439527 | − | 0.999034i | \(-0.513995\pi\) | ||||
0.0439527 | − | 0.999034i | \(-0.486005\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 24.4083 | 1.12230 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | − 31.6764i | − 1.45341i | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 39.4750 | 1.80744 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 42.0000i | 1.90320i | 0.307337 | + | 0.951601i | \(0.400562\pi\) | ||||
−0.307337 | + | 0.951601i | \(0.599438\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | − 10.7750i | − 0.484300i | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 11.2413 | 0.494391 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 44.4566i | 1.94395i | 0.235079 | + | 0.971976i | \(0.424465\pi\) | ||||
−0.235079 | + | 0.971976i | \(0.575535\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −23.0000 | −1.00000 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | − 12.4083i | − 0.536459i | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 39.3445i | 1.69469i | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | −9.22501 | −0.395156 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 31.8068 | 1.35748 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | −5.49018 | −0.232626 | −0.116313 | − | 0.993213i | \(-0.537108\pi\) | ||||
−0.116313 | + | 0.993213i | \(0.537108\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 11.7498i | 0.495197i | 0.968863 | + | 0.247598i | \(0.0796413\pi\) | ||||
−0.968863 | + | 0.247598i | \(0.920359\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | − 0.769479i | − 0.0322017i | −0.999870 | − | 0.0161008i | \(-0.994875\pi\) | ||||
0.999870 | − | 0.0161008i | \(-0.00512528\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | − 22.0208i | − 0.918333i | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −47.9583 | −1.99653 | −0.998265 | − | 0.0588745i | \(-0.981249\pi\) | ||||
−0.998265 | + | 0.0588745i | \(0.981249\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 73.9583i | 3.06304i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −66.1697 | −2.72648 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −47.9583 | −1.96941 | −0.984706 | − | 0.174224i | \(-0.944258\pi\) | ||||
−0.984706 | + | 0.174224i | \(0.944258\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | − 28.7750i | − 1.17571i | −0.808965 | − | 0.587857i | \(-0.799972\pi\) | ||||
0.808965 | − | 0.587857i | \(-0.200028\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −9.59166 | −0.391252 | −0.195626 | − | 0.980679i | \(-0.562674\pi\) | ||||
−0.195626 | + | 0.980679i | \(0.562674\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 24.5301i | 0.998942i | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 13.1583 | 0.534962 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 47.9583i | 1.94657i | 0.229605 | + | 0.973284i | \(0.426257\pi\) | ||||
−0.229605 | + | 0.973284i | \(0.573743\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 49.4383 | 1.99679 | 0.998396 | − | 0.0566132i | \(-0.0180302\pi\) | ||||
0.998396 | + | 0.0566132i | \(0.0180302\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | − 45.7346i | − 1.83823i | −0.393989 | − | 0.919115i | \(-0.628905\pi\) | ||||
0.393989 | − | 0.919115i | \(-0.371095\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 19.0417 | 0.761667 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | − 11.5022i | − 0.456452i | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | − 30.0000i | − 1.18678i | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 38.0665i | − 1.50120i | −0.660759 | − | 0.750598i | \(-0.729765\pi\) | ||||
0.660759 | − | 0.750598i | \(-0.270235\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 47.9583i | 1.88544i | 0.333591 | + | 0.942718i | \(0.391740\pi\) | ||||
−0.333591 | + | 0.942718i | \(0.608260\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 28.7750 | 1.12262 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | − 13.2888i | − 0.517658i | −0.965923 | − | 0.258829i | \(-0.916663\pi\) | ||||
0.965923 | − | 0.258829i | \(-0.0833366\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −45.6042 | −1.77380 | −0.886899 | − | 0.461964i | \(-0.847145\pi\) | ||||
−0.886899 | + | 0.461964i | \(0.847145\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 59.5917i | 2.30051i | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −47.9583 | −1.84866 | −0.924329 | − | 0.381597i | \(-0.875374\pi\) | ||||
−0.924329 | + | 0.381597i | \(0.875374\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −50.7163 | −1.94919 | −0.974593 | − | 0.223985i | \(-0.928093\pi\) | ||||
−0.974593 | + | 0.223985i | \(0.928093\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −30.5288 | −1.15306 | −0.576529 | − | 0.817077i | \(-0.695593\pi\) | ||||
−0.576529 | + | 0.817077i | \(0.695593\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 81.9583i | 3.09112i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −30.7897 | −1.15633 | −0.578167 | − | 0.815919i | \(-0.696232\pi\) | ||||
−0.578167 | + | 0.815919i | \(0.696232\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | −46.0000 | −1.72271 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | − 28.7750i | − 1.07313i | −0.843860 | − | 0.536563i | \(-0.819722\pi\) | ||||
0.843860 | − | 0.536563i | \(-0.180278\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | −27.0000 | −1.00000 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 19.5485 | 0.722039 | 0.361019 | − | 0.932558i | \(-0.382429\pi\) | ||||
0.361019 | + | 0.932558i | \(0.382429\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −45.9583 | −1.69290 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −15.5917 | −0.571234 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 54.4199i | 1.99112i | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | − 6.12919i | − 0.223064i | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 44.3262 | 1.61106 | 0.805531 | − | 0.592554i | \(-0.201880\pi\) | ||||
0.805531 | + | 0.592554i | \(0.201880\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 10.0000 | 0.362500 | 0.181250 | − | 0.983437i | \(-0.441986\pi\) | ||||
0.181250 | + | 0.983437i | \(0.441986\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 42.0310 | 1.51175 | 0.755876 | − | 0.654715i | \(-0.227211\pi\) | ||||
0.755876 | + | 0.654715i | \(0.227211\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | − 44.0417i | − 1.58202i | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | − 66.1697i | − 2.37078i | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 56.2065 | 2.01123 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 14.7750 | 0.527342 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 36.7885i | 1.31137i | 0.755036 | + | 0.655684i | \(0.227620\pi\) | ||||
−0.755036 | + | 0.655684i | \(0.772380\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 16.7315 | 0.592659 | 0.296330 | − | 0.955086i | \(-0.404237\pi\) | ||||
0.296330 | + | 0.955086i | \(0.404237\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 53.9113i | 1.90249i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 50.0000 | 1.75791 | 0.878953 | − | 0.476908i | \(-0.158243\pi\) | ||||
0.878953 | + | 0.476908i | \(0.158243\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −29.9583 | −1.04811 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 9.59166i | 0.334344i | 0.985928 | + | 0.167172i | \(0.0534636\pi\) | ||||
−0.985928 | + | 0.167172i | \(0.946536\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | − 25.8081i | − 0.897436i | −0.893673 | − | 0.448718i | \(-0.851881\pi\) | ||||
0.893673 | − | 0.448718i | \(-0.148119\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 14.0583i | 0.486507i | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 29.0000 | 1.00000 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | −8.30716 | −0.285775 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 56.9759i | 1.95311i | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 13.2250i | 0.452286i | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −22.0000 | −0.751506 | −0.375753 | − | 0.926720i | \(-0.622616\pi\) | ||||
−0.375753 | + | 0.926720i | \(0.622616\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 47.9583i | 1.63252i | 0.577685 | + | 0.816260i | \(0.303956\pi\) | ||||
−0.577685 | + | 0.816260i | \(0.696044\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 58.0000i | 1.94745i | 0.227728 | + | 0.973725i | \(0.426870\pi\) | ||||
−0.227728 | + | 0.973725i | \(0.573130\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | − 50.5858i | − 1.69469i | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −13.7973 | −0.461710 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 0 | 0 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 16.4083 | 0.545432 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 14.5668i | 0.483683i | 0.970316 | + | 0.241842i | \(0.0777515\pi\) | ||||
−0.970316 | + | 0.241842i | \(0.922249\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | −101.958 | −3.37433 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −54.5504 | −1.79360 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 28.7750 | 0.944077 | 0.472038 | − | 0.881578i | \(-0.343518\pi\) | ||||
0.472038 | + | 0.881578i | \(0.343518\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | − 48.2907i | − 1.58266i | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 32.0678 | 1.04538 | 0.522690 | − | 0.852523i | \(-0.324929\pi\) | ||||
0.522690 | + | 0.852523i | \(0.324929\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | − 46.0000i | − 1.49797i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −61.0000 | −1.96774 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | − 58.2540i | − 1.87721i | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 3.83407 | 0.123423 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 47.9583i | 1.54224i | 0.636693 | + | 0.771118i | \(0.280302\pi\) | ||||
−0.636693 | + | 0.771118i | \(0.719698\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | − 35.5104i | − 1.13958i | −0.821789 | − | 0.569792i | \(-0.807024\pi\) | ||||
0.821789 | − | 0.569792i | \(-0.192976\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | −43.3091 | −1.38275 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −20.8265 | −0.662244 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 9.59166i | 0.304689i | 0.988327 | + | 0.152345i | \(0.0486824\pi\) | ||||
−0.988327 | + | 0.152345i | \(0.951318\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1472.2.h.a.735.3 | ✓ | 8 | |
4.3 | odd | 2 | inner | 1472.2.h.a.735.4 | yes | 8 | |
8.3 | odd | 2 | inner | 1472.2.h.a.735.5 | yes | 8 | |
8.5 | even | 2 | inner | 1472.2.h.a.735.6 | yes | 8 | |
23.22 | odd | 2 | inner | 1472.2.h.a.735.6 | yes | 8 | |
92.91 | even | 2 | inner | 1472.2.h.a.735.5 | yes | 8 | |
184.45 | odd | 2 | CM | 1472.2.h.a.735.3 | ✓ | 8 | |
184.91 | even | 2 | inner | 1472.2.h.a.735.4 | yes | 8 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
1472.2.h.a.735.3 | ✓ | 8 | 1.1 | even | 1 | trivial | |
1472.2.h.a.735.3 | ✓ | 8 | 184.45 | odd | 2 | CM | |
1472.2.h.a.735.4 | yes | 8 | 4.3 | odd | 2 | inner | |
1472.2.h.a.735.4 | yes | 8 | 184.91 | even | 2 | inner | |
1472.2.h.a.735.5 | yes | 8 | 8.3 | odd | 2 | inner | |
1472.2.h.a.735.5 | yes | 8 | 92.91 | even | 2 | inner | |
1472.2.h.a.735.6 | yes | 8 | 8.5 | even | 2 | inner | |
1472.2.h.a.735.6 | yes | 8 | 23.22 | odd | 2 | inner |