Properties

Label 1472.2.h.a.735.3
Level $1472$
Weight $2$
Character 1472.735
Analytic conductor $11.754$
Analytic rank $0$
Dimension $8$
CM discriminant -184
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,2,Mod(735,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.735");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1472.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7539791775\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.73358639104.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 6x^{6} + 18x^{4} - 96x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 735.3
Root \(1.24541 + 1.56491i\) of defining polynomial
Character \(\chi\) \(=\) 1472.735
Dual form 1472.2.h.a.735.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.639012 q^{5} -3.00000 q^{9} -5.62065i q^{11} +6.89867i q^{19} +4.79583i q^{23} -4.59166 q^{25} +9.59166i q^{31} +11.8803 q^{37} -9.59166 q^{41} +4.34262i q^{43} +1.91704 q^{45} +2.00000i q^{47} -7.00000 q^{49} -13.1583 q^{53} +3.59166i q^{55} -10.6023 q^{61} -8.17670i q^{67} +10.0000i q^{71} -9.59166 q^{73} +9.00000 q^{81} -18.1400i q^{83} -4.40834i q^{95} +16.8619i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 24 q^{9} + 40 q^{25} - 56 q^{49} + 72 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1472\mathbb{Z}\right)^\times\).

\(n\) \(645\) \(833\) \(1151\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 0 0
\(5\) −0.639012 −0.285775 −0.142888 0.989739i \(-0.545639\pi\)
−0.142888 + 0.989739i \(0.545639\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) − 5.62065i − 1.69469i −0.531044 0.847344i \(-0.678200\pi\)
0.531044 0.847344i \(-0.321800\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 6.89867i 1.58266i 0.611387 + 0.791332i \(0.290612\pi\)
−0.611387 + 0.791332i \(0.709388\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.79583i 1.00000i
\(24\) 0 0
\(25\) −4.59166 −0.918333
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 9.59166i 1.72271i 0.508001 + 0.861357i \(0.330385\pi\)
−0.508001 + 0.861357i \(0.669615\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 11.8803 1.95311 0.976555 0.215268i \(-0.0690625\pi\)
0.976555 + 0.215268i \(0.0690625\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −9.59166 −1.49797 −0.748983 0.662589i \(-0.769458\pi\)
−0.748983 + 0.662589i \(0.769458\pi\)
\(42\) 0 0
\(43\) 4.34262i 0.662244i 0.943588 + 0.331122i \(0.107427\pi\)
−0.943588 + 0.331122i \(0.892573\pi\)
\(44\) 0 0
\(45\) 1.91704 0.285775
\(46\) 0 0
\(47\) 2.00000i 0.291730i 0.989305 + 0.145865i \(0.0465965\pi\)
−0.989305 + 0.145865i \(0.953403\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −13.1583 −1.80744 −0.903718 0.428129i \(-0.859173\pi\)
−0.903718 + 0.428129i \(0.859173\pi\)
\(54\) 0 0
\(55\) 3.59166i 0.484300i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −10.6023 −1.35748 −0.678741 0.734377i \(-0.737474\pi\)
−0.678741 + 0.734377i \(0.737474\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 8.17670i − 0.998942i −0.866330 0.499471i \(-0.833528\pi\)
0.866330 0.499471i \(-0.166472\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.0000i 1.18678i 0.804914 + 0.593391i \(0.202211\pi\)
−0.804914 + 0.593391i \(0.797789\pi\)
\(72\) 0 0
\(73\) −9.59166 −1.12262 −0.561310 0.827606i \(-0.689702\pi\)
−0.561310 + 0.827606i \(0.689702\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) − 18.1400i − 1.99112i −0.0941309 0.995560i \(-0.530007\pi\)
0.0941309 0.995560i \(-0.469993\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 4.40834i − 0.452286i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 16.8619i 1.69469i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 19.4180i 1.87721i 0.344997 + 0.938604i \(0.387880\pi\)
−0.344997 + 0.938604i \(0.612120\pi\)
\(108\) 0 0
\(109\) 14.4364 1.38275 0.691376 0.722495i \(-0.257005\pi\)
0.691376 + 0.722495i \(0.257005\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) − 3.06460i − 0.285775i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −20.5917 −1.87197
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.12919 0.548212
\(126\) 0 0
\(127\) 18.0000i 1.59724i 0.601834 + 0.798621i \(0.294437\pi\)
−0.601834 + 0.798621i \(0.705563\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 24.3996 1.99889 0.999447 0.0332381i \(-0.0105820\pi\)
0.999447 + 0.0332381i \(0.0105820\pi\)
\(150\) 0 0
\(151\) 9.59166i 0.780558i 0.920697 + 0.390279i \(0.127622\pi\)
−0.920697 + 0.390279i \(0.872378\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 6.12919i − 0.492309i
\(156\) 0 0
\(157\) −23.1216 −1.84530 −0.922652 0.385633i \(-0.873983\pi\)
−0.922652 + 0.385633i \(0.873983\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 22.0000i − 1.70241i −0.524832 0.851206i \(-0.675872\pi\)
0.524832 0.851206i \(-0.324128\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) − 20.6960i − 1.58266i
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −25.6776 −1.90860 −0.954302 0.298843i \(-0.903399\pi\)
−0.954302 + 0.298843i \(0.903399\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −7.59166 −0.558150
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −6.00000 −0.431889 −0.215945 0.976406i \(-0.569283\pi\)
−0.215945 + 0.976406i \(0.569283\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 6.12919 0.428081
\(206\) 0 0
\(207\) − 14.3875i − 1.00000i
\(208\) 0 0
\(209\) 38.7750 2.68212
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 2.77499i − 0.189253i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 9.59166i 0.642305i 0.947027 + 0.321153i \(0.104070\pi\)
−0.947027 + 0.321153i \(0.895930\pi\)
\(224\) 0 0
\(225\) 13.7750 0.918333
\(226\) 0 0
\(227\) 1.78657i 0.118579i 0.998241 + 0.0592894i \(0.0188835\pi\)
−0.998241 + 0.0592894i \(0.981117\pi\)
\(228\) 0 0
\(229\) −8.04623 −0.531710 −0.265855 0.964013i \(-0.585654\pi\)
−0.265855 + 0.964013i \(0.585654\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −14.0000 −0.917170 −0.458585 0.888650i \(-0.651644\pi\)
−0.458585 + 0.888650i \(0.651644\pi\)
\(234\) 0 0
\(235\) − 1.27802i − 0.0833692i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 28.7750i − 1.86130i −0.365911 0.930650i \(-0.619243\pi\)
0.365911 0.930650i \(-0.380757\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.47309 0.285775
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 14.3059i 0.902980i 0.892276 + 0.451490i \(0.149107\pi\)
−0.892276 + 0.451490i \(0.850893\pi\)
\(252\) 0 0
\(253\) 26.9557 1.69469
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 28.7750 1.79493 0.897467 0.441081i \(-0.145405\pi\)
0.897467 + 0.441081i \(0.145405\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 8.40834 0.516520
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) − 30.0000i − 1.82237i −0.411997 0.911185i \(-0.635169\pi\)
0.411997 0.911185i \(-0.364831\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 25.8081i 1.55629i
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) − 28.7750i − 1.72271i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) − 10.7327i − 0.637996i −0.947755 0.318998i \(-0.896654\pi\)
0.947755 0.318998i \(-0.103346\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −20.5655 −1.20145 −0.600726 0.799455i \(-0.705122\pi\)
−0.600726 + 0.799455i \(0.705122\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.77499 0.387935
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 9.59166i 0.543893i 0.962312 + 0.271947i \(0.0876674\pi\)
−0.962312 + 0.271947i \(0.912333\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) −35.6409 −1.95311
\(334\) 0 0
\(335\) 5.22501i 0.285473i
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 53.9113 2.91946
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 26.0000 1.38384 0.691920 0.721974i \(-0.256765\pi\)
0.691920 + 0.721974i \(0.256765\pi\)
\(354\) 0 0
\(355\) − 6.39012i − 0.339153i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −28.5917 −1.50482
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6.12919 0.320817
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 28.7750 1.49797
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 6.76820 0.350444 0.175222 0.984529i \(-0.443936\pi\)
0.175222 + 0.984529i \(0.443936\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 0.508546i − 0.0261223i −0.999915 0.0130611i \(-0.995842\pi\)
0.999915 0.0130611i \(-0.00415761\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 13.0279i − 0.662244i
\(388\) 0 0
\(389\) −38.1970 −1.93666 −0.968331 0.249668i \(-0.919678\pi\)
−0.968331 + 0.249668i \(0.919678\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −5.75111 −0.285775
\(406\) 0 0
\(407\) − 66.7750i − 3.30991i
\(408\) 0 0
\(409\) −30.0000 −1.48340 −0.741702 0.670729i \(-0.765981\pi\)
−0.741702 + 0.670729i \(0.765981\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 11.5917i 0.569012i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 23.2521i − 1.13594i −0.823050 0.567969i \(-0.807729\pi\)
0.823050 0.567969i \(-0.192271\pi\)
\(420\) 0 0
\(421\) 19.2875 0.940016 0.470008 0.882662i \(-0.344251\pi\)
0.470008 + 0.882662i \(0.344251\pi\)
\(422\) 0 0
\(423\) − 6.00000i − 0.291730i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −33.0849 −1.58266
\(438\) 0 0
\(439\) 10.0000i 0.477274i 0.971109 + 0.238637i \(0.0767006\pi\)
−0.971109 + 0.238637i \(0.923299\pi\)
\(440\) 0 0
\(441\) 21.0000 1.00000
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 28.7750 1.35798 0.678988 0.734150i \(-0.262419\pi\)
0.678988 + 0.734150i \(0.262419\pi\)
\(450\) 0 0
\(451\) 53.9113i 2.53859i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) − 14.0000i − 0.650635i −0.945605 0.325318i \(-0.894529\pi\)
0.945605 0.325318i \(-0.105471\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 43.1786i − 1.99807i −0.0439527 0.999034i \(-0.513995\pi\)
0.0439527 0.999034i \(-0.486005\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 24.4083 1.12230
\(474\) 0 0
\(475\) − 31.6764i − 1.45341i
\(476\) 0 0
\(477\) 39.4750 1.80744
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 42.0000i 1.90320i 0.307337 + 0.951601i \(0.400562\pi\)
−0.307337 + 0.951601i \(0.599438\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) − 10.7750i − 0.484300i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 11.2413 0.494391
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 44.4566i 1.94395i 0.235079 + 0.971976i \(0.424465\pi\)
−0.235079 + 0.971976i \(0.575535\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 12.4083i − 0.536459i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 39.3445i 1.69469i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −9.22501 −0.395156
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 31.8068 1.35748
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.49018 −0.232626 −0.116313 0.993213i \(-0.537108\pi\)
−0.116313 + 0.993213i \(0.537108\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 11.7498i 0.495197i 0.968863 + 0.247598i \(0.0796413\pi\)
−0.968863 + 0.247598i \(0.920359\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) − 0.769479i − 0.0322017i −0.999870 0.0161008i \(-0.994875\pi\)
0.999870 0.0161008i \(-0.00512528\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 22.0208i − 0.918333i
\(576\) 0 0
\(577\) −47.9583 −1.99653 −0.998265 0.0588745i \(-0.981249\pi\)
−0.998265 + 0.0588745i \(0.981249\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 73.9583i 3.06304i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) −66.1697 −2.72648
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −47.9583 −1.96941 −0.984706 0.174224i \(-0.944258\pi\)
−0.984706 + 0.174224i \(0.944258\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 28.7750i − 1.17571i −0.808965 0.587857i \(-0.799972\pi\)
0.808965 0.587857i \(-0.200028\pi\)
\(600\) 0 0
\(601\) −9.59166 −0.391252 −0.195626 0.980679i \(-0.562674\pi\)
−0.195626 + 0.980679i \(0.562674\pi\)
\(602\) 0 0
\(603\) 24.5301i 0.998942i
\(604\) 0 0
\(605\) 13.1583 0.534962
\(606\) 0 0
\(607\) 47.9583i 1.94657i 0.229605 + 0.973284i \(0.426257\pi\)
−0.229605 + 0.973284i \(0.573743\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 49.4383 1.99679 0.998396 0.0566132i \(-0.0180302\pi\)
0.998396 + 0.0566132i \(0.0180302\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) − 45.7346i − 1.83823i −0.393989 0.919115i \(-0.628905\pi\)
0.393989 0.919115i \(-0.371095\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 19.0417 0.761667
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 11.5022i − 0.456452i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) − 30.0000i − 1.18678i
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) − 38.0665i − 1.50120i −0.660759 0.750598i \(-0.729765\pi\)
0.660759 0.750598i \(-0.270235\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 47.9583i 1.88544i 0.333591 + 0.942718i \(0.391740\pi\)
−0.333591 + 0.942718i \(0.608260\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 28.7750 1.12262
\(658\) 0 0
\(659\) − 13.2888i − 0.517658i −0.965923 0.258829i \(-0.916663\pi\)
0.965923 0.258829i \(-0.0833366\pi\)
\(660\) 0 0
\(661\) −45.6042 −1.77380 −0.886899 0.461964i \(-0.847145\pi\)
−0.886899 + 0.461964i \(0.847145\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 59.5917i 2.30051i
\(672\) 0 0
\(673\) −47.9583 −1.84866 −0.924329 0.381597i \(-0.875374\pi\)
−0.924329 + 0.381597i \(0.875374\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −50.7163 −1.94919 −0.974593 0.223985i \(-0.928093\pi\)
−0.974593 + 0.223985i \(0.928093\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −30.5288 −1.15306 −0.576529 0.817077i \(-0.695593\pi\)
−0.576529 + 0.817077i \(0.695593\pi\)
\(702\) 0 0
\(703\) 81.9583i 3.09112i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −30.7897 −1.15633 −0.578167 0.815919i \(-0.696232\pi\)
−0.578167 + 0.815919i \(0.696232\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −46.0000 −1.72271
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 28.7750i − 1.07313i −0.843860 0.536563i \(-0.819722\pi\)
0.843860 0.536563i \(-0.180278\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 19.5485 0.722039 0.361019 0.932558i \(-0.382429\pi\)
0.361019 + 0.932558i \(0.382429\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −45.9583 −1.69290
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −15.5917 −0.571234
\(746\) 0 0
\(747\) 54.4199i 1.99112i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 6.12919i − 0.223064i
\(756\) 0 0
\(757\) 44.3262 1.61106 0.805531 0.592554i \(-0.201880\pi\)
0.805531 + 0.592554i \(0.201880\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10.0000 0.362500 0.181250 0.983437i \(-0.441986\pi\)
0.181250 + 0.983437i \(0.441986\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 42.0310 1.51175 0.755876 0.654715i \(-0.227211\pi\)
0.755876 + 0.654715i \(0.227211\pi\)
\(774\) 0 0
\(775\) − 44.0417i − 1.58202i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 66.1697i − 2.37078i
\(780\) 0 0
\(781\) 56.2065 2.01123
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 14.7750 0.527342
\(786\) 0 0
\(787\) 36.7885i 1.31137i 0.755036 + 0.655684i \(0.227620\pi\)
−0.755036 + 0.655684i \(0.772380\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 16.7315 0.592659 0.296330 0.955086i \(-0.404237\pi\)
0.296330 + 0.955086i \(0.404237\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 53.9113i 1.90249i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 50.0000 1.75791 0.878953 0.476908i \(-0.158243\pi\)
0.878953 + 0.476908i \(0.158243\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −29.9583 −1.04811
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 9.59166i 0.334344i 0.985928 + 0.167172i \(0.0534636\pi\)
−0.985928 + 0.167172i \(0.946536\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 25.8081i − 0.897436i −0.893673 0.448718i \(-0.851881\pi\)
0.893673 0.448718i \(-0.148119\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 14.0583i 0.486507i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −8.30716 −0.285775
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 56.9759i 1.95311i
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 13.2250i 0.452286i
\(856\) 0 0
\(857\) −22.0000 −0.751506 −0.375753 0.926720i \(-0.622616\pi\)
−0.375753 + 0.926720i \(0.622616\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 47.9583i 1.63252i 0.577685 + 0.816260i \(0.303956\pi\)
−0.577685 + 0.816260i \(0.696044\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 58.0000i 1.94745i 0.227728 + 0.973725i \(0.426870\pi\)
−0.227728 + 0.973725i \(0.573130\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) − 50.5858i − 1.69469i
\(892\) 0 0
\(893\) −13.7973 −0.461710
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 16.4083 0.545432
\(906\) 0 0
\(907\) 14.5668i 0.483683i 0.970316 + 0.241842i \(0.0777515\pi\)
−0.970316 + 0.241842i \(0.922249\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) −101.958 −3.37433
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −54.5504 −1.79360
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 28.7750 0.944077 0.472038 0.881578i \(-0.343518\pi\)
0.472038 + 0.881578i \(0.343518\pi\)
\(930\) 0 0
\(931\) − 48.2907i − 1.58266i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 32.0678 1.04538 0.522690 0.852523i \(-0.324929\pi\)
0.522690 + 0.852523i \(0.324929\pi\)
\(942\) 0 0
\(943\) − 46.0000i − 1.49797i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −61.0000 −1.96774
\(962\) 0 0
\(963\) − 58.2540i − 1.87721i
\(964\) 0 0
\(965\) 3.83407 0.123423
\(966\) 0 0
\(967\) 47.9583i 1.54224i 0.636693 + 0.771118i \(0.280302\pi\)
−0.636693 + 0.771118i \(0.719698\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 35.5104i − 1.13958i −0.821789 0.569792i \(-0.807024\pi\)
0.821789 0.569792i \(-0.192976\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −43.3091 −1.38275
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −20.8265 −0.662244
\(990\) 0 0
\(991\) 9.59166i 0.304689i 0.988327 + 0.152345i \(0.0486824\pi\)
−0.988327 + 0.152345i \(0.951318\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.2.h.a.735.3 8
4.3 odd 2 inner 1472.2.h.a.735.4 yes 8
8.3 odd 2 inner 1472.2.h.a.735.5 yes 8
8.5 even 2 inner 1472.2.h.a.735.6 yes 8
23.22 odd 2 inner 1472.2.h.a.735.6 yes 8
92.91 even 2 inner 1472.2.h.a.735.5 yes 8
184.45 odd 2 CM 1472.2.h.a.735.3 8
184.91 even 2 inner 1472.2.h.a.735.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1472.2.h.a.735.3 8 1.1 even 1 trivial
1472.2.h.a.735.3 8 184.45 odd 2 CM
1472.2.h.a.735.4 yes 8 4.3 odd 2 inner
1472.2.h.a.735.4 yes 8 184.91 even 2 inner
1472.2.h.a.735.5 yes 8 8.3 odd 2 inner
1472.2.h.a.735.5 yes 8 92.91 even 2 inner
1472.2.h.a.735.6 yes 8 8.5 even 2 inner
1472.2.h.a.735.6 yes 8 23.22 odd 2 inner