Properties

Label 1472.2.h.a.735.2
Level $1472$
Weight $2$
Character 1472.735
Analytic conductor $11.754$
Analytic rank $0$
Dimension $8$
CM discriminant -184
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,2,Mod(735,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.735");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1472.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7539791775\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.73358639104.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 6x^{6} + 18x^{4} - 96x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 735.2
Root \(-1.98720 + 0.225925i\) of defining polynomial
Character \(\chi\) \(=\) 1472.735
Dual form 1472.2.h.a.735.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.42625 q^{5} -3.00000 q^{9} +3.52255i q^{11} +5.32995i q^{19} -4.79583i q^{23} +14.5917 q^{25} -9.59166i q^{31} -2.61885 q^{37} +9.59166 q^{41} -12.3750i q^{43} +13.2787 q^{45} +2.00000i q^{47} -7.00000 q^{49} -6.23365 q^{53} -15.5917i q^{55} +11.4713 q^{61} -14.1824i q^{67} +10.0000i q^{71} +9.59166 q^{73} +9.00000 q^{81} +1.71515i q^{83} -23.5917i q^{95} -10.5676i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 24 q^{9} + 40 q^{25} - 56 q^{49} + 72 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1472\mathbb{Z}\right)^\times\).

\(n\) \(645\) \(833\) \(1151\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 0 0
\(5\) −4.42625 −1.97948 −0.989739 0.142888i \(-0.954361\pi\)
−0.989739 + 0.142888i \(0.954361\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) 3.52255i 1.06209i 0.847344 + 0.531044i \(0.178200\pi\)
−0.847344 + 0.531044i \(0.821800\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 5.32995i 1.22277i 0.791332 + 0.611387i \(0.209388\pi\)
−0.791332 + 0.611387i \(0.790612\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 4.79583i − 1.00000i
\(24\) 0 0
\(25\) 14.5917 2.91833
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) − 9.59166i − 1.72271i −0.508001 0.861357i \(-0.669615\pi\)
0.508001 0.861357i \(-0.330385\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.61885 −0.430536 −0.215268 0.976555i \(-0.569062\pi\)
−0.215268 + 0.976555i \(0.569062\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.59166 1.49797 0.748983 0.662589i \(-0.230542\pi\)
0.748983 + 0.662589i \(0.230542\pi\)
\(42\) 0 0
\(43\) − 12.3750i − 1.88718i −0.331122 0.943588i \(-0.607427\pi\)
0.331122 0.943588i \(-0.392573\pi\)
\(44\) 0 0
\(45\) 13.2787 1.97948
\(46\) 0 0
\(47\) 2.00000i 0.291730i 0.989305 + 0.145865i \(0.0465965\pi\)
−0.989305 + 0.145865i \(0.953403\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.23365 −0.856257 −0.428129 0.903718i \(-0.640827\pi\)
−0.428129 + 0.903718i \(0.640827\pi\)
\(54\) 0 0
\(55\) − 15.5917i − 2.10238i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 11.4713 1.46875 0.734377 0.678741i \(-0.237474\pi\)
0.734377 + 0.678741i \(0.237474\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 14.1824i − 1.73266i −0.499471 0.866330i \(-0.666472\pi\)
0.499471 0.866330i \(-0.333528\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.0000i 1.18678i 0.804914 + 0.593391i \(0.202211\pi\)
−0.804914 + 0.593391i \(0.797789\pi\)
\(72\) 0 0
\(73\) 9.59166 1.12262 0.561310 0.827606i \(-0.310298\pi\)
0.561310 + 0.827606i \(0.310298\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 1.71515i 0.188262i 0.995560 + 0.0941309i \(0.0300072\pi\)
−0.995560 + 0.0941309i \(0.969993\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 23.5917i − 2.42045i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) − 10.5676i − 1.06209i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.13735i 0.689993i 0.938604 + 0.344997i \(0.112120\pi\)
−0.938604 + 0.344997i \(0.887880\pi\)
\(108\) 0 0
\(109\) 15.0861 1.44499 0.722495 0.691376i \(-0.242995\pi\)
0.722495 + 0.691376i \(0.242995\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 21.2275i 1.97948i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.40834 −0.128031
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −42.4551 −3.79730
\(126\) 0 0
\(127\) 18.0000i 1.59724i 0.601834 + 0.798621i \(0.294437\pi\)
−0.601834 + 0.798621i \(0.705563\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.811447 −0.0664763 −0.0332381 0.999447i \(-0.510582\pi\)
−0.0332381 + 0.999447i \(0.510582\pi\)
\(150\) 0 0
\(151\) − 9.59166i − 0.780558i −0.920697 0.390279i \(-0.872378\pi\)
0.920697 0.390279i \(-0.127622\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 42.4551i 3.41007i
\(156\) 0 0
\(157\) 9.66394 0.771266 0.385633 0.922652i \(-0.373983\pi\)
0.385633 + 0.922652i \(0.373983\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 22.0000i − 1.70241i −0.524832 0.851206i \(-0.675872\pi\)
0.524832 0.851206i \(-0.324128\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) − 15.9898i − 1.22277i
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −8.04105 −0.597686 −0.298843 0.954302i \(-0.596601\pi\)
−0.298843 + 0.954302i \(0.596601\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 11.5917 0.852236
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −6.00000 −0.431889 −0.215945 0.976406i \(-0.569283\pi\)
−0.215945 + 0.976406i \(0.569283\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −42.4551 −2.96519
\(206\) 0 0
\(207\) 14.3875i 1.00000i
\(208\) 0 0
\(209\) −18.7750 −1.29869
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 54.7750i 3.73562i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 9.59166i − 0.642305i −0.947027 0.321153i \(-0.895930\pi\)
0.947027 0.321153i \(-0.104070\pi\)
\(224\) 0 0
\(225\) −43.7750 −2.91833
\(226\) 0 0
\(227\) − 30.0800i − 1.99648i −0.0592894 0.998241i \(-0.518883\pi\)
0.0592894 0.998241i \(-0.481117\pi\)
\(228\) 0 0
\(229\) 29.1763 1.92803 0.964013 0.265855i \(-0.0856542\pi\)
0.964013 + 0.265855i \(0.0856542\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −14.0000 −0.917170 −0.458585 0.888650i \(-0.651644\pi\)
−0.458585 + 0.888650i \(0.651644\pi\)
\(234\) 0 0
\(235\) − 8.85249i − 0.577473i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 28.7750i 1.86130i 0.365911 + 0.930650i \(0.380757\pi\)
−0.365911 + 0.930650i \(0.619243\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 30.9837 1.97948
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 28.2726i − 1.78455i −0.451490 0.892276i \(-0.649107\pi\)
0.451490 0.892276i \(-0.350893\pi\)
\(252\) 0 0
\(253\) 16.8935 1.06209
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −28.7750 −1.79493 −0.897467 0.441081i \(-0.854595\pi\)
−0.897467 + 0.441081i \(0.854595\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 27.5917 1.69494
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) − 30.0000i − 1.82237i −0.411997 0.911185i \(-0.635169\pi\)
0.411997 0.911185i \(-0.364831\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 51.3998i 3.09953i
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 28.7750i 1.72271i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) − 31.8874i − 1.89551i −0.318998 0.947755i \(-0.603346\pi\)
0.318998 0.947755i \(-0.396654\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 27.3689 1.59891 0.799455 0.600726i \(-0.205122\pi\)
0.799455 + 0.600726i \(0.205122\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −50.7750 −2.90737
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 9.59166i − 0.543893i −0.962312 0.271947i \(-0.912333\pi\)
0.962312 0.271947i \(-0.0876674\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 7.85654 0.430536
\(334\) 0 0
\(335\) 62.7750i 3.42976i
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 33.7871 1.82967
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 26.0000 1.38384 0.691920 0.721974i \(-0.256765\pi\)
0.691920 + 0.721974i \(0.256765\pi\)
\(354\) 0 0
\(355\) − 44.2625i − 2.34921i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −9.40834 −0.495176
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −42.4551 −2.22220
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) −28.7750 −1.49797
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −38.0288 −1.96906 −0.984529 0.175222i \(-0.943936\pi\)
−0.984529 + 0.175222i \(0.943936\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 38.9325i 1.99983i 0.0130611 + 0.999915i \(0.495842\pi\)
−0.0130611 + 0.999915i \(0.504158\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 37.1251i 1.88718i
\(388\) 0 0
\(389\) −9.84845 −0.499336 −0.249668 0.968331i \(-0.580322\pi\)
−0.249668 + 0.968331i \(0.580322\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −39.8362 −1.97948
\(406\) 0 0
\(407\) − 9.22501i − 0.457267i
\(408\) 0 0
\(409\) −30.0000 −1.48340 −0.741702 0.670729i \(-0.765981\pi\)
−0.741702 + 0.670729i \(0.765981\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) − 7.59166i − 0.372660i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 33.6948i − 1.64610i −0.567969 0.823050i \(-0.692271\pi\)
0.567969 0.823050i \(-0.307729\pi\)
\(420\) 0 0
\(421\) −36.2214 −1.76532 −0.882662 0.470008i \(-0.844251\pi\)
−0.882662 + 0.470008i \(0.844251\pi\)
\(422\) 0 0
\(423\) − 6.00000i − 0.291730i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 25.5615 1.22277
\(438\) 0 0
\(439\) 10.0000i 0.477274i 0.971109 + 0.238637i \(0.0767006\pi\)
−0.971109 + 0.238637i \(0.923299\pi\)
\(440\) 0 0
\(441\) 21.0000 1.00000
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −28.7750 −1.35798 −0.678988 0.734150i \(-0.737581\pi\)
−0.678988 + 0.734150i \(0.737581\pi\)
\(450\) 0 0
\(451\) 33.7871i 1.59097i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) − 14.0000i − 0.650635i −0.945605 0.325318i \(-0.894529\pi\)
0.945605 0.325318i \(-0.105471\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 1.89965i − 0.0879055i −0.999034 0.0439527i \(-0.986005\pi\)
0.999034 0.0439527i \(-0.0139951\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 43.5917 2.00435
\(474\) 0 0
\(475\) 77.7728i 3.56846i
\(476\) 0 0
\(477\) 18.7009 0.856257
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 42.0000i 1.90320i 0.307337 + 0.951601i \(0.400562\pi\)
−0.307337 + 0.951601i \(0.599438\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 46.7750i 2.10238i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −7.04509 −0.309843
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 10.7521i 0.470159i 0.971976 + 0.235079i \(0.0755350\pi\)
−0.971976 + 0.235079i \(0.924465\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 31.5917i − 1.36583i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 24.6578i − 1.06209i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −66.7750 −2.86033
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) −34.4140 −1.46875
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 46.8813 1.98643 0.993213 0.116313i \(-0.0371076\pi\)
0.993213 + 0.116313i \(0.0371076\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 45.9776i − 1.93773i −0.247598 0.968863i \(-0.579641\pi\)
0.247598 0.968863i \(-0.420359\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) − 47.7850i − 1.99974i −0.0161008 0.999870i \(-0.505125\pi\)
0.0161008 0.999870i \(-0.494875\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 69.9792i − 2.91833i
\(576\) 0 0
\(577\) 47.9583 1.99653 0.998265 0.0588745i \(-0.0187512\pi\)
0.998265 + 0.0588745i \(0.0187512\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) − 21.9583i − 0.909420i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 51.1231 2.10649
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 47.9583 1.96941 0.984706 0.174224i \(-0.0557418\pi\)
0.984706 + 0.174224i \(0.0557418\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 28.7750i 1.17571i 0.808965 + 0.587857i \(0.200028\pi\)
−0.808965 + 0.587857i \(0.799972\pi\)
\(600\) 0 0
\(601\) 9.59166 0.391252 0.195626 0.980679i \(-0.437326\pi\)
0.195626 + 0.980679i \(0.437326\pi\)
\(602\) 0 0
\(603\) 42.5473i 1.73266i
\(604\) 0 0
\(605\) 6.23365 0.253434
\(606\) 0 0
\(607\) − 47.9583i − 1.94657i −0.229605 0.973284i \(-0.573743\pi\)
0.229605 0.973284i \(-0.426257\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 2.80335 0.113226 0.0566132 0.998396i \(-0.481970\pi\)
0.0566132 + 0.998396i \(0.481970\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) − 19.6046i − 0.787977i −0.919115 0.393989i \(-0.871095\pi\)
0.919115 0.393989i \(-0.128905\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 114.958 4.59833
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 79.6724i − 3.16170i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) − 30.0000i − 1.18678i
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 33.5103i 1.32152i 0.750598 + 0.660759i \(0.229765\pi\)
−0.750598 + 0.660759i \(0.770235\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 47.9583i − 1.88544i −0.333591 0.942718i \(-0.608260\pi\)
0.333591 0.942718i \(-0.391740\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −28.7750 −1.12262
\(658\) 0 0
\(659\) − 49.5924i − 1.93185i −0.258829 0.965923i \(-0.583337\pi\)
0.258829 0.965923i \(-0.416663\pi\)
\(660\) 0 0
\(661\) 23.7541 0.923929 0.461964 0.886899i \(-0.347145\pi\)
0.461964 + 0.886899i \(0.347145\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 40.4083i 1.55995i
\(672\) 0 0
\(673\) 47.9583 1.84866 0.924329 0.381597i \(-0.124626\pi\)
0.924329 + 0.381597i \(0.124626\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −11.6558 −0.447971 −0.223985 0.974593i \(-0.571907\pi\)
−0.223985 + 0.974593i \(0.571907\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 43.2665 1.63415 0.817077 0.576529i \(-0.195593\pi\)
0.817077 + 0.576529i \(0.195593\pi\)
\(702\) 0 0
\(703\) − 13.9583i − 0.526448i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −43.4510 −1.63184 −0.815919 0.578167i \(-0.803768\pi\)
−0.815919 + 0.578167i \(0.803768\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −46.0000 −1.72271
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 28.7750i 1.07313i 0.843860 + 0.536563i \(0.180278\pi\)
−0.843860 + 0.536563i \(0.819722\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 50.4961 1.86512 0.932558 0.361019i \(-0.117571\pi\)
0.932558 + 0.361019i \(0.117571\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 49.9583 1.84024
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 3.59166 0.131588
\(746\) 0 0
\(747\) − 5.14544i − 0.188262i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 42.4551i 1.54510i
\(756\) 0 0
\(757\) −32.6066 −1.18511 −0.592554 0.805531i \(-0.701880\pi\)
−0.592554 + 0.805531i \(0.701880\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10.0000 0.362500 0.181250 0.983437i \(-0.441986\pi\)
0.181250 + 0.983437i \(0.441986\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 36.4059 1.30943 0.654715 0.755876i \(-0.272789\pi\)
0.654715 + 0.755876i \(0.272789\pi\)
\(774\) 0 0
\(775\) − 139.958i − 5.02745i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 51.1231i 1.83167i
\(780\) 0 0
\(781\) −35.2255 −1.26047
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −42.7750 −1.52670
\(786\) 0 0
\(787\) − 42.3628i − 1.51007i −0.655684 0.755036i \(-0.727620\pi\)
0.655684 0.755036i \(-0.272380\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −53.9264 −1.91017 −0.955086 0.296330i \(-0.904237\pi\)
−0.955086 + 0.296330i \(0.904237\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 33.7871i 1.19232i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 50.0000 1.75791 0.878953 0.476908i \(-0.158243\pi\)
0.878953 + 0.476908i \(0.158243\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 65.9583 2.30759
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) − 9.59166i − 0.334344i −0.985928 0.167172i \(-0.946536\pi\)
0.985928 0.167172i \(-0.0534636\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 51.3998i − 1.78735i −0.448718 0.893673i \(-0.648119\pi\)
0.448718 0.893673i \(-0.351881\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 97.3774i 3.36989i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −57.5412 −1.97948
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 12.5595i 0.430536i
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 70.7750i 2.42045i
\(856\) 0 0
\(857\) −22.0000 −0.751506 −0.375753 0.926720i \(-0.622616\pi\)
−0.375753 + 0.926720i \(0.622616\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 47.9583i − 1.63252i −0.577685 0.816260i \(-0.696044\pi\)
0.577685 0.816260i \(-0.303956\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 58.0000i 1.94745i 0.227728 + 0.973725i \(0.426870\pi\)
−0.227728 + 0.973725i \(0.573130\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 31.7029i 1.06209i
\(892\) 0 0
\(893\) −10.6599 −0.356720
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 35.5917 1.18311
\(906\) 0 0
\(907\) 58.4449i 1.94063i 0.241842 + 0.970316i \(0.422249\pi\)
−0.241842 + 0.970316i \(0.577751\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) −6.04168 −0.199951
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −38.2133 −1.25645
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −28.7750 −0.944077 −0.472038 0.881578i \(-0.656482\pi\)
−0.472038 + 0.881578i \(0.656482\pi\)
\(930\) 0 0
\(931\) − 37.3096i − 1.22277i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 52.3035 1.70505 0.852523 0.522690i \(-0.175071\pi\)
0.852523 + 0.522690i \(0.175071\pi\)
\(942\) 0 0
\(943\) − 46.0000i − 1.49797i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −61.0000 −1.96774
\(962\) 0 0
\(963\) − 21.4120i − 0.689993i
\(964\) 0 0
\(965\) 26.5575 0.854916
\(966\) 0 0
\(967\) − 47.9583i − 1.54224i −0.636693 0.771118i \(-0.719698\pi\)
0.636693 0.771118i \(-0.280302\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 51.2153i 1.64358i 0.569792 + 0.821789i \(0.307024\pi\)
−0.569792 + 0.821789i \(0.692976\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −45.2584 −1.44499
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −59.3486 −1.88718
\(990\) 0 0
\(991\) − 9.59166i − 0.304689i −0.988327 0.152345i \(-0.951318\pi\)
0.988327 0.152345i \(-0.0486824\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.2.h.a.735.2 yes 8
4.3 odd 2 inner 1472.2.h.a.735.1 8
8.3 odd 2 inner 1472.2.h.a.735.8 yes 8
8.5 even 2 inner 1472.2.h.a.735.7 yes 8
23.22 odd 2 inner 1472.2.h.a.735.7 yes 8
92.91 even 2 inner 1472.2.h.a.735.8 yes 8
184.45 odd 2 CM 1472.2.h.a.735.2 yes 8
184.91 even 2 inner 1472.2.h.a.735.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1472.2.h.a.735.1 8 4.3 odd 2 inner
1472.2.h.a.735.1 8 184.91 even 2 inner
1472.2.h.a.735.2 yes 8 1.1 even 1 trivial
1472.2.h.a.735.2 yes 8 184.45 odd 2 CM
1472.2.h.a.735.7 yes 8 8.5 even 2 inner
1472.2.h.a.735.7 yes 8 23.22 odd 2 inner
1472.2.h.a.735.8 yes 8 8.3 odd 2 inner
1472.2.h.a.735.8 yes 8 92.91 even 2 inner