Properties

Label 1472.2.c.d
Level $1472$
Weight $2$
Character orbit 1472.c
Analytic conductor $11.754$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,2,Mod(1471,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.1471");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1472.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7539791775\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.303595776.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 368)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + \beta_{4} q^{5} - \beta_{6} q^{7} + \beta_{7} q^{9} + \beta_{3} q^{11} + ( - \beta_{7} + 1) q^{13} + \beta_{6} q^{15} + ( - \beta_{4} - \beta_{2}) q^{17} + ( - \beta_{6} + \beta_{3}) q^{19}+ \cdots + ( - 3 \beta_{6} + \beta_{3}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{9} + 12 q^{13} + 8 q^{25} + 12 q^{29} - 12 q^{41} + 56 q^{49} + 44 q^{69} - 28 q^{73} - 48 q^{77} - 16 q^{81} + 16 q^{85} - 84 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{6} + 4\nu^{4} + 20\nu^{2} + 27 ) / 36 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{7} + 8\nu^{5} + 40\nu^{3} + 165\nu ) / 36 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{7} + 4\nu^{5} + 2\nu^{3} - 9\nu ) / 27 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 5\nu^{7} + 16\nu^{5} + 8\nu^{3} + 81\nu ) / 108 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 5\nu^{6} + 16\nu^{4} + 80\nu^{2} + 153 ) / 72 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 2\nu^{7} + 10\nu^{5} + 32\nu^{3} + 36\nu ) / 27 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{6} + 5\nu^{4} + 7\nu^{2} + 18 ) / 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{6} + \beta_{4} + \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{7} + 2\beta_{5} + \beta _1 - 3 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{6} - 4\beta_{4} - \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 5\beta_{7} - 6\beta_{5} + 5\beta _1 - 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -\beta_{6} + 15\beta_{4} + 16\beta_{3} - \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 8\beta_{5} - 16\beta _1 - 5 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 13\beta_{6} + 35\beta_{4} - 48\beta_{3} - 13\beta_{2} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1472\mathbb{Z}\right)^\times\).

\(n\) \(645\) \(833\) \(1151\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1471.1
1.26217 + 1.18614i
−1.26217 1.18614i
0.396143 1.68614i
−0.396143 + 1.68614i
−0.396143 1.68614i
0.396143 + 1.68614i
−1.26217 + 1.18614i
1.26217 1.18614i
0 2.52434i 0 2.00000i 0 5.04868 0 −3.37228 0
1471.2 0 2.52434i 0 2.00000i 0 −5.04868 0 −3.37228 0
1471.3 0 0.792287i 0 2.00000i 0 1.58457 0 2.37228 0
1471.4 0 0.792287i 0 2.00000i 0 −1.58457 0 2.37228 0
1471.5 0 0.792287i 0 2.00000i 0 −1.58457 0 2.37228 0
1471.6 0 0.792287i 0 2.00000i 0 1.58457 0 2.37228 0
1471.7 0 2.52434i 0 2.00000i 0 −5.04868 0 −3.37228 0
1471.8 0 2.52434i 0 2.00000i 0 5.04868 0 −3.37228 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1471.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
23.b odd 2 1 inner
92.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1472.2.c.d 8
4.b odd 2 1 inner 1472.2.c.d 8
8.b even 2 1 368.2.c.b 8
8.d odd 2 1 368.2.c.b 8
23.b odd 2 1 inner 1472.2.c.d 8
24.f even 2 1 3312.2.i.d 8
24.h odd 2 1 3312.2.i.d 8
92.b even 2 1 inner 1472.2.c.d 8
184.e odd 2 1 368.2.c.b 8
184.h even 2 1 368.2.c.b 8
552.b even 2 1 3312.2.i.d 8
552.h odd 2 1 3312.2.i.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
368.2.c.b 8 8.b even 2 1
368.2.c.b 8 8.d odd 2 1
368.2.c.b 8 184.e odd 2 1
368.2.c.b 8 184.h even 2 1
1472.2.c.d 8 1.a even 1 1 trivial
1472.2.c.d 8 4.b odd 2 1 inner
1472.2.c.d 8 23.b odd 2 1 inner
1472.2.c.d 8 92.b even 2 1 inner
3312.2.i.d 8 24.f even 2 1
3312.2.i.d 8 24.h odd 2 1
3312.2.i.d 8 552.b even 2 1
3312.2.i.d 8 552.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 7T_{3}^{2} + 4 \) acting on \(S_{2}^{\mathrm{new}}(1472, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} + 7 T^{2} + 4)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 4)^{4} \) Copy content Toggle raw display
$7$ \( (T^{4} - 28 T^{2} + 64)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 12)^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} - 3 T - 6)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} + 68 T^{2} + 1024)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} - 28 T^{2} + 64)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} - 2 T^{2} + 529)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 3 T - 6)^{4} \) Copy content Toggle raw display
$31$ \( (T^{4} + 63 T^{2} + 324)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 36)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 3 T - 6)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} - 28 T^{2} + 64)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 87 T^{2} + 36)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 68 T^{2} + 1024)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 12)^{4} \) Copy content Toggle raw display
$61$ \( (T^{4} + 228 T^{2} + 2304)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 44)^{4} \) Copy content Toggle raw display
$71$ \( (T^{4} + 127 T^{2} + 3364)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 7 T - 62)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} - 304 T^{2} + 4096)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 108)^{4} \) Copy content Toggle raw display
$89$ \( (T^{4} + 272 T^{2} + 16384)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 228 T^{2} + 2304)^{2} \) Copy content Toggle raw display
show more
show less