Properties

Label 1472.2.c.c
Level $1472$
Weight $2$
Character orbit 1472.c
Analytic conductor $11.754$
Analytic rank $0$
Dimension $6$
CM discriminant -23
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,2,Mod(1471,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.1471");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1472.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7539791775\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.8869743.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{3} + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 92)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + ( - \beta_{2} - 3) q^{9} + ( - \beta_{4} - \beta_{2}) q^{13} + \beta_{3} q^{23} + 5 q^{25} + (2 \beta_{3} + 3 \beta_1) q^{27} + (\beta_{4} - \beta_{2}) q^{29} - \beta_{5} q^{31} + (\beta_{5} + 2 \beta_{3} + 2 \beta_1) q^{39}+ \cdots + ( - 3 \beta_{4} - \beta_{2} + 2) q^{93}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 18 q^{9} + 30 q^{25} - 42 q^{49} + 54 q^{81} + 12 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3x^{3} + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{5} + 2\nu^{4} + \nu^{2} - 2\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{5} - 2\nu^{4} + 7\nu^{2} + 10\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{3} - 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{5} + 2\nu^{4} - \nu^{2} - 2\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 3\nu^{5} - 2\nu^{4} - 13\nu^{2} + 18\nu ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + \beta_{4} + 2\beta_{2} + \beta_1 ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{5} - \beta_{4} + 2\beta_{2} + 3\beta_1 ) / 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{3} + 3 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( \beta_{5} + 5\beta_{4} + 2\beta_{2} + 9\beta_1 ) / 8 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( \beta_{5} - 7\beta_{4} - 2\beta_{2} + 13\beta_1 ) / 8 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1472\mathbb{Z}\right)^\times\).

\(n\) \(645\) \(833\) \(1151\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1471.1
1.33454 + 0.467979i
−1.07255 0.921756i
−0.261988 + 1.38973i
−0.261988 1.38973i
−1.07255 + 0.921756i
1.33454 0.467979i
0 3.43410i 0 0 0 0 0 −8.79306 0
1471.2 0 2.11101i 0 0 0 0 0 −1.45636 0
1471.3 0 1.32309i 0 0 0 0 0 1.24943 0
1471.4 0 1.32309i 0 0 0 0 0 1.24943 0
1471.5 0 2.11101i 0 0 0 0 0 −1.45636 0
1471.6 0 3.43410i 0 0 0 0 0 −8.79306 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1471.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 CM by \(\Q(\sqrt{-23}) \)
4.b odd 2 1 inner
92.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1472.2.c.c 6
4.b odd 2 1 inner 1472.2.c.c 6
8.b even 2 1 92.2.b.b 6
8.d odd 2 1 92.2.b.b 6
23.b odd 2 1 CM 1472.2.c.c 6
24.f even 2 1 828.2.e.b 6
24.h odd 2 1 828.2.e.b 6
92.b even 2 1 inner 1472.2.c.c 6
184.e odd 2 1 92.2.b.b 6
184.h even 2 1 92.2.b.b 6
552.b even 2 1 828.2.e.b 6
552.h odd 2 1 828.2.e.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
92.2.b.b 6 8.b even 2 1
92.2.b.b 6 8.d odd 2 1
92.2.b.b 6 184.e odd 2 1
92.2.b.b 6 184.h even 2 1
828.2.e.b 6 24.f even 2 1
828.2.e.b 6 24.h odd 2 1
828.2.e.b 6 552.b even 2 1
828.2.e.b 6 552.h odd 2 1
1472.2.c.c 6 1.a even 1 1 trivial
1472.2.c.c 6 4.b odd 2 1 inner
1472.2.c.c 6 23.b odd 2 1 CM
1472.2.c.c 6 92.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} + 18T_{3}^{4} + 81T_{3}^{2} + 92 \) acting on \(S_{2}^{\mathrm{new}}(1472, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 18 T^{4} + \cdots + 92 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( T^{6} \) Copy content Toggle raw display
$13$ \( (T^{3} - 39 T - 74)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} \) Copy content Toggle raw display
$19$ \( T^{6} \) Copy content Toggle raw display
$23$ \( (T^{2} + 23)^{3} \) Copy content Toggle raw display
$29$ \( (T^{3} - 87 T - 282)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + 186 T^{4} + \cdots + 828 \) Copy content Toggle raw display
$37$ \( T^{6} \) Copy content Toggle raw display
$41$ \( (T^{3} - 123 T - 426)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} \) Copy content Toggle raw display
$47$ \( T^{6} + 282 T^{4} + \cdots + 412988 \) Copy content Toggle raw display
$53$ \( T^{6} \) Copy content Toggle raw display
$59$ \( (T^{2} + 92)^{3} \) Copy content Toggle raw display
$61$ \( T^{6} \) Copy content Toggle raw display
$67$ \( T^{6} \) Copy content Toggle raw display
$71$ \( T^{6} + 426 T^{4} + \cdots + 48668 \) Copy content Toggle raw display
$73$ \( (T^{3} - 219 T - 1226)^{2} \) Copy content Toggle raw display
$79$ \( T^{6} \) Copy content Toggle raw display
$83$ \( T^{6} \) Copy content Toggle raw display
$89$ \( T^{6} \) Copy content Toggle raw display
$97$ \( T^{6} \) Copy content Toggle raw display
show more
show less