Properties

Label 1470.4.a.r.1.1
Level $1470$
Weight $4$
Character 1470.1
Self dual yes
Analytic conductor $86.733$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1470,4,Mod(1,1470)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1470, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1470.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1470.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.7328077084\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1470.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -3.00000 q^{3} +4.00000 q^{4} +5.00000 q^{5} -6.00000 q^{6} +8.00000 q^{8} +9.00000 q^{9} +10.0000 q^{10} -48.0000 q^{11} -12.0000 q^{12} -2.00000 q^{13} -15.0000 q^{15} +16.0000 q^{16} +114.000 q^{17} +18.0000 q^{18} -140.000 q^{19} +20.0000 q^{20} -96.0000 q^{22} +72.0000 q^{23} -24.0000 q^{24} +25.0000 q^{25} -4.00000 q^{26} -27.0000 q^{27} +210.000 q^{29} -30.0000 q^{30} -272.000 q^{31} +32.0000 q^{32} +144.000 q^{33} +228.000 q^{34} +36.0000 q^{36} -334.000 q^{37} -280.000 q^{38} +6.00000 q^{39} +40.0000 q^{40} +198.000 q^{41} -268.000 q^{43} -192.000 q^{44} +45.0000 q^{45} +144.000 q^{46} -216.000 q^{47} -48.0000 q^{48} +50.0000 q^{50} -342.000 q^{51} -8.00000 q^{52} -78.0000 q^{53} -54.0000 q^{54} -240.000 q^{55} +420.000 q^{57} +420.000 q^{58} -240.000 q^{59} -60.0000 q^{60} -302.000 q^{61} -544.000 q^{62} +64.0000 q^{64} -10.0000 q^{65} +288.000 q^{66} +596.000 q^{67} +456.000 q^{68} -216.000 q^{69} -768.000 q^{71} +72.0000 q^{72} +478.000 q^{73} -668.000 q^{74} -75.0000 q^{75} -560.000 q^{76} +12.0000 q^{78} -640.000 q^{79} +80.0000 q^{80} +81.0000 q^{81} +396.000 q^{82} +348.000 q^{83} +570.000 q^{85} -536.000 q^{86} -630.000 q^{87} -384.000 q^{88} -210.000 q^{89} +90.0000 q^{90} +288.000 q^{92} +816.000 q^{93} -432.000 q^{94} -700.000 q^{95} -96.0000 q^{96} +1534.00 q^{97} -432.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −3.00000 −0.577350
\(4\) 4.00000 0.500000
\(5\) 5.00000 0.447214
\(6\) −6.00000 −0.408248
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) 9.00000 0.333333
\(10\) 10.0000 0.316228
\(11\) −48.0000 −1.31569 −0.657843 0.753155i \(-0.728531\pi\)
−0.657843 + 0.753155i \(0.728531\pi\)
\(12\) −12.0000 −0.288675
\(13\) −2.00000 −0.0426692 −0.0213346 0.999772i \(-0.506792\pi\)
−0.0213346 + 0.999772i \(0.506792\pi\)
\(14\) 0 0
\(15\) −15.0000 −0.258199
\(16\) 16.0000 0.250000
\(17\) 114.000 1.62642 0.813208 0.581974i \(-0.197719\pi\)
0.813208 + 0.581974i \(0.197719\pi\)
\(18\) 18.0000 0.235702
\(19\) −140.000 −1.69043 −0.845216 0.534425i \(-0.820528\pi\)
−0.845216 + 0.534425i \(0.820528\pi\)
\(20\) 20.0000 0.223607
\(21\) 0 0
\(22\) −96.0000 −0.930330
\(23\) 72.0000 0.652741 0.326370 0.945242i \(-0.394174\pi\)
0.326370 + 0.945242i \(0.394174\pi\)
\(24\) −24.0000 −0.204124
\(25\) 25.0000 0.200000
\(26\) −4.00000 −0.0301717
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 210.000 1.34469 0.672345 0.740238i \(-0.265287\pi\)
0.672345 + 0.740238i \(0.265287\pi\)
\(30\) −30.0000 −0.182574
\(31\) −272.000 −1.57589 −0.787946 0.615745i \(-0.788855\pi\)
−0.787946 + 0.615745i \(0.788855\pi\)
\(32\) 32.0000 0.176777
\(33\) 144.000 0.759612
\(34\) 228.000 1.15005
\(35\) 0 0
\(36\) 36.0000 0.166667
\(37\) −334.000 −1.48403 −0.742017 0.670381i \(-0.766131\pi\)
−0.742017 + 0.670381i \(0.766131\pi\)
\(38\) −280.000 −1.19532
\(39\) 6.00000 0.0246351
\(40\) 40.0000 0.158114
\(41\) 198.000 0.754205 0.377102 0.926172i \(-0.376920\pi\)
0.377102 + 0.926172i \(0.376920\pi\)
\(42\) 0 0
\(43\) −268.000 −0.950456 −0.475228 0.879863i \(-0.657634\pi\)
−0.475228 + 0.879863i \(0.657634\pi\)
\(44\) −192.000 −0.657843
\(45\) 45.0000 0.149071
\(46\) 144.000 0.461557
\(47\) −216.000 −0.670358 −0.335179 0.942154i \(-0.608797\pi\)
−0.335179 + 0.942154i \(0.608797\pi\)
\(48\) −48.0000 −0.144338
\(49\) 0 0
\(50\) 50.0000 0.141421
\(51\) −342.000 −0.939011
\(52\) −8.00000 −0.0213346
\(53\) −78.0000 −0.202153 −0.101077 0.994879i \(-0.532229\pi\)
−0.101077 + 0.994879i \(0.532229\pi\)
\(54\) −54.0000 −0.136083
\(55\) −240.000 −0.588393
\(56\) 0 0
\(57\) 420.000 0.975971
\(58\) 420.000 0.950840
\(59\) −240.000 −0.529582 −0.264791 0.964306i \(-0.585303\pi\)
−0.264791 + 0.964306i \(0.585303\pi\)
\(60\) −60.0000 −0.129099
\(61\) −302.000 −0.633888 −0.316944 0.948444i \(-0.602657\pi\)
−0.316944 + 0.948444i \(0.602657\pi\)
\(62\) −544.000 −1.11432
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −10.0000 −0.0190823
\(66\) 288.000 0.537127
\(67\) 596.000 1.08676 0.543381 0.839487i \(-0.317144\pi\)
0.543381 + 0.839487i \(0.317144\pi\)
\(68\) 456.000 0.813208
\(69\) −216.000 −0.376860
\(70\) 0 0
\(71\) −768.000 −1.28373 −0.641865 0.766818i \(-0.721839\pi\)
−0.641865 + 0.766818i \(0.721839\pi\)
\(72\) 72.0000 0.117851
\(73\) 478.000 0.766379 0.383190 0.923670i \(-0.374826\pi\)
0.383190 + 0.923670i \(0.374826\pi\)
\(74\) −668.000 −1.04937
\(75\) −75.0000 −0.115470
\(76\) −560.000 −0.845216
\(77\) 0 0
\(78\) 12.0000 0.0174196
\(79\) −640.000 −0.911464 −0.455732 0.890117i \(-0.650622\pi\)
−0.455732 + 0.890117i \(0.650622\pi\)
\(80\) 80.0000 0.111803
\(81\) 81.0000 0.111111
\(82\) 396.000 0.533303
\(83\) 348.000 0.460216 0.230108 0.973165i \(-0.426092\pi\)
0.230108 + 0.973165i \(0.426092\pi\)
\(84\) 0 0
\(85\) 570.000 0.727355
\(86\) −536.000 −0.672074
\(87\) −630.000 −0.776357
\(88\) −384.000 −0.465165
\(89\) −210.000 −0.250112 −0.125056 0.992150i \(-0.539911\pi\)
−0.125056 + 0.992150i \(0.539911\pi\)
\(90\) 90.0000 0.105409
\(91\) 0 0
\(92\) 288.000 0.326370
\(93\) 816.000 0.909841
\(94\) −432.000 −0.474015
\(95\) −700.000 −0.755984
\(96\) −96.0000 −0.102062
\(97\) 1534.00 1.60571 0.802856 0.596173i \(-0.203313\pi\)
0.802856 + 0.596173i \(0.203313\pi\)
\(98\) 0 0
\(99\) −432.000 −0.438562
\(100\) 100.000 0.100000
\(101\) −1722.00 −1.69649 −0.848245 0.529605i \(-0.822340\pi\)
−0.848245 + 0.529605i \(0.822340\pi\)
\(102\) −684.000 −0.663981
\(103\) −1052.00 −1.00638 −0.503188 0.864177i \(-0.667840\pi\)
−0.503188 + 0.864177i \(0.667840\pi\)
\(104\) −16.0000 −0.0150859
\(105\) 0 0
\(106\) −156.000 −0.142944
\(107\) −564.000 −0.509570 −0.254785 0.966998i \(-0.582005\pi\)
−0.254785 + 0.966998i \(0.582005\pi\)
\(108\) −108.000 −0.0962250
\(109\) −610.000 −0.536031 −0.268016 0.963415i \(-0.586368\pi\)
−0.268016 + 0.963415i \(0.586368\pi\)
\(110\) −480.000 −0.416056
\(111\) 1002.00 0.856807
\(112\) 0 0
\(113\) 1302.00 1.08391 0.541955 0.840407i \(-0.317684\pi\)
0.541955 + 0.840407i \(0.317684\pi\)
\(114\) 840.000 0.690116
\(115\) 360.000 0.291915
\(116\) 840.000 0.672345
\(117\) −18.0000 −0.0142231
\(118\) −480.000 −0.374471
\(119\) 0 0
\(120\) −120.000 −0.0912871
\(121\) 973.000 0.731029
\(122\) −604.000 −0.448226
\(123\) −594.000 −0.435440
\(124\) −1088.00 −0.787946
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −124.000 −0.0866395 −0.0433198 0.999061i \(-0.513793\pi\)
−0.0433198 + 0.999061i \(0.513793\pi\)
\(128\) 128.000 0.0883883
\(129\) 804.000 0.548746
\(130\) −20.0000 −0.0134932
\(131\) −192.000 −0.128054 −0.0640272 0.997948i \(-0.520394\pi\)
−0.0640272 + 0.997948i \(0.520394\pi\)
\(132\) 576.000 0.379806
\(133\) 0 0
\(134\) 1192.00 0.768456
\(135\) −135.000 −0.0860663
\(136\) 912.000 0.575025
\(137\) −2514.00 −1.56778 −0.783889 0.620901i \(-0.786767\pi\)
−0.783889 + 0.620901i \(0.786767\pi\)
\(138\) −432.000 −0.266480
\(139\) −1340.00 −0.817679 −0.408839 0.912606i \(-0.634066\pi\)
−0.408839 + 0.912606i \(0.634066\pi\)
\(140\) 0 0
\(141\) 648.000 0.387032
\(142\) −1536.00 −0.907734
\(143\) 96.0000 0.0561393
\(144\) 144.000 0.0833333
\(145\) 1050.00 0.601364
\(146\) 956.000 0.541912
\(147\) 0 0
\(148\) −1336.00 −0.742017
\(149\) 1410.00 0.775246 0.387623 0.921818i \(-0.373296\pi\)
0.387623 + 0.921818i \(0.373296\pi\)
\(150\) −150.000 −0.0816497
\(151\) −2128.00 −1.14685 −0.573424 0.819258i \(-0.694385\pi\)
−0.573424 + 0.819258i \(0.694385\pi\)
\(152\) −1120.00 −0.597658
\(153\) 1026.00 0.542138
\(154\) 0 0
\(155\) −1360.00 −0.704760
\(156\) 24.0000 0.0123176
\(157\) −3026.00 −1.53822 −0.769112 0.639114i \(-0.779301\pi\)
−0.769112 + 0.639114i \(0.779301\pi\)
\(158\) −1280.00 −0.644502
\(159\) 234.000 0.116713
\(160\) 160.000 0.0790569
\(161\) 0 0
\(162\) 162.000 0.0785674
\(163\) 2612.00 1.25514 0.627569 0.778561i \(-0.284050\pi\)
0.627569 + 0.778561i \(0.284050\pi\)
\(164\) 792.000 0.377102
\(165\) 720.000 0.339709
\(166\) 696.000 0.325422
\(167\) 24.0000 0.0111208 0.00556041 0.999985i \(-0.498230\pi\)
0.00556041 + 0.999985i \(0.498230\pi\)
\(168\) 0 0
\(169\) −2193.00 −0.998179
\(170\) 1140.00 0.514318
\(171\) −1260.00 −0.563477
\(172\) −1072.00 −0.475228
\(173\) −1962.00 −0.862243 −0.431122 0.902294i \(-0.641882\pi\)
−0.431122 + 0.902294i \(0.641882\pi\)
\(174\) −1260.00 −0.548968
\(175\) 0 0
\(176\) −768.000 −0.328921
\(177\) 720.000 0.305754
\(178\) −420.000 −0.176856
\(179\) −120.000 −0.0501074 −0.0250537 0.999686i \(-0.507976\pi\)
−0.0250537 + 0.999686i \(0.507976\pi\)
\(180\) 180.000 0.0745356
\(181\) −902.000 −0.370415 −0.185208 0.982699i \(-0.559296\pi\)
−0.185208 + 0.982699i \(0.559296\pi\)
\(182\) 0 0
\(183\) 906.000 0.365975
\(184\) 576.000 0.230779
\(185\) −1670.00 −0.663680
\(186\) 1632.00 0.643355
\(187\) −5472.00 −2.13985
\(188\) −864.000 −0.335179
\(189\) 0 0
\(190\) −1400.00 −0.534561
\(191\) −168.000 −0.0636443 −0.0318221 0.999494i \(-0.510131\pi\)
−0.0318221 + 0.999494i \(0.510131\pi\)
\(192\) −192.000 −0.0721688
\(193\) −1318.00 −0.491563 −0.245782 0.969325i \(-0.579045\pi\)
−0.245782 + 0.969325i \(0.579045\pi\)
\(194\) 3068.00 1.13541
\(195\) 30.0000 0.0110172
\(196\) 0 0
\(197\) −4014.00 −1.45170 −0.725852 0.687851i \(-0.758554\pi\)
−0.725852 + 0.687851i \(0.758554\pi\)
\(198\) −864.000 −0.310110
\(199\) −2000.00 −0.712443 −0.356222 0.934401i \(-0.615935\pi\)
−0.356222 + 0.934401i \(0.615935\pi\)
\(200\) 200.000 0.0707107
\(201\) −1788.00 −0.627442
\(202\) −3444.00 −1.19960
\(203\) 0 0
\(204\) −1368.00 −0.469506
\(205\) 990.000 0.337291
\(206\) −2104.00 −0.711615
\(207\) 648.000 0.217580
\(208\) −32.0000 −0.0106673
\(209\) 6720.00 2.22408
\(210\) 0 0
\(211\) −3868.00 −1.26201 −0.631005 0.775779i \(-0.717357\pi\)
−0.631005 + 0.775779i \(0.717357\pi\)
\(212\) −312.000 −0.101077
\(213\) 2304.00 0.741162
\(214\) −1128.00 −0.360320
\(215\) −1340.00 −0.425057
\(216\) −216.000 −0.0680414
\(217\) 0 0
\(218\) −1220.00 −0.379031
\(219\) −1434.00 −0.442469
\(220\) −960.000 −0.294196
\(221\) −228.000 −0.0693979
\(222\) 2004.00 0.605854
\(223\) 3148.00 0.945317 0.472658 0.881246i \(-0.343294\pi\)
0.472658 + 0.881246i \(0.343294\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 2604.00 0.766440
\(227\) −2556.00 −0.747347 −0.373673 0.927560i \(-0.621902\pi\)
−0.373673 + 0.927560i \(0.621902\pi\)
\(228\) 1680.00 0.487986
\(229\) 610.000 0.176026 0.0880130 0.996119i \(-0.471948\pi\)
0.0880130 + 0.996119i \(0.471948\pi\)
\(230\) 720.000 0.206415
\(231\) 0 0
\(232\) 1680.00 0.475420
\(233\) −2058.00 −0.578644 −0.289322 0.957232i \(-0.593430\pi\)
−0.289322 + 0.957232i \(0.593430\pi\)
\(234\) −36.0000 −0.0100572
\(235\) −1080.00 −0.299793
\(236\) −960.000 −0.264791
\(237\) 1920.00 0.526234
\(238\) 0 0
\(239\) 4920.00 1.33158 0.665792 0.746138i \(-0.268094\pi\)
0.665792 + 0.746138i \(0.268094\pi\)
\(240\) −240.000 −0.0645497
\(241\) 1438.00 0.384356 0.192178 0.981360i \(-0.438445\pi\)
0.192178 + 0.981360i \(0.438445\pi\)
\(242\) 1946.00 0.516916
\(243\) −243.000 −0.0641500
\(244\) −1208.00 −0.316944
\(245\) 0 0
\(246\) −1188.00 −0.307903
\(247\) 280.000 0.0721294
\(248\) −2176.00 −0.557162
\(249\) −1044.00 −0.265706
\(250\) 250.000 0.0632456
\(251\) −792.000 −0.199166 −0.0995829 0.995029i \(-0.531751\pi\)
−0.0995829 + 0.995029i \(0.531751\pi\)
\(252\) 0 0
\(253\) −3456.00 −0.858802
\(254\) −248.000 −0.0612634
\(255\) −1710.00 −0.419939
\(256\) 256.000 0.0625000
\(257\) −2166.00 −0.525725 −0.262863 0.964833i \(-0.584667\pi\)
−0.262863 + 0.964833i \(0.584667\pi\)
\(258\) 1608.00 0.388022
\(259\) 0 0
\(260\) −40.0000 −0.00954113
\(261\) 1890.00 0.448230
\(262\) −384.000 −0.0905481
\(263\) 3192.00 0.748392 0.374196 0.927350i \(-0.377919\pi\)
0.374196 + 0.927350i \(0.377919\pi\)
\(264\) 1152.00 0.268563
\(265\) −390.000 −0.0904057
\(266\) 0 0
\(267\) 630.000 0.144402
\(268\) 2384.00 0.543381
\(269\) −5490.00 −1.24435 −0.622177 0.782877i \(-0.713752\pi\)
−0.622177 + 0.782877i \(0.713752\pi\)
\(270\) −270.000 −0.0608581
\(271\) 6328.00 1.41845 0.709223 0.704985i \(-0.249046\pi\)
0.709223 + 0.704985i \(0.249046\pi\)
\(272\) 1824.00 0.406604
\(273\) 0 0
\(274\) −5028.00 −1.10859
\(275\) −1200.00 −0.263137
\(276\) −864.000 −0.188430
\(277\) −574.000 −0.124507 −0.0622533 0.998060i \(-0.519829\pi\)
−0.0622533 + 0.998060i \(0.519829\pi\)
\(278\) −2680.00 −0.578186
\(279\) −2448.00 −0.525297
\(280\) 0 0
\(281\) 4242.00 0.900557 0.450278 0.892888i \(-0.351325\pi\)
0.450278 + 0.892888i \(0.351325\pi\)
\(282\) 1296.00 0.273673
\(283\) 628.000 0.131911 0.0659553 0.997823i \(-0.478991\pi\)
0.0659553 + 0.997823i \(0.478991\pi\)
\(284\) −3072.00 −0.641865
\(285\) 2100.00 0.436468
\(286\) 192.000 0.0396965
\(287\) 0 0
\(288\) 288.000 0.0589256
\(289\) 8083.00 1.64523
\(290\) 2100.00 0.425228
\(291\) −4602.00 −0.927058
\(292\) 1912.00 0.383190
\(293\) 558.000 0.111258 0.0556292 0.998451i \(-0.482284\pi\)
0.0556292 + 0.998451i \(0.482284\pi\)
\(294\) 0 0
\(295\) −1200.00 −0.236836
\(296\) −2672.00 −0.524685
\(297\) 1296.00 0.253204
\(298\) 2820.00 0.548182
\(299\) −144.000 −0.0278520
\(300\) −300.000 −0.0577350
\(301\) 0 0
\(302\) −4256.00 −0.810945
\(303\) 5166.00 0.979468
\(304\) −2240.00 −0.422608
\(305\) −1510.00 −0.283483
\(306\) 2052.00 0.383350
\(307\) 6964.00 1.29465 0.647323 0.762216i \(-0.275888\pi\)
0.647323 + 0.762216i \(0.275888\pi\)
\(308\) 0 0
\(309\) 3156.00 0.581031
\(310\) −2720.00 −0.498341
\(311\) −2832.00 −0.516360 −0.258180 0.966097i \(-0.583123\pi\)
−0.258180 + 0.966097i \(0.583123\pi\)
\(312\) 48.0000 0.00870982
\(313\) −8642.00 −1.56062 −0.780311 0.625392i \(-0.784939\pi\)
−0.780311 + 0.625392i \(0.784939\pi\)
\(314\) −6052.00 −1.08769
\(315\) 0 0
\(316\) −2560.00 −0.455732
\(317\) −2214.00 −0.392273 −0.196137 0.980577i \(-0.562840\pi\)
−0.196137 + 0.980577i \(0.562840\pi\)
\(318\) 468.000 0.0825287
\(319\) −10080.0 −1.76919
\(320\) 320.000 0.0559017
\(321\) 1692.00 0.294200
\(322\) 0 0
\(323\) −15960.0 −2.74934
\(324\) 324.000 0.0555556
\(325\) −50.0000 −0.00853385
\(326\) 5224.00 0.887517
\(327\) 1830.00 0.309478
\(328\) 1584.00 0.266652
\(329\) 0 0
\(330\) 1440.00 0.240210
\(331\) 10772.0 1.78877 0.894385 0.447299i \(-0.147614\pi\)
0.894385 + 0.447299i \(0.147614\pi\)
\(332\) 1392.00 0.230108
\(333\) −3006.00 −0.494678
\(334\) 48.0000 0.00786360
\(335\) 2980.00 0.486014
\(336\) 0 0
\(337\) −1654.00 −0.267356 −0.133678 0.991025i \(-0.542679\pi\)
−0.133678 + 0.991025i \(0.542679\pi\)
\(338\) −4386.00 −0.705819
\(339\) −3906.00 −0.625796
\(340\) 2280.00 0.363678
\(341\) 13056.0 2.07338
\(342\) −2520.00 −0.398439
\(343\) 0 0
\(344\) −2144.00 −0.336037
\(345\) −1080.00 −0.168537
\(346\) −3924.00 −0.609698
\(347\) 2196.00 0.339733 0.169867 0.985467i \(-0.445666\pi\)
0.169867 + 0.985467i \(0.445666\pi\)
\(348\) −2520.00 −0.388179
\(349\) −8270.00 −1.26843 −0.634216 0.773156i \(-0.718677\pi\)
−0.634216 + 0.773156i \(0.718677\pi\)
\(350\) 0 0
\(351\) 54.0000 0.00821170
\(352\) −1536.00 −0.232583
\(353\) −10302.0 −1.55331 −0.776657 0.629923i \(-0.783086\pi\)
−0.776657 + 0.629923i \(0.783086\pi\)
\(354\) 1440.00 0.216201
\(355\) −3840.00 −0.574102
\(356\) −840.000 −0.125056
\(357\) 0 0
\(358\) −240.000 −0.0354313
\(359\) −2280.00 −0.335192 −0.167596 0.985856i \(-0.553600\pi\)
−0.167596 + 0.985856i \(0.553600\pi\)
\(360\) 360.000 0.0527046
\(361\) 12741.0 1.85756
\(362\) −1804.00 −0.261923
\(363\) −2919.00 −0.422060
\(364\) 0 0
\(365\) 2390.00 0.342735
\(366\) 1812.00 0.258783
\(367\) 8764.00 1.24653 0.623266 0.782010i \(-0.285805\pi\)
0.623266 + 0.782010i \(0.285805\pi\)
\(368\) 1152.00 0.163185
\(369\) 1782.00 0.251402
\(370\) −3340.00 −0.469293
\(371\) 0 0
\(372\) 3264.00 0.454921
\(373\) −1318.00 −0.182958 −0.0914792 0.995807i \(-0.529159\pi\)
−0.0914792 + 0.995807i \(0.529159\pi\)
\(374\) −10944.0 −1.51310
\(375\) −375.000 −0.0516398
\(376\) −1728.00 −0.237007
\(377\) −420.000 −0.0573769
\(378\) 0 0
\(379\) 1100.00 0.149085 0.0745425 0.997218i \(-0.476250\pi\)
0.0745425 + 0.997218i \(0.476250\pi\)
\(380\) −2800.00 −0.377992
\(381\) 372.000 0.0500214
\(382\) −336.000 −0.0450033
\(383\) 3528.00 0.470685 0.235343 0.971912i \(-0.424379\pi\)
0.235343 + 0.971912i \(0.424379\pi\)
\(384\) −384.000 −0.0510310
\(385\) 0 0
\(386\) −2636.00 −0.347588
\(387\) −2412.00 −0.316819
\(388\) 6136.00 0.802856
\(389\) −9630.00 −1.25517 −0.627584 0.778549i \(-0.715956\pi\)
−0.627584 + 0.778549i \(0.715956\pi\)
\(390\) 60.0000 0.00779030
\(391\) 8208.00 1.06163
\(392\) 0 0
\(393\) 576.000 0.0739322
\(394\) −8028.00 −1.02651
\(395\) −3200.00 −0.407619
\(396\) −1728.00 −0.219281
\(397\) 3094.00 0.391142 0.195571 0.980690i \(-0.437344\pi\)
0.195571 + 0.980690i \(0.437344\pi\)
\(398\) −4000.00 −0.503774
\(399\) 0 0
\(400\) 400.000 0.0500000
\(401\) −1638.00 −0.203985 −0.101992 0.994785i \(-0.532522\pi\)
−0.101992 + 0.994785i \(0.532522\pi\)
\(402\) −3576.00 −0.443668
\(403\) 544.000 0.0672421
\(404\) −6888.00 −0.848245
\(405\) 405.000 0.0496904
\(406\) 0 0
\(407\) 16032.0 1.95252
\(408\) −2736.00 −0.331991
\(409\) 13750.0 1.66233 0.831166 0.556024i \(-0.187674\pi\)
0.831166 + 0.556024i \(0.187674\pi\)
\(410\) 1980.00 0.238501
\(411\) 7542.00 0.905157
\(412\) −4208.00 −0.503188
\(413\) 0 0
\(414\) 1296.00 0.153852
\(415\) 1740.00 0.205815
\(416\) −64.0000 −0.00754293
\(417\) 4020.00 0.472087
\(418\) 13440.0 1.57266
\(419\) 12480.0 1.45510 0.727551 0.686053i \(-0.240658\pi\)
0.727551 + 0.686053i \(0.240658\pi\)
\(420\) 0 0
\(421\) 7262.00 0.840685 0.420342 0.907366i \(-0.361910\pi\)
0.420342 + 0.907366i \(0.361910\pi\)
\(422\) −7736.00 −0.892376
\(423\) −1944.00 −0.223453
\(424\) −624.000 −0.0714720
\(425\) 2850.00 0.325283
\(426\) 4608.00 0.524081
\(427\) 0 0
\(428\) −2256.00 −0.254785
\(429\) −288.000 −0.0324121
\(430\) −2680.00 −0.300561
\(431\) 9792.00 1.09435 0.547174 0.837019i \(-0.315704\pi\)
0.547174 + 0.837019i \(0.315704\pi\)
\(432\) −432.000 −0.0481125
\(433\) −1802.00 −0.199997 −0.0999984 0.994988i \(-0.531884\pi\)
−0.0999984 + 0.994988i \(0.531884\pi\)
\(434\) 0 0
\(435\) −3150.00 −0.347198
\(436\) −2440.00 −0.268016
\(437\) −10080.0 −1.10341
\(438\) −2868.00 −0.312873
\(439\) 2320.00 0.252227 0.126113 0.992016i \(-0.459750\pi\)
0.126113 + 0.992016i \(0.459750\pi\)
\(440\) −1920.00 −0.208028
\(441\) 0 0
\(442\) −456.000 −0.0490717
\(443\) 11172.0 1.19819 0.599095 0.800678i \(-0.295527\pi\)
0.599095 + 0.800678i \(0.295527\pi\)
\(444\) 4008.00 0.428404
\(445\) −1050.00 −0.111853
\(446\) 6296.00 0.668440
\(447\) −4230.00 −0.447589
\(448\) 0 0
\(449\) 6810.00 0.715777 0.357888 0.933764i \(-0.383497\pi\)
0.357888 + 0.933764i \(0.383497\pi\)
\(450\) 450.000 0.0471405
\(451\) −9504.00 −0.992297
\(452\) 5208.00 0.541955
\(453\) 6384.00 0.662134
\(454\) −5112.00 −0.528454
\(455\) 0 0
\(456\) 3360.00 0.345058
\(457\) 17066.0 1.74686 0.873429 0.486952i \(-0.161891\pi\)
0.873429 + 0.486952i \(0.161891\pi\)
\(458\) 1220.00 0.124469
\(459\) −3078.00 −0.313004
\(460\) 1440.00 0.145957
\(461\) 18918.0 1.91128 0.955639 0.294541i \(-0.0951667\pi\)
0.955639 + 0.294541i \(0.0951667\pi\)
\(462\) 0 0
\(463\) 1052.00 0.105595 0.0527976 0.998605i \(-0.483186\pi\)
0.0527976 + 0.998605i \(0.483186\pi\)
\(464\) 3360.00 0.336173
\(465\) 4080.00 0.406893
\(466\) −4116.00 −0.409163
\(467\) −11076.0 −1.09751 −0.548754 0.835984i \(-0.684898\pi\)
−0.548754 + 0.835984i \(0.684898\pi\)
\(468\) −72.0000 −0.00711154
\(469\) 0 0
\(470\) −2160.00 −0.211986
\(471\) 9078.00 0.888094
\(472\) −1920.00 −0.187236
\(473\) 12864.0 1.25050
\(474\) 3840.00 0.372103
\(475\) −3500.00 −0.338086
\(476\) 0 0
\(477\) −702.000 −0.0673844
\(478\) 9840.00 0.941571
\(479\) 9000.00 0.858498 0.429249 0.903186i \(-0.358778\pi\)
0.429249 + 0.903186i \(0.358778\pi\)
\(480\) −480.000 −0.0456435
\(481\) 668.000 0.0633226
\(482\) 2876.00 0.271781
\(483\) 0 0
\(484\) 3892.00 0.365515
\(485\) 7670.00 0.718096
\(486\) −486.000 −0.0453609
\(487\) −8764.00 −0.815472 −0.407736 0.913100i \(-0.633682\pi\)
−0.407736 + 0.913100i \(0.633682\pi\)
\(488\) −2416.00 −0.224113
\(489\) −7836.00 −0.724655
\(490\) 0 0
\(491\) 5592.00 0.513978 0.256989 0.966414i \(-0.417270\pi\)
0.256989 + 0.966414i \(0.417270\pi\)
\(492\) −2376.00 −0.217720
\(493\) 23940.0 2.18703
\(494\) 560.000 0.0510032
\(495\) −2160.00 −0.196131
\(496\) −4352.00 −0.393973
\(497\) 0 0
\(498\) −2088.00 −0.187883
\(499\) 4700.00 0.421645 0.210823 0.977524i \(-0.432386\pi\)
0.210823 + 0.977524i \(0.432386\pi\)
\(500\) 500.000 0.0447214
\(501\) −72.0000 −0.00642060
\(502\) −1584.00 −0.140831
\(503\) 11808.0 1.04671 0.523353 0.852116i \(-0.324681\pi\)
0.523353 + 0.852116i \(0.324681\pi\)
\(504\) 0 0
\(505\) −8610.00 −0.758693
\(506\) −6912.00 −0.607265
\(507\) 6579.00 0.576299
\(508\) −496.000 −0.0433198
\(509\) −1170.00 −0.101885 −0.0509424 0.998702i \(-0.516222\pi\)
−0.0509424 + 0.998702i \(0.516222\pi\)
\(510\) −3420.00 −0.296941
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) 3780.00 0.325324
\(514\) −4332.00 −0.371744
\(515\) −5260.00 −0.450065
\(516\) 3216.00 0.274373
\(517\) 10368.0 0.881981
\(518\) 0 0
\(519\) 5886.00 0.497816
\(520\) −80.0000 −0.00674660
\(521\) 16638.0 1.39909 0.699543 0.714590i \(-0.253387\pi\)
0.699543 + 0.714590i \(0.253387\pi\)
\(522\) 3780.00 0.316947
\(523\) −15692.0 −1.31198 −0.655988 0.754771i \(-0.727748\pi\)
−0.655988 + 0.754771i \(0.727748\pi\)
\(524\) −768.000 −0.0640272
\(525\) 0 0
\(526\) 6384.00 0.529193
\(527\) −31008.0 −2.56305
\(528\) 2304.00 0.189903
\(529\) −6983.00 −0.573929
\(530\) −780.000 −0.0639265
\(531\) −2160.00 −0.176527
\(532\) 0 0
\(533\) −396.000 −0.0321814
\(534\) 1260.00 0.102108
\(535\) −2820.00 −0.227886
\(536\) 4768.00 0.384228
\(537\) 360.000 0.0289295
\(538\) −10980.0 −0.879891
\(539\) 0 0
\(540\) −540.000 −0.0430331
\(541\) −22018.0 −1.74977 −0.874887 0.484327i \(-0.839064\pi\)
−0.874887 + 0.484327i \(0.839064\pi\)
\(542\) 12656.0 1.00299
\(543\) 2706.00 0.213859
\(544\) 3648.00 0.287512
\(545\) −3050.00 −0.239720
\(546\) 0 0
\(547\) −4564.00 −0.356751 −0.178375 0.983963i \(-0.557084\pi\)
−0.178375 + 0.983963i \(0.557084\pi\)
\(548\) −10056.0 −0.783889
\(549\) −2718.00 −0.211296
\(550\) −2400.00 −0.186066
\(551\) −29400.0 −2.27311
\(552\) −1728.00 −0.133240
\(553\) 0 0
\(554\) −1148.00 −0.0880394
\(555\) 5010.00 0.383176
\(556\) −5360.00 −0.408839
\(557\) −7734.00 −0.588331 −0.294165 0.955755i \(-0.595042\pi\)
−0.294165 + 0.955755i \(0.595042\pi\)
\(558\) −4896.00 −0.371441
\(559\) 536.000 0.0405552
\(560\) 0 0
\(561\) 16416.0 1.23544
\(562\) 8484.00 0.636790
\(563\) 20148.0 1.50824 0.754118 0.656739i \(-0.228065\pi\)
0.754118 + 0.656739i \(0.228065\pi\)
\(564\) 2592.00 0.193516
\(565\) 6510.00 0.484739
\(566\) 1256.00 0.0932749
\(567\) 0 0
\(568\) −6144.00 −0.453867
\(569\) −24030.0 −1.77046 −0.885228 0.465156i \(-0.845998\pi\)
−0.885228 + 0.465156i \(0.845998\pi\)
\(570\) 4200.00 0.308629
\(571\) 2372.00 0.173844 0.0869222 0.996215i \(-0.472297\pi\)
0.0869222 + 0.996215i \(0.472297\pi\)
\(572\) 384.000 0.0280697
\(573\) 504.000 0.0367450
\(574\) 0 0
\(575\) 1800.00 0.130548
\(576\) 576.000 0.0416667
\(577\) −8546.00 −0.616594 −0.308297 0.951290i \(-0.599759\pi\)
−0.308297 + 0.951290i \(0.599759\pi\)
\(578\) 16166.0 1.16335
\(579\) 3954.00 0.283804
\(580\) 4200.00 0.300682
\(581\) 0 0
\(582\) −9204.00 −0.655529
\(583\) 3744.00 0.265970
\(584\) 3824.00 0.270956
\(585\) −90.0000 −0.00636076
\(586\) 1116.00 0.0786716
\(587\) 15444.0 1.08593 0.542966 0.839755i \(-0.317301\pi\)
0.542966 + 0.839755i \(0.317301\pi\)
\(588\) 0 0
\(589\) 38080.0 2.66394
\(590\) −2400.00 −0.167469
\(591\) 12042.0 0.838142
\(592\) −5344.00 −0.371009
\(593\) −18342.0 −1.27018 −0.635089 0.772439i \(-0.719037\pi\)
−0.635089 + 0.772439i \(0.719037\pi\)
\(594\) 2592.00 0.179042
\(595\) 0 0
\(596\) 5640.00 0.387623
\(597\) 6000.00 0.411329
\(598\) −288.000 −0.0196943
\(599\) 24600.0 1.67801 0.839006 0.544123i \(-0.183137\pi\)
0.839006 + 0.544123i \(0.183137\pi\)
\(600\) −600.000 −0.0408248
\(601\) 8998.00 0.610709 0.305354 0.952239i \(-0.401225\pi\)
0.305354 + 0.952239i \(0.401225\pi\)
\(602\) 0 0
\(603\) 5364.00 0.362254
\(604\) −8512.00 −0.573424
\(605\) 4865.00 0.326926
\(606\) 10332.0 0.692589
\(607\) −4076.00 −0.272553 −0.136277 0.990671i \(-0.543514\pi\)
−0.136277 + 0.990671i \(0.543514\pi\)
\(608\) −4480.00 −0.298829
\(609\) 0 0
\(610\) −3020.00 −0.200453
\(611\) 432.000 0.0286037
\(612\) 4104.00 0.271069
\(613\) −4078.00 −0.268693 −0.134347 0.990934i \(-0.542894\pi\)
−0.134347 + 0.990934i \(0.542894\pi\)
\(614\) 13928.0 0.915453
\(615\) −2970.00 −0.194735
\(616\) 0 0
\(617\) 10086.0 0.658099 0.329049 0.944313i \(-0.393272\pi\)
0.329049 + 0.944313i \(0.393272\pi\)
\(618\) 6312.00 0.410851
\(619\) −8780.00 −0.570110 −0.285055 0.958511i \(-0.592012\pi\)
−0.285055 + 0.958511i \(0.592012\pi\)
\(620\) −5440.00 −0.352380
\(621\) −1944.00 −0.125620
\(622\) −5664.00 −0.365122
\(623\) 0 0
\(624\) 96.0000 0.00615878
\(625\) 625.000 0.0400000
\(626\) −17284.0 −1.10353
\(627\) −20160.0 −1.28407
\(628\) −12104.0 −0.769112
\(629\) −38076.0 −2.41366
\(630\) 0 0
\(631\) 2792.00 0.176145 0.0880727 0.996114i \(-0.471929\pi\)
0.0880727 + 0.996114i \(0.471929\pi\)
\(632\) −5120.00 −0.322251
\(633\) 11604.0 0.728622
\(634\) −4428.00 −0.277379
\(635\) −620.000 −0.0387464
\(636\) 936.000 0.0583566
\(637\) 0 0
\(638\) −20160.0 −1.25101
\(639\) −6912.00 −0.427910
\(640\) 640.000 0.0395285
\(641\) 7602.00 0.468426 0.234213 0.972185i \(-0.424749\pi\)
0.234213 + 0.972185i \(0.424749\pi\)
\(642\) 3384.00 0.208031
\(643\) −24212.0 −1.48496 −0.742479 0.669869i \(-0.766350\pi\)
−0.742479 + 0.669869i \(0.766350\pi\)
\(644\) 0 0
\(645\) 4020.00 0.245407
\(646\) −31920.0 −1.94408
\(647\) −9456.00 −0.574581 −0.287290 0.957844i \(-0.592754\pi\)
−0.287290 + 0.957844i \(0.592754\pi\)
\(648\) 648.000 0.0392837
\(649\) 11520.0 0.696764
\(650\) −100.000 −0.00603434
\(651\) 0 0
\(652\) 10448.0 0.627569
\(653\) −9558.00 −0.572792 −0.286396 0.958111i \(-0.592457\pi\)
−0.286396 + 0.958111i \(0.592457\pi\)
\(654\) 3660.00 0.218834
\(655\) −960.000 −0.0572676
\(656\) 3168.00 0.188551
\(657\) 4302.00 0.255460
\(658\) 0 0
\(659\) −29280.0 −1.73078 −0.865392 0.501095i \(-0.832931\pi\)
−0.865392 + 0.501095i \(0.832931\pi\)
\(660\) 2880.00 0.169854
\(661\) 29098.0 1.71223 0.856113 0.516789i \(-0.172873\pi\)
0.856113 + 0.516789i \(0.172873\pi\)
\(662\) 21544.0 1.26485
\(663\) 684.000 0.0400669
\(664\) 2784.00 0.162711
\(665\) 0 0
\(666\) −6012.00 −0.349790
\(667\) 15120.0 0.877734
\(668\) 96.0000 0.00556041
\(669\) −9444.00 −0.545779
\(670\) 5960.00 0.343664
\(671\) 14496.0 0.833997
\(672\) 0 0
\(673\) −11638.0 −0.666585 −0.333293 0.942823i \(-0.608160\pi\)
−0.333293 + 0.942823i \(0.608160\pi\)
\(674\) −3308.00 −0.189050
\(675\) −675.000 −0.0384900
\(676\) −8772.00 −0.499090
\(677\) −3426.00 −0.194493 −0.0972466 0.995260i \(-0.531004\pi\)
−0.0972466 + 0.995260i \(0.531004\pi\)
\(678\) −7812.00 −0.442505
\(679\) 0 0
\(680\) 4560.00 0.257159
\(681\) 7668.00 0.431481
\(682\) 26112.0 1.46610
\(683\) −20148.0 −1.12876 −0.564379 0.825516i \(-0.690884\pi\)
−0.564379 + 0.825516i \(0.690884\pi\)
\(684\) −5040.00 −0.281739
\(685\) −12570.0 −0.701131
\(686\) 0 0
\(687\) −1830.00 −0.101629
\(688\) −4288.00 −0.237614
\(689\) 156.000 0.00862573
\(690\) −2160.00 −0.119174
\(691\) 29428.0 1.62011 0.810053 0.586356i \(-0.199438\pi\)
0.810053 + 0.586356i \(0.199438\pi\)
\(692\) −7848.00 −0.431122
\(693\) 0 0
\(694\) 4392.00 0.240228
\(695\) −6700.00 −0.365677
\(696\) −5040.00 −0.274484
\(697\) 22572.0 1.22665
\(698\) −16540.0 −0.896917
\(699\) 6174.00 0.334080
\(700\) 0 0
\(701\) 16242.0 0.875110 0.437555 0.899192i \(-0.355845\pi\)
0.437555 + 0.899192i \(0.355845\pi\)
\(702\) 108.000 0.00580655
\(703\) 46760.0 2.50866
\(704\) −3072.00 −0.164461
\(705\) 3240.00 0.173086
\(706\) −20604.0 −1.09836
\(707\) 0 0
\(708\) 2880.00 0.152877
\(709\) 2030.00 0.107529 0.0537646 0.998554i \(-0.482878\pi\)
0.0537646 + 0.998554i \(0.482878\pi\)
\(710\) −7680.00 −0.405951
\(711\) −5760.00 −0.303821
\(712\) −1680.00 −0.0884279
\(713\) −19584.0 −1.02865
\(714\) 0 0
\(715\) 480.000 0.0251063
\(716\) −480.000 −0.0250537
\(717\) −14760.0 −0.768790
\(718\) −4560.00 −0.237016
\(719\) −6960.00 −0.361007 −0.180504 0.983574i \(-0.557773\pi\)
−0.180504 + 0.983574i \(0.557773\pi\)
\(720\) 720.000 0.0372678
\(721\) 0 0
\(722\) 25482.0 1.31349
\(723\) −4314.00 −0.221908
\(724\) −3608.00 −0.185208
\(725\) 5250.00 0.268938
\(726\) −5838.00 −0.298441
\(727\) −18596.0 −0.948676 −0.474338 0.880343i \(-0.657313\pi\)
−0.474338 + 0.880343i \(0.657313\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 4780.00 0.242350
\(731\) −30552.0 −1.54584
\(732\) 3624.00 0.182988
\(733\) −21242.0 −1.07038 −0.535192 0.844731i \(-0.679761\pi\)
−0.535192 + 0.844731i \(0.679761\pi\)
\(734\) 17528.0 0.881431
\(735\) 0 0
\(736\) 2304.00 0.115389
\(737\) −28608.0 −1.42984
\(738\) 3564.00 0.177768
\(739\) −340.000 −0.0169244 −0.00846218 0.999964i \(-0.502694\pi\)
−0.00846218 + 0.999964i \(0.502694\pi\)
\(740\) −6680.00 −0.331840
\(741\) −840.000 −0.0416440
\(742\) 0 0
\(743\) −21888.0 −1.08074 −0.540372 0.841426i \(-0.681716\pi\)
−0.540372 + 0.841426i \(0.681716\pi\)
\(744\) 6528.00 0.321678
\(745\) 7050.00 0.346701
\(746\) −2636.00 −0.129371
\(747\) 3132.00 0.153405
\(748\) −21888.0 −1.06993
\(749\) 0 0
\(750\) −750.000 −0.0365148
\(751\) 17792.0 0.864500 0.432250 0.901754i \(-0.357720\pi\)
0.432250 + 0.901754i \(0.357720\pi\)
\(752\) −3456.00 −0.167590
\(753\) 2376.00 0.114988
\(754\) −840.000 −0.0405716
\(755\) −10640.0 −0.512886
\(756\) 0 0
\(757\) 37346.0 1.79308 0.896541 0.442960i \(-0.146072\pi\)
0.896541 + 0.442960i \(0.146072\pi\)
\(758\) 2200.00 0.105419
\(759\) 10368.0 0.495829
\(760\) −5600.00 −0.267281
\(761\) 11358.0 0.541034 0.270517 0.962715i \(-0.412805\pi\)
0.270517 + 0.962715i \(0.412805\pi\)
\(762\) 744.000 0.0353704
\(763\) 0 0
\(764\) −672.000 −0.0318221
\(765\) 5130.00 0.242452
\(766\) 7056.00 0.332825
\(767\) 480.000 0.0225969
\(768\) −768.000 −0.0360844
\(769\) 34270.0 1.60703 0.803516 0.595283i \(-0.202960\pi\)
0.803516 + 0.595283i \(0.202960\pi\)
\(770\) 0 0
\(771\) 6498.00 0.303528
\(772\) −5272.00 −0.245782
\(773\) 13278.0 0.617822 0.308911 0.951091i \(-0.400035\pi\)
0.308911 + 0.951091i \(0.400035\pi\)
\(774\) −4824.00 −0.224025
\(775\) −6800.00 −0.315178
\(776\) 12272.0 0.567705
\(777\) 0 0
\(778\) −19260.0 −0.887538
\(779\) −27720.0 −1.27493
\(780\) 120.000 0.00550858
\(781\) 36864.0 1.68899
\(782\) 16416.0 0.750684
\(783\) −5670.00 −0.258786
\(784\) 0 0
\(785\) −15130.0 −0.687914
\(786\) 1152.00 0.0522780
\(787\) 11164.0 0.505659 0.252829 0.967511i \(-0.418639\pi\)
0.252829 + 0.967511i \(0.418639\pi\)
\(788\) −16056.0 −0.725852
\(789\) −9576.00 −0.432084
\(790\) −6400.00 −0.288230
\(791\) 0 0
\(792\) −3456.00 −0.155055
\(793\) 604.000 0.0270475
\(794\) 6188.00 0.276579
\(795\) 1170.00 0.0521958
\(796\) −8000.00 −0.356222
\(797\) 5094.00 0.226397 0.113199 0.993572i \(-0.463890\pi\)
0.113199 + 0.993572i \(0.463890\pi\)
\(798\) 0 0
\(799\) −24624.0 −1.09028
\(800\) 800.000 0.0353553
\(801\) −1890.00 −0.0833706
\(802\) −3276.00 −0.144239
\(803\) −22944.0 −1.00831
\(804\) −7152.00 −0.313721
\(805\) 0 0
\(806\) 1088.00 0.0475474
\(807\) 16470.0 0.718428
\(808\) −13776.0 −0.599799
\(809\) −8790.00 −0.382002 −0.191001 0.981590i \(-0.561173\pi\)
−0.191001 + 0.981590i \(0.561173\pi\)
\(810\) 810.000 0.0351364
\(811\) −5852.00 −0.253380 −0.126690 0.991942i \(-0.540435\pi\)
−0.126690 + 0.991942i \(0.540435\pi\)
\(812\) 0 0
\(813\) −18984.0 −0.818940
\(814\) 32064.0 1.38064
\(815\) 13060.0 0.561315
\(816\) −5472.00 −0.234753
\(817\) 37520.0 1.60668
\(818\) 27500.0 1.17545
\(819\) 0 0
\(820\) 3960.00 0.168645
\(821\) −29478.0 −1.25309 −0.626546 0.779384i \(-0.715532\pi\)
−0.626546 + 0.779384i \(0.715532\pi\)
\(822\) 15084.0 0.640042
\(823\) 39332.0 1.66589 0.832945 0.553356i \(-0.186653\pi\)
0.832945 + 0.553356i \(0.186653\pi\)
\(824\) −8416.00 −0.355807
\(825\) 3600.00 0.151922
\(826\) 0 0
\(827\) 6756.00 0.284074 0.142037 0.989861i \(-0.454635\pi\)
0.142037 + 0.989861i \(0.454635\pi\)
\(828\) 2592.00 0.108790
\(829\) −3950.00 −0.165488 −0.0827438 0.996571i \(-0.526368\pi\)
−0.0827438 + 0.996571i \(0.526368\pi\)
\(830\) 3480.00 0.145533
\(831\) 1722.00 0.0718839
\(832\) −128.000 −0.00533366
\(833\) 0 0
\(834\) 8040.00 0.333816
\(835\) 120.000 0.00497338
\(836\) 26880.0 1.11204
\(837\) 7344.00 0.303280
\(838\) 24960.0 1.02891
\(839\) −12360.0 −0.508599 −0.254300 0.967126i \(-0.581845\pi\)
−0.254300 + 0.967126i \(0.581845\pi\)
\(840\) 0 0
\(841\) 19711.0 0.808192
\(842\) 14524.0 0.594454
\(843\) −12726.0 −0.519937
\(844\) −15472.0 −0.631005
\(845\) −10965.0 −0.446399
\(846\) −3888.00 −0.158005
\(847\) 0 0
\(848\) −1248.00 −0.0505383
\(849\) −1884.00 −0.0761587
\(850\) 5700.00 0.230010
\(851\) −24048.0 −0.968690
\(852\) 9216.00 0.370581
\(853\) 35998.0 1.44496 0.722478 0.691394i \(-0.243003\pi\)
0.722478 + 0.691394i \(0.243003\pi\)
\(854\) 0 0
\(855\) −6300.00 −0.251995
\(856\) −4512.00 −0.180160
\(857\) 21594.0 0.860720 0.430360 0.902657i \(-0.358387\pi\)
0.430360 + 0.902657i \(0.358387\pi\)
\(858\) −576.000 −0.0229188
\(859\) −9260.00 −0.367808 −0.183904 0.982944i \(-0.558874\pi\)
−0.183904 + 0.982944i \(0.558874\pi\)
\(860\) −5360.00 −0.212528
\(861\) 0 0
\(862\) 19584.0 0.773821
\(863\) 31632.0 1.24770 0.623850 0.781544i \(-0.285567\pi\)
0.623850 + 0.781544i \(0.285567\pi\)
\(864\) −864.000 −0.0340207
\(865\) −9810.00 −0.385607
\(866\) −3604.00 −0.141419
\(867\) −24249.0 −0.949872
\(868\) 0 0
\(869\) 30720.0 1.19920
\(870\) −6300.00 −0.245506
\(871\) −1192.00 −0.0463713
\(872\) −4880.00 −0.189516
\(873\) 13806.0 0.535237
\(874\) −20160.0 −0.780231
\(875\) 0 0
\(876\) −5736.00 −0.221235
\(877\) −39694.0 −1.52836 −0.764180 0.645003i \(-0.776856\pi\)
−0.764180 + 0.645003i \(0.776856\pi\)
\(878\) 4640.00 0.178351
\(879\) −1674.00 −0.0642351
\(880\) −3840.00 −0.147098
\(881\) −1242.00 −0.0474961 −0.0237480 0.999718i \(-0.507560\pi\)
−0.0237480 + 0.999718i \(0.507560\pi\)
\(882\) 0 0
\(883\) −2668.00 −0.101682 −0.0508411 0.998707i \(-0.516190\pi\)
−0.0508411 + 0.998707i \(0.516190\pi\)
\(884\) −912.000 −0.0346990
\(885\) 3600.00 0.136737
\(886\) 22344.0 0.847248
\(887\) 4344.00 0.164439 0.0822194 0.996614i \(-0.473799\pi\)
0.0822194 + 0.996614i \(0.473799\pi\)
\(888\) 8016.00 0.302927
\(889\) 0 0
\(890\) −2100.00 −0.0790923
\(891\) −3888.00 −0.146187
\(892\) 12592.0 0.472658
\(893\) 30240.0 1.13319
\(894\) −8460.00 −0.316493
\(895\) −600.000 −0.0224087
\(896\) 0 0
\(897\) 432.000 0.0160803
\(898\) 13620.0 0.506131
\(899\) −57120.0 −2.11909
\(900\) 900.000 0.0333333
\(901\) −8892.00 −0.328785
\(902\) −19008.0 −0.701660
\(903\) 0 0
\(904\) 10416.0 0.383220
\(905\) −4510.00 −0.165655
\(906\) 12768.0 0.468199
\(907\) 4436.00 0.162398 0.0811990 0.996698i \(-0.474125\pi\)
0.0811990 + 0.996698i \(0.474125\pi\)
\(908\) −10224.0 −0.373673
\(909\) −15498.0 −0.565496
\(910\) 0 0
\(911\) 22752.0 0.827450 0.413725 0.910402i \(-0.364227\pi\)
0.413725 + 0.910402i \(0.364227\pi\)
\(912\) 6720.00 0.243993
\(913\) −16704.0 −0.605500
\(914\) 34132.0 1.23521
\(915\) 4530.00 0.163669
\(916\) 2440.00 0.0880130
\(917\) 0 0
\(918\) −6156.00 −0.221327
\(919\) −27160.0 −0.974892 −0.487446 0.873153i \(-0.662071\pi\)
−0.487446 + 0.873153i \(0.662071\pi\)
\(920\) 2880.00 0.103207
\(921\) −20892.0 −0.747465
\(922\) 37836.0 1.35148
\(923\) 1536.00 0.0547758
\(924\) 0 0
\(925\) −8350.00 −0.296807
\(926\) 2104.00 0.0746671
\(927\) −9468.00 −0.335458
\(928\) 6720.00 0.237710
\(929\) 33030.0 1.16650 0.583250 0.812292i \(-0.301781\pi\)
0.583250 + 0.812292i \(0.301781\pi\)
\(930\) 8160.00 0.287717
\(931\) 0 0
\(932\) −8232.00 −0.289322
\(933\) 8496.00 0.298121
\(934\) −22152.0 −0.776055
\(935\) −27360.0 −0.956971
\(936\) −144.000 −0.00502862
\(937\) 29974.0 1.04505 0.522523 0.852625i \(-0.324991\pi\)
0.522523 + 0.852625i \(0.324991\pi\)
\(938\) 0 0
\(939\) 25926.0 0.901026
\(940\) −4320.00 −0.149897
\(941\) −13962.0 −0.483686 −0.241843 0.970315i \(-0.577752\pi\)
−0.241843 + 0.970315i \(0.577752\pi\)
\(942\) 18156.0 0.627977
\(943\) 14256.0 0.492300
\(944\) −3840.00 −0.132396
\(945\) 0 0
\(946\) 25728.0 0.884238
\(947\) 35196.0 1.20773 0.603863 0.797088i \(-0.293627\pi\)
0.603863 + 0.797088i \(0.293627\pi\)
\(948\) 7680.00 0.263117
\(949\) −956.000 −0.0327008
\(950\) −7000.00 −0.239063
\(951\) 6642.00 0.226479
\(952\) 0 0
\(953\) −28338.0 −0.963230 −0.481615 0.876383i \(-0.659950\pi\)
−0.481615 + 0.876383i \(0.659950\pi\)
\(954\) −1404.00 −0.0476480
\(955\) −840.000 −0.0284626
\(956\) 19680.0 0.665792
\(957\) 30240.0 1.02144
\(958\) 18000.0 0.607050
\(959\) 0 0
\(960\) −960.000 −0.0322749
\(961\) 44193.0 1.48343
\(962\) 1336.00 0.0447759
\(963\) −5076.00 −0.169857
\(964\) 5752.00 0.192178
\(965\) −6590.00 −0.219834
\(966\) 0 0
\(967\) −17524.0 −0.582765 −0.291383 0.956607i \(-0.594115\pi\)
−0.291383 + 0.956607i \(0.594115\pi\)
\(968\) 7784.00 0.258458
\(969\) 47880.0 1.58733
\(970\) 15340.0 0.507771
\(971\) 26808.0 0.886004 0.443002 0.896521i \(-0.353913\pi\)
0.443002 + 0.896521i \(0.353913\pi\)
\(972\) −972.000 −0.0320750
\(973\) 0 0
\(974\) −17528.0 −0.576626
\(975\) 150.000 0.00492702
\(976\) −4832.00 −0.158472
\(977\) −10914.0 −0.357390 −0.178695 0.983905i \(-0.557187\pi\)
−0.178695 + 0.983905i \(0.557187\pi\)
\(978\) −15672.0 −0.512408
\(979\) 10080.0 0.329069
\(980\) 0 0
\(981\) −5490.00 −0.178677
\(982\) 11184.0 0.363438
\(983\) −22272.0 −0.722652 −0.361326 0.932440i \(-0.617676\pi\)
−0.361326 + 0.932440i \(0.617676\pi\)
\(984\) −4752.00 −0.153951
\(985\) −20070.0 −0.649222
\(986\) 47880.0 1.54646
\(987\) 0 0
\(988\) 1120.00 0.0360647
\(989\) −19296.0 −0.620402
\(990\) −4320.00 −0.138685
\(991\) 14072.0 0.451071 0.225536 0.974235i \(-0.427587\pi\)
0.225536 + 0.974235i \(0.427587\pi\)
\(992\) −8704.00 −0.278581
\(993\) −32316.0 −1.03275
\(994\) 0 0
\(995\) −10000.0 −0.318614
\(996\) −4176.00 −0.132853
\(997\) −4826.00 −0.153301 −0.0766504 0.997058i \(-0.524423\pi\)
−0.0766504 + 0.997058i \(0.524423\pi\)
\(998\) 9400.00 0.298148
\(999\) 9018.00 0.285602
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1470.4.a.r.1.1 1
7.6 odd 2 30.4.a.b.1.1 1
21.20 even 2 90.4.a.c.1.1 1
28.27 even 2 240.4.a.b.1.1 1
35.13 even 4 150.4.c.c.49.1 2
35.27 even 4 150.4.c.c.49.2 2
35.34 odd 2 150.4.a.b.1.1 1
56.13 odd 2 960.4.a.n.1.1 1
56.27 even 2 960.4.a.bg.1.1 1
63.13 odd 6 810.4.e.i.541.1 2
63.20 even 6 810.4.e.p.271.1 2
63.34 odd 6 810.4.e.i.271.1 2
63.41 even 6 810.4.e.p.541.1 2
84.83 odd 2 720.4.a.y.1.1 1
105.62 odd 4 450.4.c.j.199.1 2
105.83 odd 4 450.4.c.j.199.2 2
105.104 even 2 450.4.a.r.1.1 1
140.27 odd 4 1200.4.f.r.49.2 2
140.83 odd 4 1200.4.f.r.49.1 2
140.139 even 2 1200.4.a.ba.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.4.a.b.1.1 1 7.6 odd 2
90.4.a.c.1.1 1 21.20 even 2
150.4.a.b.1.1 1 35.34 odd 2
150.4.c.c.49.1 2 35.13 even 4
150.4.c.c.49.2 2 35.27 even 4
240.4.a.b.1.1 1 28.27 even 2
450.4.a.r.1.1 1 105.104 even 2
450.4.c.j.199.1 2 105.62 odd 4
450.4.c.j.199.2 2 105.83 odd 4
720.4.a.y.1.1 1 84.83 odd 2
810.4.e.i.271.1 2 63.34 odd 6
810.4.e.i.541.1 2 63.13 odd 6
810.4.e.p.271.1 2 63.20 even 6
810.4.e.p.541.1 2 63.41 even 6
960.4.a.n.1.1 1 56.13 odd 2
960.4.a.bg.1.1 1 56.27 even 2
1200.4.a.ba.1.1 1 140.139 even 2
1200.4.f.r.49.1 2 140.83 odd 4
1200.4.f.r.49.2 2 140.27 odd 4
1470.4.a.r.1.1 1 1.1 even 1 trivial