Defining parameters
Level: | \( N \) | \(=\) | \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1470.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 51 \) | ||
Sturm bound: | \(1344\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1470))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1040 | 82 | 958 |
Cusp forms | 976 | 82 | 894 |
Eisenstein series | 64 | 0 | 64 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(7\) | Fricke | Dim |
---|---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(6\) |
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(5\) |
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(5\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(5\) |
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(3\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(7\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(6\) |
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(4\) |
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(5\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(5\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(6\) |
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(5\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(6\) |
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(4\) |
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(3\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(7\) |
Plus space | \(+\) | \(48\) | |||
Minus space | \(-\) | \(34\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1470))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1470))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(1470)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(245))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(294))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(490))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(735))\)\(^{\oplus 2}\)