Properties

Label 1470.2.n.h.79.2
Level $1470$
Weight $2$
Character 1470.79
Analytic conductor $11.738$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(11.7380090971\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 79.2
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1470.79
Dual form 1470.2.n.h.949.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.866025 - 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.86603 - 1.23205i) q^{5} +1.00000 q^{6} +1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(0.866025 + 0.500000i) q^{2} +(0.866025 - 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.86603 - 1.23205i) q^{5} +1.00000 q^{6} +1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +(2.23205 - 0.133975i) q^{10} +(-1.00000 - 1.73205i) q^{11} +(0.866025 + 0.500000i) q^{12} -6.00000i q^{13} +(1.00000 - 2.00000i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(1.73205 - 1.00000i) q^{17} +(0.866025 - 0.500000i) q^{18} +(2.00000 + 1.00000i) q^{20} -2.00000i q^{22} +(-3.46410 - 2.00000i) q^{23} +(0.500000 + 0.866025i) q^{24} +(1.96410 - 4.59808i) q^{25} +(3.00000 - 5.19615i) q^{26} -1.00000i q^{27} +(1.86603 - 1.23205i) q^{30} +(4.00000 + 6.92820i) q^{31} +(-0.866025 + 0.500000i) q^{32} +(-1.73205 - 1.00000i) q^{33} +2.00000 q^{34} +1.00000 q^{36} +(-1.73205 - 1.00000i) q^{37} +(-3.00000 - 5.19615i) q^{39} +(1.23205 + 1.86603i) q^{40} +2.00000 q^{41} +4.00000i q^{43} +(1.00000 - 1.73205i) q^{44} +(-0.133975 - 2.23205i) q^{45} +(-2.00000 - 3.46410i) q^{46} +(6.92820 + 4.00000i) q^{47} +1.00000i q^{48} +(4.00000 - 3.00000i) q^{50} +(1.00000 - 1.73205i) q^{51} +(5.19615 - 3.00000i) q^{52} +(-5.19615 + 3.00000i) q^{53} +(0.500000 - 0.866025i) q^{54} +(-4.00000 - 2.00000i) q^{55} +(5.00000 + 8.66025i) q^{59} +(2.23205 - 0.133975i) q^{60} +(-1.00000 + 1.73205i) q^{61} +8.00000i q^{62} -1.00000 q^{64} +(-7.39230 - 11.1962i) q^{65} +(-1.00000 - 1.73205i) q^{66} +(-6.92820 + 4.00000i) q^{67} +(1.73205 + 1.00000i) q^{68} -4.00000 q^{69} +12.0000 q^{71} +(0.866025 + 0.500000i) q^{72} +(3.46410 - 2.00000i) q^{73} +(-1.00000 - 1.73205i) q^{74} +(-0.598076 - 4.96410i) q^{75} -6.00000i q^{78} +(0.133975 + 2.23205i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(1.73205 + 1.00000i) q^{82} +4.00000i q^{83} +(2.00000 - 4.00000i) q^{85} +(-2.00000 + 3.46410i) q^{86} +(1.73205 - 1.00000i) q^{88} +(-5.00000 + 8.66025i) q^{89} +(1.00000 - 2.00000i) q^{90} -4.00000i q^{92} +(6.92820 + 4.00000i) q^{93} +(4.00000 + 6.92820i) q^{94} +(-0.500000 + 0.866025i) q^{96} -8.00000i q^{97} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 2q^{4} + 4q^{5} + 4q^{6} + 2q^{9} + O(q^{10}) \) \( 4q + 2q^{4} + 4q^{5} + 4q^{6} + 2q^{9} + 2q^{10} - 4q^{11} + 4q^{15} - 2q^{16} + 8q^{20} + 2q^{24} - 6q^{25} + 12q^{26} + 4q^{30} + 16q^{31} + 8q^{34} + 4q^{36} - 12q^{39} - 2q^{40} + 8q^{41} + 4q^{44} - 4q^{45} - 8q^{46} + 16q^{50} + 4q^{51} + 2q^{54} - 16q^{55} + 20q^{59} + 2q^{60} - 4q^{61} - 4q^{64} + 12q^{65} - 4q^{66} - 16q^{69} + 48q^{71} - 4q^{74} + 8q^{75} + 4q^{80} - 2q^{81} + 8q^{85} - 8q^{86} - 20q^{89} + 4q^{90} + 16q^{94} - 2q^{96} - 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times\).

\(n\) \(491\) \(1081\) \(1177\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 1.86603 1.23205i 0.834512 0.550990i
\(6\) 1.00000 0.408248
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 2.23205 0.133975i 0.705836 0.0423665i
\(11\) −1.00000 1.73205i −0.301511 0.522233i 0.674967 0.737848i \(-0.264158\pi\)
−0.976478 + 0.215615i \(0.930824\pi\)
\(12\) 0.866025 + 0.500000i 0.250000 + 0.144338i
\(13\) 6.00000i 1.66410i −0.554700 0.832050i \(-0.687167\pi\)
0.554700 0.832050i \(-0.312833\pi\)
\(14\) 0 0
\(15\) 1.00000 2.00000i 0.258199 0.516398i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.73205 1.00000i 0.420084 0.242536i −0.275029 0.961436i \(-0.588688\pi\)
0.695113 + 0.718900i \(0.255354\pi\)
\(18\) 0.866025 0.500000i 0.204124 0.117851i
\(19\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(20\) 2.00000 + 1.00000i 0.447214 + 0.223607i
\(21\) 0 0
\(22\) 2.00000i 0.426401i
\(23\) −3.46410 2.00000i −0.722315 0.417029i 0.0932891 0.995639i \(-0.470262\pi\)
−0.815604 + 0.578610i \(0.803595\pi\)
\(24\) 0.500000 + 0.866025i 0.102062 + 0.176777i
\(25\) 1.96410 4.59808i 0.392820 0.919615i
\(26\) 3.00000 5.19615i 0.588348 1.01905i
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 1.86603 1.23205i 0.340688 0.224941i
\(31\) 4.00000 + 6.92820i 0.718421 + 1.24434i 0.961625 + 0.274367i \(0.0884683\pi\)
−0.243204 + 0.969975i \(0.578198\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) −1.73205 1.00000i −0.301511 0.174078i
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −1.73205 1.00000i −0.284747 0.164399i 0.350823 0.936442i \(-0.385902\pi\)
−0.635571 + 0.772043i \(0.719235\pi\)
\(38\) 0 0
\(39\) −3.00000 5.19615i −0.480384 0.832050i
\(40\) 1.23205 + 1.86603i 0.194804 + 0.295045i
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) 1.00000 1.73205i 0.150756 0.261116i
\(45\) −0.133975 2.23205i −0.0199718 0.332734i
\(46\) −2.00000 3.46410i −0.294884 0.510754i
\(47\) 6.92820 + 4.00000i 1.01058 + 0.583460i 0.911362 0.411606i \(-0.135032\pi\)
0.0992202 + 0.995066i \(0.468365\pi\)
\(48\) 1.00000i 0.144338i
\(49\) 0 0
\(50\) 4.00000 3.00000i 0.565685 0.424264i
\(51\) 1.00000 1.73205i 0.140028 0.242536i
\(52\) 5.19615 3.00000i 0.720577 0.416025i
\(53\) −5.19615 + 3.00000i −0.713746 + 0.412082i −0.812447 0.583036i \(-0.801865\pi\)
0.0987002 + 0.995117i \(0.468532\pi\)
\(54\) 0.500000 0.866025i 0.0680414 0.117851i
\(55\) −4.00000 2.00000i −0.539360 0.269680i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.00000 + 8.66025i 0.650945 + 1.12747i 0.982894 + 0.184172i \(0.0589603\pi\)
−0.331949 + 0.943297i \(0.607706\pi\)
\(60\) 2.23205 0.133975i 0.288157 0.0172960i
\(61\) −1.00000 + 1.73205i −0.128037 + 0.221766i −0.922916 0.385002i \(-0.874201\pi\)
0.794879 + 0.606768i \(0.207534\pi\)
\(62\) 8.00000i 1.01600i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −7.39230 11.1962i −0.916903 1.38871i
\(66\) −1.00000 1.73205i −0.123091 0.213201i
\(67\) −6.92820 + 4.00000i −0.846415 + 0.488678i −0.859440 0.511237i \(-0.829187\pi\)
0.0130248 + 0.999915i \(0.495854\pi\)
\(68\) 1.73205 + 1.00000i 0.210042 + 0.121268i
\(69\) −4.00000 −0.481543
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0.866025 + 0.500000i 0.102062 + 0.0589256i
\(73\) 3.46410 2.00000i 0.405442 0.234082i −0.283387 0.959006i \(-0.591458\pi\)
0.688830 + 0.724923i \(0.258125\pi\)
\(74\) −1.00000 1.73205i −0.116248 0.201347i
\(75\) −0.598076 4.96410i −0.0690599 0.573205i
\(76\) 0 0
\(77\) 0 0
\(78\) 6.00000i 0.679366i
\(79\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(80\) 0.133975 + 2.23205i 0.0149788 + 0.249551i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 1.73205 + 1.00000i 0.191273 + 0.110432i
\(83\) 4.00000i 0.439057i 0.975606 + 0.219529i \(0.0704519\pi\)
−0.975606 + 0.219529i \(0.929548\pi\)
\(84\) 0 0
\(85\) 2.00000 4.00000i 0.216930 0.433861i
\(86\) −2.00000 + 3.46410i −0.215666 + 0.373544i
\(87\) 0 0
\(88\) 1.73205 1.00000i 0.184637 0.106600i
\(89\) −5.00000 + 8.66025i −0.529999 + 0.917985i 0.469389 + 0.882992i \(0.344474\pi\)
−0.999388 + 0.0349934i \(0.988859\pi\)
\(90\) 1.00000 2.00000i 0.105409 0.210819i
\(91\) 0 0
\(92\) 4.00000i 0.417029i
\(93\) 6.92820 + 4.00000i 0.718421 + 0.414781i
\(94\) 4.00000 + 6.92820i 0.412568 + 0.714590i
\(95\) 0 0
\(96\) −0.500000 + 0.866025i −0.0510310 + 0.0883883i
\(97\) 8.00000i 0.812277i −0.913812 0.406138i \(-0.866875\pi\)
0.913812 0.406138i \(-0.133125\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 4.96410 0.598076i 0.496410 0.0598076i
\(101\) 4.00000 + 6.92820i 0.398015 + 0.689382i 0.993481 0.113998i \(-0.0363659\pi\)
−0.595466 + 0.803380i \(0.703033\pi\)
\(102\) 1.73205 1.00000i 0.171499 0.0990148i
\(103\) −12.1244 7.00000i −1.19465 0.689730i −0.235291 0.971925i \(-0.575604\pi\)
−0.959357 + 0.282194i \(0.908938\pi\)
\(104\) 6.00000 0.588348
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) −10.3923 6.00000i −1.00466 0.580042i −0.0950377 0.995474i \(-0.530297\pi\)
−0.909624 + 0.415432i \(0.863630\pi\)
\(108\) 0.866025 0.500000i 0.0833333 0.0481125i
\(109\) 5.00000 + 8.66025i 0.478913 + 0.829502i 0.999708 0.0241802i \(-0.00769755\pi\)
−0.520794 + 0.853682i \(0.674364\pi\)
\(110\) −2.46410 3.73205i −0.234943 0.355837i
\(111\) −2.00000 −0.189832
\(112\) 0 0
\(113\) 6.00000i 0.564433i −0.959351 0.282216i \(-0.908930\pi\)
0.959351 0.282216i \(-0.0910696\pi\)
\(114\) 0 0
\(115\) −8.92820 + 0.535898i −0.832559 + 0.0499728i
\(116\) 0 0
\(117\) −5.19615 3.00000i −0.480384 0.277350i
\(118\) 10.0000i 0.920575i
\(119\) 0 0
\(120\) 2.00000 + 1.00000i 0.182574 + 0.0912871i
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) −1.73205 + 1.00000i −0.156813 + 0.0905357i
\(123\) 1.73205 1.00000i 0.156174 0.0901670i
\(124\) −4.00000 + 6.92820i −0.359211 + 0.622171i
\(125\) −2.00000 11.0000i −0.178885 0.983870i
\(126\) 0 0
\(127\) 2.00000i 0.177471i 0.996055 + 0.0887357i \(0.0282826\pi\)
−0.996055 + 0.0887357i \(0.971717\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 2.00000 + 3.46410i 0.176090 + 0.304997i
\(130\) −0.803848 13.3923i −0.0705021 1.17458i
\(131\) 9.00000 15.5885i 0.786334 1.36197i −0.141865 0.989886i \(-0.545310\pi\)
0.928199 0.372084i \(-0.121357\pi\)
\(132\) 2.00000i 0.174078i
\(133\) 0 0
\(134\) −8.00000 −0.691095
\(135\) −1.23205 1.86603i −0.106038 0.160602i
\(136\) 1.00000 + 1.73205i 0.0857493 + 0.148522i
\(137\) −15.5885 + 9.00000i −1.33181 + 0.768922i −0.985577 0.169226i \(-0.945873\pi\)
−0.346235 + 0.938148i \(0.612540\pi\)
\(138\) −3.46410 2.00000i −0.294884 0.170251i
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 0 0
\(141\) 8.00000 0.673722
\(142\) 10.3923 + 6.00000i 0.872103 + 0.503509i
\(143\) −10.3923 + 6.00000i −0.869048 + 0.501745i
\(144\) 0.500000 + 0.866025i 0.0416667 + 0.0721688i
\(145\) 0 0
\(146\) 4.00000 0.331042
\(147\) 0 0
\(148\) 2.00000i 0.164399i
\(149\) −10.0000 + 17.3205i −0.819232 + 1.41895i 0.0870170 + 0.996207i \(0.472267\pi\)
−0.906249 + 0.422744i \(0.861067\pi\)
\(150\) 1.96410 4.59808i 0.160368 0.375431i
\(151\) 4.00000 + 6.92820i 0.325515 + 0.563809i 0.981617 0.190864i \(-0.0611289\pi\)
−0.656101 + 0.754673i \(0.727796\pi\)
\(152\) 0 0
\(153\) 2.00000i 0.161690i
\(154\) 0 0
\(155\) 16.0000 + 8.00000i 1.28515 + 0.642575i
\(156\) 3.00000 5.19615i 0.240192 0.416025i
\(157\) 19.0526 11.0000i 1.52056 0.877896i 0.520854 0.853646i \(-0.325614\pi\)
0.999706 0.0242497i \(-0.00771967\pi\)
\(158\) 0 0
\(159\) −3.00000 + 5.19615i −0.237915 + 0.412082i
\(160\) −1.00000 + 2.00000i −0.0790569 + 0.158114i
\(161\) 0 0
\(162\) 1.00000i 0.0785674i
\(163\) 13.8564 + 8.00000i 1.08532 + 0.626608i 0.932326 0.361619i \(-0.117776\pi\)
0.152992 + 0.988227i \(0.451109\pi\)
\(164\) 1.00000 + 1.73205i 0.0780869 + 0.135250i
\(165\) −4.46410 + 0.267949i −0.347530 + 0.0208598i
\(166\) −2.00000 + 3.46410i −0.155230 + 0.268866i
\(167\) 12.0000i 0.928588i 0.885681 + 0.464294i \(0.153692\pi\)
−0.885681 + 0.464294i \(0.846308\pi\)
\(168\) 0 0
\(169\) −23.0000 −1.76923
\(170\) 3.73205 2.46410i 0.286235 0.188988i
\(171\) 0 0
\(172\) −3.46410 + 2.00000i −0.264135 + 0.152499i
\(173\) −12.1244 7.00000i −0.921798 0.532200i −0.0375896 0.999293i \(-0.511968\pi\)
−0.884208 + 0.467093i \(0.845301\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2.00000 0.150756
\(177\) 8.66025 + 5.00000i 0.650945 + 0.375823i
\(178\) −8.66025 + 5.00000i −0.649113 + 0.374766i
\(179\) 5.00000 + 8.66025i 0.373718 + 0.647298i 0.990134 0.140122i \(-0.0447496\pi\)
−0.616417 + 0.787420i \(0.711416\pi\)
\(180\) 1.86603 1.23205i 0.139085 0.0918316i
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 2.00000i 0.147844i
\(184\) 2.00000 3.46410i 0.147442 0.255377i
\(185\) −4.46410 + 0.267949i −0.328207 + 0.0197000i
\(186\) 4.00000 + 6.92820i 0.293294 + 0.508001i
\(187\) −3.46410 2.00000i −0.253320 0.146254i
\(188\) 8.00000i 0.583460i
\(189\) 0 0
\(190\) 0 0
\(191\) −6.00000 + 10.3923i −0.434145 + 0.751961i −0.997225 0.0744412i \(-0.976283\pi\)
0.563081 + 0.826402i \(0.309616\pi\)
\(192\) −0.866025 + 0.500000i −0.0625000 + 0.0360844i
\(193\) 3.46410 2.00000i 0.249351 0.143963i −0.370116 0.928986i \(-0.620682\pi\)
0.619467 + 0.785022i \(0.287349\pi\)
\(194\) 4.00000 6.92820i 0.287183 0.497416i
\(195\) −12.0000 6.00000i −0.859338 0.429669i
\(196\) 0 0
\(197\) 22.0000i 1.56744i 0.621117 + 0.783718i \(0.286679\pi\)
−0.621117 + 0.783718i \(0.713321\pi\)
\(198\) −1.73205 1.00000i −0.123091 0.0710669i
\(199\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(200\) 4.59808 + 1.96410i 0.325133 + 0.138883i
\(201\) −4.00000 + 6.92820i −0.282138 + 0.488678i
\(202\) 8.00000i 0.562878i
\(203\) 0 0
\(204\) 2.00000 0.140028
\(205\) 3.73205 2.46410i 0.260658 0.172100i
\(206\) −7.00000 12.1244i −0.487713 0.844744i
\(207\) −3.46410 + 2.00000i −0.240772 + 0.139010i
\(208\) 5.19615 + 3.00000i 0.360288 + 0.208013i
\(209\) 0 0
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) −5.19615 3.00000i −0.356873 0.206041i
\(213\) 10.3923 6.00000i 0.712069 0.411113i
\(214\) −6.00000 10.3923i −0.410152 0.710403i
\(215\) 4.92820 + 7.46410i 0.336101 + 0.509048i
\(216\) 1.00000 0.0680414
\(217\) 0 0
\(218\) 10.0000i 0.677285i
\(219\) 2.00000 3.46410i 0.135147 0.234082i
\(220\) −0.267949 4.46410i −0.0180651 0.300970i
\(221\) −6.00000 10.3923i −0.403604 0.699062i
\(222\) −1.73205 1.00000i −0.116248 0.0671156i
\(223\) 26.0000i 1.74109i −0.492090 0.870544i \(-0.663767\pi\)
0.492090 0.870544i \(-0.336233\pi\)
\(224\) 0 0
\(225\) −3.00000 4.00000i −0.200000 0.266667i
\(226\) 3.00000 5.19615i 0.199557 0.345643i
\(227\) −24.2487 + 14.0000i −1.60944 + 0.929213i −0.619949 + 0.784642i \(0.712847\pi\)
−0.989494 + 0.144571i \(0.953820\pi\)
\(228\) 0 0
\(229\) −5.00000 + 8.66025i −0.330409 + 0.572286i −0.982592 0.185776i \(-0.940520\pi\)
0.652183 + 0.758062i \(0.273853\pi\)
\(230\) −8.00000 4.00000i −0.527504 0.263752i
\(231\) 0 0
\(232\) 0 0
\(233\) −12.1244 7.00000i −0.794293 0.458585i 0.0471787 0.998886i \(-0.484977\pi\)
−0.841472 + 0.540301i \(0.818310\pi\)
\(234\) −3.00000 5.19615i −0.196116 0.339683i
\(235\) 17.8564 1.07180i 1.16482 0.0699163i
\(236\) −5.00000 + 8.66025i −0.325472 + 0.563735i
\(237\) 0 0
\(238\) 0 0
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) 1.23205 + 1.86603i 0.0795285 + 0.120451i
\(241\) −11.0000 19.0526i −0.708572 1.22728i −0.965387 0.260822i \(-0.916006\pi\)
0.256814 0.966461i \(-0.417327\pi\)
\(242\) 6.06218 3.50000i 0.389692 0.224989i
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) −2.00000 −0.128037
\(245\) 0 0
\(246\) 2.00000 0.127515
\(247\) 0 0
\(248\) −6.92820 + 4.00000i −0.439941 + 0.254000i
\(249\) 2.00000 + 3.46410i 0.126745 + 0.219529i
\(250\) 3.76795 10.5263i 0.238306 0.665740i
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) 0 0
\(253\) 8.00000i 0.502956i
\(254\) −1.00000 + 1.73205i −0.0627456 + 0.108679i
\(255\) −0.267949 4.46410i −0.0167796 0.279553i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 15.5885 + 9.00000i 0.972381 + 0.561405i 0.899961 0.435970i \(-0.143595\pi\)
0.0724199 + 0.997374i \(0.476928\pi\)
\(258\) 4.00000i 0.249029i
\(259\) 0 0
\(260\) 6.00000 12.0000i 0.372104 0.744208i
\(261\) 0 0
\(262\) 15.5885 9.00000i 0.963058 0.556022i
\(263\) 3.46410 2.00000i 0.213606 0.123325i −0.389380 0.921077i \(-0.627311\pi\)
0.602986 + 0.797752i \(0.293977\pi\)
\(264\) 1.00000 1.73205i 0.0615457 0.106600i
\(265\) −6.00000 + 12.0000i −0.368577 + 0.737154i
\(266\) 0 0
\(267\) 10.0000i 0.611990i
\(268\) −6.92820 4.00000i −0.423207 0.244339i
\(269\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(270\) −0.133975 2.23205i −0.00815343 0.135838i
\(271\) 4.00000 6.92820i 0.242983 0.420858i −0.718580 0.695444i \(-0.755208\pi\)
0.961563 + 0.274586i \(0.0885408\pi\)
\(272\) 2.00000i 0.121268i
\(273\) 0 0
\(274\) −18.0000 −1.08742
\(275\) −9.92820 + 1.19615i −0.598693 + 0.0721307i
\(276\) −2.00000 3.46410i −0.120386 0.208514i
\(277\) 1.73205 1.00000i 0.104069 0.0600842i −0.447062 0.894503i \(-0.647530\pi\)
0.551131 + 0.834419i \(0.314196\pi\)
\(278\) 17.3205 + 10.0000i 1.03882 + 0.599760i
\(279\) 8.00000 0.478947
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 6.92820 + 4.00000i 0.412568 + 0.238197i
\(283\) −13.8564 + 8.00000i −0.823678 + 0.475551i −0.851683 0.524057i \(-0.824418\pi\)
0.0280052 + 0.999608i \(0.491084\pi\)
\(284\) 6.00000 + 10.3923i 0.356034 + 0.616670i
\(285\) 0 0
\(286\) −12.0000 −0.709575
\(287\) 0 0
\(288\) 1.00000i 0.0589256i
\(289\) −6.50000 + 11.2583i −0.382353 + 0.662255i
\(290\) 0 0
\(291\) −4.00000 6.92820i −0.234484 0.406138i
\(292\) 3.46410 + 2.00000i 0.202721 + 0.117041i
\(293\) 6.00000i 0.350524i −0.984522 0.175262i \(-0.943923\pi\)
0.984522 0.175262i \(-0.0560772\pi\)
\(294\) 0 0
\(295\) 20.0000 + 10.0000i 1.16445 + 0.582223i
\(296\) 1.00000 1.73205i 0.0581238 0.100673i
\(297\) −1.73205 + 1.00000i −0.100504 + 0.0580259i
\(298\) −17.3205 + 10.0000i −1.00335 + 0.579284i
\(299\) −12.0000 + 20.7846i −0.693978 + 1.20201i
\(300\) 4.00000 3.00000i 0.230940 0.173205i
\(301\) 0 0
\(302\) 8.00000i 0.460348i
\(303\) 6.92820 + 4.00000i 0.398015 + 0.229794i
\(304\) 0 0
\(305\) 0.267949 + 4.46410i 0.0153427 + 0.255614i
\(306\) 1.00000 1.73205i 0.0571662 0.0990148i
\(307\) 12.0000i 0.684876i 0.939540 + 0.342438i \(0.111253\pi\)
−0.939540 + 0.342438i \(0.888747\pi\)
\(308\) 0 0
\(309\) −14.0000 −0.796432
\(310\) 9.85641 + 14.9282i 0.559806 + 0.847865i
\(311\) −6.00000 10.3923i −0.340229 0.589294i 0.644246 0.764818i \(-0.277171\pi\)
−0.984475 + 0.175525i \(0.943838\pi\)
\(312\) 5.19615 3.00000i 0.294174 0.169842i
\(313\) −3.46410 2.00000i −0.195803 0.113047i 0.398894 0.916997i \(-0.369394\pi\)
−0.594696 + 0.803951i \(0.702728\pi\)
\(314\) 22.0000 1.24153
\(315\) 0 0
\(316\) 0 0
\(317\) −1.73205 1.00000i −0.0972817 0.0561656i 0.450570 0.892741i \(-0.351221\pi\)
−0.547852 + 0.836576i \(0.684554\pi\)
\(318\) −5.19615 + 3.00000i −0.291386 + 0.168232i
\(319\) 0 0
\(320\) −1.86603 + 1.23205i −0.104314 + 0.0688737i
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) 0 0
\(324\) 0.500000 0.866025i 0.0277778 0.0481125i
\(325\) −27.5885 11.7846i −1.53033 0.653693i
\(326\) 8.00000 + 13.8564i 0.443079 + 0.767435i
\(327\) 8.66025 + 5.00000i 0.478913 + 0.276501i
\(328\) 2.00000i 0.110432i
\(329\) 0 0
\(330\) −4.00000 2.00000i −0.220193 0.110096i
\(331\) 4.00000 6.92820i 0.219860 0.380808i −0.734905 0.678170i \(-0.762773\pi\)
0.954765 + 0.297361i \(0.0961066\pi\)
\(332\) −3.46410 + 2.00000i −0.190117 + 0.109764i
\(333\) −1.73205 + 1.00000i −0.0949158 + 0.0547997i
\(334\) −6.00000 + 10.3923i −0.328305 + 0.568642i
\(335\) −8.00000 + 16.0000i −0.437087 + 0.874173i
\(336\) 0 0
\(337\) 28.0000i 1.52526i −0.646837 0.762629i \(-0.723908\pi\)
0.646837 0.762629i \(-0.276092\pi\)
\(338\) −19.9186 11.5000i −1.08343 0.625518i
\(339\) −3.00000 5.19615i −0.162938 0.282216i
\(340\) 4.46410 0.267949i 0.242100 0.0145316i
\(341\) 8.00000 13.8564i 0.433224 0.750366i
\(342\) 0 0
\(343\) 0 0
\(344\) −4.00000 −0.215666
\(345\) −7.46410 + 4.92820i −0.401854 + 0.265326i
\(346\) −7.00000 12.1244i −0.376322 0.651809i
\(347\) 10.3923 6.00000i 0.557888 0.322097i −0.194409 0.980921i \(-0.562279\pi\)
0.752297 + 0.658824i \(0.228946\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) −6.00000 −0.320256
\(352\) 1.73205 + 1.00000i 0.0923186 + 0.0533002i
\(353\) 12.1244 7.00000i 0.645314 0.372572i −0.141344 0.989960i \(-0.545142\pi\)
0.786659 + 0.617388i \(0.211809\pi\)
\(354\) 5.00000 + 8.66025i 0.265747 + 0.460287i
\(355\) 22.3923 14.7846i 1.18846 0.784686i
\(356\) −10.0000 −0.529999
\(357\) 0 0
\(358\) 10.0000i 0.528516i
\(359\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(360\) 2.23205 0.133975i 0.117639 0.00706108i
\(361\) 9.50000 + 16.4545i 0.500000 + 0.866025i
\(362\) 1.73205 + 1.00000i 0.0910346 + 0.0525588i
\(363\) 7.00000i 0.367405i
\(364\) 0 0
\(365\) 4.00000 8.00000i 0.209370 0.418739i
\(366\) −1.00000 + 1.73205i −0.0522708 + 0.0905357i
\(367\) 1.73205 1.00000i 0.0904123 0.0521996i −0.454112 0.890945i \(-0.650043\pi\)
0.544524 + 0.838745i \(0.316710\pi\)
\(368\) 3.46410 2.00000i 0.180579 0.104257i
\(369\) 1.00000 1.73205i 0.0520579 0.0901670i
\(370\) −4.00000 2.00000i −0.207950 0.103975i
\(371\) 0 0
\(372\) 8.00000i 0.414781i
\(373\) 5.19615 + 3.00000i 0.269047 + 0.155334i 0.628454 0.777847i \(-0.283688\pi\)
−0.359408 + 0.933181i \(0.617021\pi\)
\(374\) −2.00000 3.46410i −0.103418 0.179124i
\(375\) −7.23205 8.52628i −0.373461 0.440295i
\(376\) −4.00000 + 6.92820i −0.206284 + 0.357295i
\(377\) 0 0
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) 1.00000 + 1.73205i 0.0512316 + 0.0887357i
\(382\) −10.3923 + 6.00000i −0.531717 + 0.306987i
\(383\) 13.8564 + 8.00000i 0.708029 + 0.408781i 0.810331 0.585973i \(-0.199287\pi\)
−0.102302 + 0.994753i \(0.532621\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 4.00000 0.203595
\(387\) 3.46410 + 2.00000i 0.176090 + 0.101666i
\(388\) 6.92820 4.00000i 0.351726 0.203069i
\(389\) 10.0000 + 17.3205i 0.507020 + 0.878185i 0.999967 + 0.00812520i \(0.00258636\pi\)
−0.492947 + 0.870059i \(0.664080\pi\)
\(390\) −7.39230 11.1962i −0.374324 0.566939i
\(391\) −8.00000 −0.404577
\(392\) 0 0
\(393\) 18.0000i 0.907980i
\(394\) −11.0000 + 19.0526i −0.554172 + 0.959854i
\(395\) 0 0
\(396\) −1.00000 1.73205i −0.0502519 0.0870388i
\(397\) −1.73205 1.00000i −0.0869291 0.0501886i 0.455905 0.890028i \(-0.349316\pi\)
−0.542834 + 0.839840i \(0.682649\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 3.00000 + 4.00000i 0.150000 + 0.200000i
\(401\) −11.0000 + 19.0526i −0.549314 + 0.951439i 0.449008 + 0.893528i \(0.351777\pi\)
−0.998322 + 0.0579116i \(0.981556\pi\)
\(402\) −6.92820 + 4.00000i −0.345547 + 0.199502i
\(403\) 41.5692 24.0000i 2.07071 1.19553i
\(404\) −4.00000 + 6.92820i −0.199007 + 0.344691i
\(405\) −2.00000 1.00000i −0.0993808 0.0496904i
\(406\) 0 0
\(407\) 4.00000i 0.198273i
\(408\) 1.73205 + 1.00000i 0.0857493 + 0.0495074i
\(409\) −5.00000 8.66025i −0.247234 0.428222i 0.715523 0.698589i \(-0.246188\pi\)
−0.962757 + 0.270367i \(0.912855\pi\)
\(410\) 4.46410 0.267949i 0.220466 0.0132331i
\(411\) −9.00000 + 15.5885i −0.443937 + 0.768922i
\(412\) 14.0000i 0.689730i
\(413\) 0 0
\(414\) −4.00000 −0.196589
\(415\) 4.92820 + 7.46410i 0.241916 + 0.366398i
\(416\) 3.00000 + 5.19615i 0.147087 + 0.254762i
\(417\) 17.3205 10.0000i 0.848189 0.489702i
\(418\) 0 0
\(419\) 10.0000 0.488532 0.244266 0.969708i \(-0.421453\pi\)
0.244266 + 0.969708i \(0.421453\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 10.3923 + 6.00000i 0.505889 + 0.292075i
\(423\) 6.92820 4.00000i 0.336861 0.194487i
\(424\) −3.00000 5.19615i −0.145693 0.252347i
\(425\) −1.19615 9.92820i −0.0580219 0.481589i
\(426\) 12.0000 0.581402
\(427\) 0 0
\(428\) 12.0000i 0.580042i
\(429\) −6.00000 + 10.3923i −0.289683 + 0.501745i
\(430\) 0.535898 + 8.92820i 0.0258433 + 0.430556i
\(431\) −16.0000 27.7128i −0.770693 1.33488i −0.937184 0.348836i \(-0.886577\pi\)
0.166491 0.986043i \(-0.446756\pi\)
\(432\) 0.866025 + 0.500000i 0.0416667 + 0.0240563i
\(433\) 4.00000i 0.192228i 0.995370 + 0.0961139i \(0.0306413\pi\)
−0.995370 + 0.0961139i \(0.969359\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −5.00000 + 8.66025i −0.239457 + 0.414751i
\(437\) 0 0
\(438\) 3.46410 2.00000i 0.165521 0.0955637i
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 2.00000 4.00000i 0.0953463 0.190693i
\(441\) 0 0
\(442\) 12.0000i 0.570782i
\(443\) 31.1769 + 18.0000i 1.48126 + 0.855206i 0.999774 0.0212481i \(-0.00676401\pi\)
0.481486 + 0.876454i \(0.340097\pi\)
\(444\) −1.00000 1.73205i −0.0474579 0.0821995i
\(445\) 1.33975 + 22.3205i 0.0635100 + 1.05809i
\(446\) 13.0000 22.5167i 0.615568 1.06619i
\(447\) 20.0000i 0.945968i
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) −0.598076 4.96410i −0.0281936 0.234010i
\(451\) −2.00000 3.46410i −0.0941763 0.163118i
\(452\) 5.19615 3.00000i 0.244406 0.141108i
\(453\) 6.92820 + 4.00000i 0.325515 + 0.187936i
\(454\) −28.0000 −1.31411
\(455\) 0 0
\(456\) 0 0
\(457\) −27.7128 16.0000i −1.29635 0.748448i −0.316579 0.948566i \(-0.602534\pi\)
−0.979772 + 0.200118i \(0.935868\pi\)
\(458\) −8.66025 + 5.00000i −0.404667 + 0.233635i
\(459\) −1.00000 1.73205i −0.0466760 0.0808452i
\(460\) −4.92820 7.46410i −0.229779 0.348016i
\(461\) 12.0000 0.558896 0.279448 0.960161i \(-0.409849\pi\)
0.279448 + 0.960161i \(0.409849\pi\)
\(462\) 0 0
\(463\) 6.00000i 0.278844i −0.990233 0.139422i \(-0.955476\pi\)
0.990233 0.139422i \(-0.0445244\pi\)
\(464\) 0 0
\(465\) 17.8564 1.07180i 0.828071 0.0497034i
\(466\) −7.00000 12.1244i −0.324269 0.561650i
\(467\) −10.3923 6.00000i −0.480899 0.277647i 0.239892 0.970799i \(-0.422888\pi\)
−0.720791 + 0.693153i \(0.756221\pi\)
\(468\) 6.00000i 0.277350i
\(469\) 0 0
\(470\) 16.0000 + 8.00000i 0.738025 + 0.369012i
\(471\) 11.0000 19.0526i 0.506853 0.877896i
\(472\) −8.66025 + 5.00000i −0.398621 + 0.230144i
\(473\) 6.92820 4.00000i 0.318559 0.183920i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6.00000i 0.274721i
\(478\) −17.3205 10.0000i −0.792222 0.457389i
\(479\) 10.0000 + 17.3205i 0.456912 + 0.791394i 0.998796 0.0490589i \(-0.0156222\pi\)
−0.541884 + 0.840453i \(0.682289\pi\)
\(480\) 0.133975 + 2.23205i 0.00611508 + 0.101879i
\(481\) −6.00000 + 10.3923i −0.273576 + 0.473848i
\(482\) 22.0000i 1.00207i
\(483\) 0 0
\(484\) 7.00000 0.318182
\(485\) −9.85641 14.9282i −0.447556 0.677855i
\(486\) −0.500000 0.866025i −0.0226805 0.0392837i
\(487\) −15.5885 + 9.00000i −0.706380 + 0.407829i −0.809719 0.586817i \(-0.800381\pi\)
0.103339 + 0.994646i \(0.467047\pi\)
\(488\) −1.73205 1.00000i −0.0784063 0.0452679i
\(489\) 16.0000 0.723545
\(490\) 0 0
\(491\) −18.0000 −0.812329 −0.406164 0.913800i \(-0.633134\pi\)
−0.406164 + 0.913800i \(0.633134\pi\)
\(492\) 1.73205 + 1.00000i 0.0780869 + 0.0450835i
\(493\) 0 0
\(494\) 0 0
\(495\) −3.73205 + 2.46410i −0.167743 + 0.110753i
\(496\) −8.00000 −0.359211
\(497\) 0 0
\(498\) 4.00000i 0.179244i
\(499\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(500\) 8.52628 7.23205i 0.381307 0.323427i
\(501\) 6.00000 + 10.3923i 0.268060 + 0.464294i
\(502\) −15.5885 9.00000i −0.695747 0.401690i
\(503\) 24.0000i 1.07011i 0.844818 + 0.535054i \(0.179709\pi\)
−0.844818 + 0.535054i \(0.820291\pi\)
\(504\) 0 0
\(505\) 16.0000 + 8.00000i 0.711991 + 0.355995i
\(506\) −4.00000 + 6.92820i −0.177822 + 0.307996i
\(507\) −19.9186 + 11.5000i −0.884615 + 0.510733i
\(508\) −1.73205 + 1.00000i −0.0768473 + 0.0443678i
\(509\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(510\) 2.00000 4.00000i 0.0885615 0.177123i
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 9.00000 + 15.5885i 0.396973 + 0.687577i
\(515\) −31.2487 + 1.87564i −1.37698 + 0.0826508i
\(516\) −2.00000 + 3.46410i −0.0880451 + 0.152499i
\(517\) 16.0000i 0.703679i
\(518\) 0 0
\(519\) −14.0000 −0.614532
\(520\) 11.1962 7.39230i 0.490984 0.324174i
\(521\) −11.0000 19.0526i −0.481919 0.834708i 0.517866 0.855462i \(-0.326727\pi\)
−0.999785 + 0.0207541i \(0.993393\pi\)
\(522\) 0 0
\(523\) 13.8564 + 8.00000i 0.605898 + 0.349816i 0.771358 0.636401i \(-0.219578\pi\)
−0.165460 + 0.986216i \(0.552911\pi\)
\(524\) 18.0000 0.786334
\(525\) 0 0
\(526\) 4.00000 0.174408
\(527\) 13.8564 + 8.00000i 0.603595 + 0.348485i
\(528\) 1.73205 1.00000i 0.0753778 0.0435194i
\(529\) −3.50000 6.06218i −0.152174 0.263573i
\(530\) −11.1962 + 7.39230i −0.486330 + 0.321101i
\(531\) 10.0000 0.433963
\(532\) 0 0
\(533\) 12.0000i 0.519778i
\(534\) −5.00000 + 8.66025i −0.216371 + 0.374766i
\(535\) −26.7846 + 1.60770i −1.15800 + 0.0695067i
\(536\) −4.00000 6.92820i −0.172774 0.299253i
\(537\) 8.66025 + 5.00000i 0.373718 + 0.215766i
\(538\) 0 0
\(539\) 0 0
\(540\) 1.00000 2.00000i 0.0430331 0.0860663i
\(541\) 19.0000 32.9090i 0.816874 1.41487i −0.0911008 0.995842i \(-0.529039\pi\)
0.907975 0.419025i \(-0.137628\pi\)
\(542\) 6.92820 4.00000i 0.297592 0.171815i
\(543\) 1.73205 1.00000i 0.0743294 0.0429141i
\(544\) −1.00000 + 1.73205i −0.0428746 + 0.0742611i
\(545\) 20.0000 + 10.0000i 0.856706 + 0.428353i
\(546\) 0 0
\(547\) 28.0000i 1.19719i −0.801050 0.598597i \(-0.795725\pi\)
0.801050 0.598597i \(-0.204275\pi\)
\(548\) −15.5885 9.00000i −0.665906 0.384461i
\(549\) 1.00000 + 1.73205i 0.0426790 + 0.0739221i
\(550\) −9.19615 3.92820i −0.392125 0.167499i
\(551\) 0 0
\(552\) 4.00000i 0.170251i
\(553\) 0 0
\(554\) 2.00000 0.0849719
\(555\) −3.73205 + 2.46410i −0.158417 + 0.104595i
\(556\) 10.0000 + 17.3205i 0.424094 + 0.734553i
\(557\) −15.5885 + 9.00000i −0.660504 + 0.381342i −0.792469 0.609912i \(-0.791205\pi\)
0.131965 + 0.991254i \(0.457871\pi\)
\(558\) 6.92820 + 4.00000i 0.293294 + 0.169334i
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) −4.00000 −0.168880
\(562\) −15.5885 9.00000i −0.657559 0.379642i
\(563\) 38.1051 22.0000i 1.60594 0.927189i 0.615673 0.788002i \(-0.288884\pi\)
0.990266 0.139188i \(-0.0444492\pi\)
\(564\) 4.00000 + 6.92820i 0.168430 + 0.291730i
\(565\) −7.39230 11.1962i −0.310997 0.471026i
\(566\) −16.0000 −0.672530
\(567\) 0 0
\(568\) 12.0000i 0.503509i
\(569\) −5.00000 + 8.66025i −0.209611 + 0.363057i −0.951592 0.307364i \(-0.900553\pi\)
0.741981 + 0.670421i \(0.233886\pi\)
\(570\) 0 0
\(571\) 4.00000 + 6.92820i 0.167395 + 0.289936i 0.937503 0.347977i \(-0.113131\pi\)
−0.770108 + 0.637913i \(0.779798\pi\)
\(572\) −10.3923 6.00000i −0.434524 0.250873i
\(573\) 12.0000i 0.501307i
\(574\) 0 0
\(575\) −16.0000 + 12.0000i −0.667246 + 0.500435i
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 27.7128 16.0000i 1.15370 0.666089i 0.203913 0.978989i \(-0.434634\pi\)
0.949786 + 0.312900i \(0.101301\pi\)
\(578\) −11.2583 + 6.50000i −0.468285 + 0.270364i
\(579\) 2.00000 3.46410i 0.0831172 0.143963i
\(580\) 0 0
\(581\) 0 0
\(582\) 8.00000i 0.331611i
\(583\) 10.3923 + 6.00000i 0.430405 + 0.248495i
\(584\) 2.00000 + 3.46410i 0.0827606 + 0.143346i
\(585\) −13.3923 + 0.803848i −0.553704 + 0.0332350i
\(586\) 3.00000 5.19615i 0.123929 0.214651i
\(587\) 12.0000i 0.495293i 0.968850 + 0.247647i \(0.0796572\pi\)
−0.968850 + 0.247647i \(0.920343\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 12.3205 + 18.6603i 0.507227 + 0.768231i
\(591\) 11.0000 + 19.0526i 0.452480 + 0.783718i
\(592\) 1.73205 1.00000i 0.0711868 0.0410997i
\(593\) 5.19615 + 3.00000i 0.213380 + 0.123195i 0.602881 0.797831i \(-0.294019\pi\)
−0.389501 + 0.921026i \(0.627353\pi\)
\(594\) −2.00000 −0.0820610
\(595\) 0 0
\(596\) −20.0000 −0.819232
\(597\) 0 0
\(598\) −20.7846 + 12.0000i −0.849946 + 0.490716i
\(599\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) 4.96410 0.598076i 0.202659 0.0244164i
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 0 0
\(603\) 8.00000i 0.325785i
\(604\) −4.00000 + 6.92820i −0.162758 + 0.281905i
\(605\) −0.937822 15.6244i −0.0381279 0.635220i
\(606\) 4.00000 + 6.92820i 0.162489 + 0.281439i
\(607\) −19.0526 11.0000i −0.773320 0.446476i 0.0607380 0.998154i \(-0.480655\pi\)
−0.834058 + 0.551678i \(0.813988\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −2.00000 + 4.00000i −0.0809776 + 0.161955i
\(611\) 24.0000 41.5692i 0.970936 1.68171i
\(612\) 1.73205 1.00000i 0.0700140 0.0404226i
\(613\) −22.5167 + 13.0000i −0.909439 + 0.525065i −0.880251 0.474509i \(-0.842626\pi\)
−0.0291886 + 0.999574i \(0.509292\pi\)
\(614\) −6.00000 + 10.3923i −0.242140 + 0.419399i
\(615\) 2.00000 4.00000i 0.0806478 0.161296i
\(616\) 0 0
\(617\) 2.00000i 0.0805170i 0.999189 + 0.0402585i \(0.0128181\pi\)
−0.999189 + 0.0402585i \(0.987182\pi\)
\(618\) −12.1244 7.00000i −0.487713 0.281581i
\(619\) 10.0000 + 17.3205i 0.401934 + 0.696170i 0.993959 0.109749i \(-0.0350048\pi\)
−0.592025 + 0.805919i \(0.701671\pi\)
\(620\) 1.07180 + 17.8564i 0.0430444 + 0.717131i
\(621\) −2.00000 + 3.46410i −0.0802572 + 0.139010i
\(622\) 12.0000i 0.481156i
\(623\) 0 0
\(624\) 6.00000 0.240192
\(625\) −17.2846 18.0622i −0.691384 0.722487i
\(626\) −2.00000 3.46410i −0.0799361 0.138453i
\(627\) 0 0
\(628\) 19.0526 + 11.0000i 0.760280 + 0.438948i
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 0 0
\(633\) 10.3923 6.00000i 0.413057 0.238479i
\(634\) −1.00000 1.73205i −0.0397151 0.0687885i
\(635\) 2.46410 + 3.73205i 0.0977849 + 0.148102i
\(636\) −6.00000 −0.237915
\(637\) 0 0
\(638\) 0 0
\(639\) 6.00000 10.3923i 0.237356 0.411113i
\(640\) −2.23205 + 0.133975i −0.0882296 + 0.00529581i
\(641\) −1.00000 1.73205i −0.0394976 0.0684119i 0.845601 0.533816i \(-0.179242\pi\)
−0.885098 + 0.465404i \(0.845909\pi\)
\(642\) −10.3923 6.00000i −0.410152 0.236801i
\(643\) 24.0000i 0.946468i 0.880937 + 0.473234i \(0.156913\pi\)
−0.880937 + 0.473234i \(0.843087\pi\)
\(644\) 0 0
\(645\) 8.00000 + 4.00000i 0.315000 + 0.157500i
\(646\) 0 0
\(647\) −41.5692 + 24.0000i −1.63425 + 0.943537i −0.651494 + 0.758654i \(0.725858\pi\)
−0.982760 + 0.184884i \(0.940809\pi\)
\(648\) 0.866025 0.500000i 0.0340207 0.0196419i
\(649\) 10.0000 17.3205i 0.392534 0.679889i
\(650\) −18.0000 24.0000i −0.706018 0.941357i
\(651\) 0 0
\(652\) 16.0000i 0.626608i
\(653\) 22.5167 + 13.0000i 0.881145 + 0.508729i 0.871036 0.491220i \(-0.163449\pi\)
0.0101092 + 0.999949i \(0.496782\pi\)
\(654\) 5.00000 + 8.66025i 0.195515 + 0.338643i
\(655\) −2.41154 40.1769i −0.0942268 1.56984i
\(656\) −1.00000 + 1.73205i −0.0390434 + 0.0676252i
\(657\) 4.00000i 0.156055i
\(658\) 0 0
\(659\) 50.0000 1.94772 0.973862 0.227142i \(-0.0729380\pi\)
0.973862 + 0.227142i \(0.0729380\pi\)
\(660\) −2.46410 3.73205i −0.0959150 0.145270i
\(661\) −1.00000 1.73205i −0.0388955 0.0673690i 0.845922 0.533306i \(-0.179051\pi\)
−0.884818 + 0.465937i \(0.845717\pi\)
\(662\) 6.92820 4.00000i 0.269272 0.155464i
\(663\) −10.3923 6.00000i −0.403604 0.233021i
\(664\) −4.00000 −0.155230
\(665\) 0 0
\(666\) −2.00000 −0.0774984
\(667\) 0 0
\(668\) −10.3923 + 6.00000i −0.402090 + 0.232147i
\(669\) −13.0000 22.5167i −0.502609 0.870544i
\(670\) −14.9282 + 9.85641i −0.576727 + 0.380786i
\(671\) 4.00000 0.154418
\(672\) 0 0
\(673\) 36.0000i 1.38770i −0.720121 0.693849i \(-0.755914\pi\)
0.720121 0.693849i \(-0.244086\pi\)
\(674\) 14.0000 24.2487i 0.539260 0.934025i
\(675\) −4.59808 1.96410i −0.176980 0.0755983i
\(676\) −11.5000 19.9186i −0.442308 0.766099i
\(677\) −1.73205 1.00000i −0.0665681 0.0384331i 0.466347 0.884602i \(-0.345570\pi\)
−0.532915 + 0.846169i \(0.678903\pi\)
\(678\) 6.00000i 0.230429i
\(679\) 0 0
\(680\) 4.00000 + 2.00000i 0.153393 + 0.0766965i
\(681\) −14.0000 + 24.2487i −0.536481 + 0.929213i
\(682\) 13.8564 8.00000i 0.530589 0.306336i
\(683\) 3.46410 2.00000i 0.132550 0.0765279i −0.432259 0.901750i \(-0.642283\pi\)
0.564809 + 0.825222i \(0.308950\pi\)
\(684\) 0 0
\(685\) −18.0000 + 36.0000i −0.687745 + 1.37549i
\(686\) 0 0
\(687\) 10.0000i 0.381524i
\(688\) −3.46410 2.00000i −0.132068 0.0762493i
\(689\) 18.0000 + 31.1769i 0.685745 + 1.18775i
\(690\) −8.92820 + 0.535898i −0.339891 + 0.0204013i
\(691\) 4.00000 6.92820i 0.152167 0.263561i −0.779857 0.625958i \(-0.784708\pi\)
0.932024 + 0.362397i \(0.118041\pi\)
\(692\) 14.0000i 0.532200i
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) 37.3205 24.6410i 1.41565 0.934687i
\(696\) 0 0
\(697\) 3.46410 2.00000i 0.131212 0.0757554i
\(698\) −8.66025 5.00000i −0.327795 0.189253i
\(699\) −14.0000 −0.529529
\(700\) 0 0
\(701\) 32.0000 1.20862 0.604312 0.796748i \(-0.293448\pi\)
0.604312 + 0.796748i \(0.293448\pi\)
\(702\) −5.19615 3.00000i −0.196116 0.113228i
\(703\) 0 0
\(704\) 1.00000 + 1.73205i 0.0376889 + 0.0652791i
\(705\) 14.9282 9.85641i 0.562229 0.371214i
\(706\) 14.0000 0.526897
\(707\) 0 0
\(708\) 10.0000i 0.375823i
\(709\) 15.0000 25.9808i 0.563337 0.975728i −0.433865 0.900978i \(-0.642851\pi\)
0.997202 0.0747503i \(-0.0238160\pi\)
\(710\) 26.7846 1.60770i 1.00521 0.0603357i
\(711\) 0 0
\(712\) −8.66025 5.00000i −0.324557 0.187383i
\(713\) 32.0000i 1.19841i
\(714\) 0 0
\(715\) −12.0000 + 24.0000i −0.448775 + 0.897549i
\(716\) −5.00000 + 8.66025i −0.186859 + 0.323649i
\(717\) −17.3205 + 10.0000i −0.646846 + 0.373457i
\(718\) 0 0
\(719\) −20.0000 + 34.6410i −0.745874 + 1.29189i 0.203911 + 0.978989i \(0.434635\pi\)
−0.949785 + 0.312903i \(0.898699\pi\)
\(720\) 2.00000 + 1.00000i 0.0745356 + 0.0372678i
\(721\) 0 0
\(722\) 19.0000i 0.707107i
\(723\) −19.0526 11.0000i −0.708572 0.409094i
\(724\) 1.00000 + 1.73205i 0.0371647 + 0.0643712i
\(725\) 0 0
\(726\) 3.50000 6.06218i 0.129897 0.224989i
\(727\) 18.0000i 0.667583i −0.942647 0.333792i \(-0.891672\pi\)
0.942647 0.333792i \(-0.108328\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 7.46410 4.92820i 0.276259 0.182401i
\(731\) 4.00000 + 6.92820i 0.147945 + 0.256249i
\(732\) −1.73205 + 1.00000i −0.0640184 + 0.0369611i
\(733\) −12.1244 7.00000i −0.447823 0.258551i 0.259087 0.965854i \(-0.416578\pi\)
−0.706910 + 0.707303i \(0.749912\pi\)
\(734\) 2.00000 0.0738213
\(735\) 0 0
\(736\) 4.00000 0.147442
\(737\) 13.8564 + 8.00000i 0.510407 + 0.294684i
\(738\) 1.73205 1.00000i 0.0637577 0.0368105i
\(739\) 20.0000 + 34.6410i 0.735712 + 1.27429i 0.954410 + 0.298498i \(0.0964856\pi\)
−0.218698 + 0.975793i \(0.570181\pi\)
\(740\) −2.46410 3.73205i −0.0905822 0.137193i
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0000i 0.880475i 0.897881 + 0.440237i \(0.145106\pi\)
−0.897881 + 0.440237i \(0.854894\pi\)
\(744\) −4.00000 + 6.92820i −0.146647 + 0.254000i
\(745\) 2.67949 + 44.6410i 0.0981690 + 1.63552i
\(746\) 3.00000 + 5.19615i 0.109838 + 0.190245i
\(747\) 3.46410 + 2.00000i 0.126745 + 0.0731762i
\(748\) 4.00000i 0.146254i
\(749\) 0 0
\(750\) −2.00000 11.0000i −0.0730297 0.401663i
\(751\) −16.0000 + 27.7128i −0.583848 + 1.01125i 0.411170 + 0.911559i \(0.365120\pi\)
−0.995018 + 0.0996961i \(0.968213\pi\)
\(752\) −6.92820 + 4.00000i −0.252646 + 0.145865i
\(753\) −15.5885 + 9.00000i −0.568075 + 0.327978i
\(754\) 0 0
\(755\) 16.0000 + 8.00000i 0.582300 + 0.291150i
\(756\) 0 0
\(757\) 2.00000i 0.0726912i 0.999339 + 0.0363456i \(0.0115717\pi\)
−0.999339 + 0.0363456i \(0.988428\pi\)
\(758\) −17.3205 10.0000i −0.629109 0.363216i
\(759\) 4.00000 + 6.92820i 0.145191 + 0.251478i
\(760\) 0 0
\(761\) 9.00000 15.5885i 0.326250 0.565081i −0.655515 0.755182i \(-0.727548\pi\)
0.981764 + 0.190101i \(0.0608816\pi\)
\(762\) 2.00000i 0.0724524i
\(763\) 0 0
\(764\) −12.0000 −0.434145
\(765\) −2.46410 3.73205i −0.0890898 0.134933i
\(766\) 8.00000 + 13.8564i 0.289052 + 0.500652i
\(767\) 51.9615 30.0000i 1.87622 1.08324i
\(768\) −0.866025 0.500000i −0.0312500 0.0180422i
\(769\) 30.0000 1.08183 0.540914 0.841078i \(-0.318079\pi\)
0.540914 + 0.841078i \(0.318079\pi\)
\(770\) 0 0
\(771\) 18.0000 0.648254
\(772\) 3.46410 + 2.00000i 0.124676 + 0.0719816i
\(773\) 46.7654 27.0000i 1.68203 0.971123i 0.721726 0.692179i \(-0.243349\pi\)
0.960307 0.278944i \(-0.0899843\pi\)
\(774\) 2.00000 + 3.46410i 0.0718885 + 0.124515i
\(775\) 39.7128 4.78461i 1.42653 0.171868i
\(776\) 8.00000 0.287183
\(777\) 0 0
\(778\) 20.0000i 0.717035i
\(779\) 0 0
\(780\) −0.803848 13.3923i −0.0287824 0.479521i
\(781\) −12.0000 20.7846i −0.429394 0.743732i
\(782\) −6.92820 4.00000i −0.247752 0.143040i
\(783\) 0 0
\(784\) 0 0
\(785\) 22.0000 44.0000i 0.785214 1.57043i