Properties

Label 1470.2.n
Level $1470$
Weight $2$
Character orbit 1470.n
Rep. character $\chi_{1470}(79,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $80$
Newform subspaces $12$
Sturm bound $672$
Trace bound $11$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.n (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 12 \)
Sturm bound: \(672\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(11\), \(17\), \(19\), \(31\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1470, [\chi])\).

Total New Old
Modular forms 736 80 656
Cusp forms 608 80 528
Eisenstein series 128 0 128

Trace form

\( 80q + 40q^{4} + 4q^{5} - 8q^{6} + 40q^{9} + O(q^{10}) \) \( 80q + 40q^{4} + 4q^{5} - 8q^{6} + 40q^{9} + 2q^{10} - 4q^{11} - 4q^{15} - 40q^{16} - 20q^{19} + 8q^{20} - 4q^{24} + 10q^{25} + 4q^{26} + 80q^{29} - 8q^{30} - 12q^{31} + 32q^{34} + 80q^{36} - 8q^{39} - 2q^{40} + 72q^{41} + 4q^{44} - 4q^{45} + 20q^{46} + 64q^{50} + 8q^{51} - 4q^{54} - 20q^{55} + 16q^{59} - 2q^{60} + 8q^{61} - 80q^{64} - 16q^{65} + 16q^{66} + 48q^{69} - 112q^{71} + 60q^{74} + 8q^{75} - 40q^{76} - 28q^{79} + 4q^{80} - 40q^{81} + 104q^{85} - 40q^{86} - 8q^{89} + 4q^{90} - 20q^{94} - 44q^{95} + 4q^{96} - 8q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1470, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
1470.2.n.a \(4\) \(11.738\) \(\Q(\zeta_{12})\) None \(0\) \(0\) \(-4\) \(0\) \(q+(\zeta_{12}-\zeta_{12}^{3})q^{2}-\zeta_{12}q^{3}+(1-\zeta_{12}^{2}+\cdots)q^{4}+\cdots\)
1470.2.n.b \(4\) \(11.738\) \(\Q(\zeta_{12})\) None \(0\) \(0\) \(-2\) \(0\) \(q+(-\zeta_{12}+\zeta_{12}^{3})q^{2}-\zeta_{12}q^{3}+(1+\cdots)q^{4}+\cdots\)
1470.2.n.c \(4\) \(11.738\) \(\Q(\zeta_{12})\) None \(0\) \(0\) \(-2\) \(0\) \(q+(-\zeta_{12}+\zeta_{12}^{3})q^{2}-\zeta_{12}q^{3}+(1+\cdots)q^{4}+\cdots\)
1470.2.n.d \(4\) \(11.738\) \(\Q(\zeta_{12})\) None \(0\) \(0\) \(-2\) \(0\) \(q+(\zeta_{12}-\zeta_{12}^{3})q^{2}+\zeta_{12}q^{3}+(1-\zeta_{12}^{2}+\cdots)q^{4}+\cdots\)
1470.2.n.e \(4\) \(11.738\) \(\Q(\zeta_{12})\) None \(0\) \(0\) \(2\) \(0\) \(q+(-\zeta_{12}+\zeta_{12}^{3})q^{2}+\zeta_{12}q^{3}+(1+\cdots)q^{4}+\cdots\)
1470.2.n.f \(4\) \(11.738\) \(\Q(\zeta_{12})\) None \(0\) \(0\) \(2\) \(0\) \(q+(\zeta_{12}-\zeta_{12}^{3})q^{2}-\zeta_{12}q^{3}+(1-\zeta_{12}^{2}+\cdots)q^{4}+\cdots\)
1470.2.n.g \(4\) \(11.738\) \(\Q(\zeta_{12})\) None \(0\) \(0\) \(2\) \(0\) \(q+(\zeta_{12}-\zeta_{12}^{3})q^{2}-\zeta_{12}q^{3}+(1-\zeta_{12}^{2}+\cdots)q^{4}+\cdots\)
1470.2.n.h \(4\) \(11.738\) \(\Q(\zeta_{12})\) None \(0\) \(0\) \(4\) \(0\) \(q+(-\zeta_{12}+\zeta_{12}^{3})q^{2}-\zeta_{12}q^{3}+(1+\cdots)q^{4}+\cdots\)
1470.2.n.i \(4\) \(11.738\) \(\Q(\zeta_{12})\) None \(0\) \(0\) \(4\) \(0\) \(q+(\zeta_{12}-\zeta_{12}^{3})q^{2}+\zeta_{12}q^{3}+(1-\zeta_{12}^{2}+\cdots)q^{4}+\cdots\)
1470.2.n.j \(12\) \(11.738\) 12.0.\(\cdots\).1 None \(0\) \(0\) \(0\) \(0\) \(q+\beta _{3}q^{2}-\beta _{1}q^{3}+\beta _{8}q^{4}+\beta _{5}q^{5}+\cdots\)
1470.2.n.k \(16\) \(11.738\) \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(0\) \(0\) \(-4\) \(0\) \(q+\beta _{2}q^{2}+\beta _{5}q^{3}+(1+\beta _{3})q^{4}-\beta _{7}q^{5}+\cdots\)
1470.2.n.l \(16\) \(11.738\) \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(0\) \(0\) \(4\) \(0\) \(q-\beta _{2}q^{2}+\beta _{5}q^{3}+(1+\beta _{3})q^{4}-\beta _{8}q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1470, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1470, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(210, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(490, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(735, [\chi])\)\(^{\oplus 2}\)