Properties

Label 1470.2.i.v.361.1
Level $1470$
Weight $2$
Character 1470.361
Analytic conductor $11.738$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1470,2,Mod(361,1470)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1470, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1470.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,2,-2,2,-4,0,4,-2,2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7380090971\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(-0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1470.361
Dual form 1470.2.i.v.961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.500000 + 0.866025i) q^{5} -1.00000 q^{6} +1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(0.500000 - 0.866025i) q^{10} +(-1.70711 + 2.95680i) q^{11} +(0.500000 + 0.866025i) q^{12} +1.00000 q^{15} +(-0.500000 - 0.866025i) q^{16} +(-0.707107 + 1.22474i) q^{17} +(-0.500000 + 0.866025i) q^{18} +(1.41421 + 2.44949i) q^{19} -1.00000 q^{20} +3.41421 q^{22} +(0.414214 + 0.717439i) q^{23} +(0.500000 - 0.866025i) q^{24} +(-0.500000 + 0.866025i) q^{25} -1.00000 q^{27} -0.242641 q^{29} +(-0.500000 - 0.866025i) q^{30} +(-4.53553 + 7.85578i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(1.70711 + 2.95680i) q^{33} +1.41421 q^{34} +1.00000 q^{36} +(-0.707107 - 1.22474i) q^{37} +(1.41421 - 2.44949i) q^{38} +(0.500000 + 0.866025i) q^{40} +3.17157 q^{41} +7.41421 q^{43} +(-1.70711 - 2.95680i) q^{44} +(0.500000 - 0.866025i) q^{45} +(0.414214 - 0.717439i) q^{46} +(2.53553 + 4.39167i) q^{47} -1.00000 q^{48} +1.00000 q^{50} +(0.707107 + 1.22474i) q^{51} +(-6.65685 + 11.5300i) q^{53} +(0.500000 + 0.866025i) q^{54} -3.41421 q^{55} +2.82843 q^{57} +(0.121320 + 0.210133i) q^{58} +(-7.24264 + 12.5446i) q^{59} +(-0.500000 + 0.866025i) q^{60} +(-0.171573 - 0.297173i) q^{61} +9.07107 q^{62} +1.00000 q^{64} +(1.70711 - 2.95680i) q^{66} +(5.94975 - 10.3053i) q^{67} +(-0.707107 - 1.22474i) q^{68} +0.828427 q^{69} +5.17157 q^{71} +(-0.500000 - 0.866025i) q^{72} +(-1.82843 + 3.16693i) q^{73} +(-0.707107 + 1.22474i) q^{74} +(0.500000 + 0.866025i) q^{75} -2.82843 q^{76} +(-5.65685 - 9.79796i) q^{79} +(0.500000 - 0.866025i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-1.58579 - 2.74666i) q^{82} +10.8284 q^{83} -1.41421 q^{85} +(-3.70711 - 6.42090i) q^{86} +(-0.121320 + 0.210133i) q^{87} +(-1.70711 + 2.95680i) q^{88} +(5.24264 + 9.08052i) q^{89} -1.00000 q^{90} -0.828427 q^{92} +(4.53553 + 7.85578i) q^{93} +(2.53553 - 4.39167i) q^{94} +(-1.41421 + 2.44949i) q^{95} +(0.500000 + 0.866025i) q^{96} -3.17157 q^{97} +3.41421 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 2 q^{3} - 2 q^{4} + 2 q^{5} - 4 q^{6} + 4 q^{8} - 2 q^{9} + 2 q^{10} - 4 q^{11} + 2 q^{12} + 4 q^{15} - 2 q^{16} - 2 q^{18} - 4 q^{20} + 8 q^{22} - 4 q^{23} + 2 q^{24} - 2 q^{25} - 4 q^{27}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times\).

\(n\) \(491\) \(1081\) \(1177\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) −1.00000 −0.408248
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0.500000 0.866025i 0.158114 0.273861i
\(11\) −1.70711 + 2.95680i −0.514712 + 0.891507i 0.485142 + 0.874435i \(0.338768\pi\)
−0.999854 + 0.0170722i \(0.994565\pi\)
\(12\) 0.500000 + 0.866025i 0.144338 + 0.250000i
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.707107 + 1.22474i −0.171499 + 0.297044i −0.938944 0.344070i \(-0.888194\pi\)
0.767445 + 0.641114i \(0.221528\pi\)
\(18\) −0.500000 + 0.866025i −0.117851 + 0.204124i
\(19\) 1.41421 + 2.44949i 0.324443 + 0.561951i 0.981399 0.191977i \(-0.0614899\pi\)
−0.656957 + 0.753928i \(0.728157\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) 3.41421 0.727913
\(23\) 0.414214 + 0.717439i 0.0863695 + 0.149596i 0.905974 0.423333i \(-0.139140\pi\)
−0.819604 + 0.572930i \(0.805807\pi\)
\(24\) 0.500000 0.866025i 0.102062 0.176777i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −0.242641 −0.0450572 −0.0225286 0.999746i \(-0.507172\pi\)
−0.0225286 + 0.999746i \(0.507172\pi\)
\(30\) −0.500000 0.866025i −0.0912871 0.158114i
\(31\) −4.53553 + 7.85578i −0.814606 + 1.41094i 0.0950046 + 0.995477i \(0.469713\pi\)
−0.909611 + 0.415462i \(0.863620\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 1.70711 + 2.95680i 0.297169 + 0.514712i
\(34\) 1.41421 0.242536
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −0.707107 1.22474i −0.116248 0.201347i 0.802030 0.597284i \(-0.203753\pi\)
−0.918278 + 0.395937i \(0.870420\pi\)
\(38\) 1.41421 2.44949i 0.229416 0.397360i
\(39\) 0 0
\(40\) 0.500000 + 0.866025i 0.0790569 + 0.136931i
\(41\) 3.17157 0.495316 0.247658 0.968847i \(-0.420339\pi\)
0.247658 + 0.968847i \(0.420339\pi\)
\(42\) 0 0
\(43\) 7.41421 1.13066 0.565328 0.824866i \(-0.308749\pi\)
0.565328 + 0.824866i \(0.308749\pi\)
\(44\) −1.70711 2.95680i −0.257356 0.445754i
\(45\) 0.500000 0.866025i 0.0745356 0.129099i
\(46\) 0.414214 0.717439i 0.0610725 0.105781i
\(47\) 2.53553 + 4.39167i 0.369846 + 0.640591i 0.989541 0.144251i \(-0.0460772\pi\)
−0.619696 + 0.784842i \(0.712744\pi\)
\(48\) −1.00000 −0.144338
\(49\) 0 0
\(50\) 1.00000 0.141421
\(51\) 0.707107 + 1.22474i 0.0990148 + 0.171499i
\(52\) 0 0
\(53\) −6.65685 + 11.5300i −0.914389 + 1.58377i −0.106596 + 0.994302i \(0.533995\pi\)
−0.807793 + 0.589466i \(0.799338\pi\)
\(54\) 0.500000 + 0.866025i 0.0680414 + 0.117851i
\(55\) −3.41421 −0.460372
\(56\) 0 0
\(57\) 2.82843 0.374634
\(58\) 0.121320 + 0.210133i 0.0159301 + 0.0275918i
\(59\) −7.24264 + 12.5446i −0.942912 + 1.63317i −0.183032 + 0.983107i \(0.558591\pi\)
−0.759880 + 0.650064i \(0.774742\pi\)
\(60\) −0.500000 + 0.866025i −0.0645497 + 0.111803i
\(61\) −0.171573 0.297173i −0.0219677 0.0380491i 0.854833 0.518904i \(-0.173660\pi\)
−0.876800 + 0.480855i \(0.840326\pi\)
\(62\) 9.07107 1.15203
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 1.70711 2.95680i 0.210130 0.363956i
\(67\) 5.94975 10.3053i 0.726877 1.25899i −0.231319 0.972878i \(-0.574304\pi\)
0.958197 0.286111i \(-0.0923625\pi\)
\(68\) −0.707107 1.22474i −0.0857493 0.148522i
\(69\) 0.828427 0.0997309
\(70\) 0 0
\(71\) 5.17157 0.613753 0.306876 0.951749i \(-0.400716\pi\)
0.306876 + 0.951749i \(0.400716\pi\)
\(72\) −0.500000 0.866025i −0.0589256 0.102062i
\(73\) −1.82843 + 3.16693i −0.214001 + 0.370661i −0.952963 0.303086i \(-0.901983\pi\)
0.738962 + 0.673747i \(0.235316\pi\)
\(74\) −0.707107 + 1.22474i −0.0821995 + 0.142374i
\(75\) 0.500000 + 0.866025i 0.0577350 + 0.100000i
\(76\) −2.82843 −0.324443
\(77\) 0 0
\(78\) 0 0
\(79\) −5.65685 9.79796i −0.636446 1.10236i −0.986207 0.165518i \(-0.947071\pi\)
0.349761 0.936839i \(-0.386263\pi\)
\(80\) 0.500000 0.866025i 0.0559017 0.0968246i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −1.58579 2.74666i −0.175121 0.303318i
\(83\) 10.8284 1.18857 0.594287 0.804253i \(-0.297434\pi\)
0.594287 + 0.804253i \(0.297434\pi\)
\(84\) 0 0
\(85\) −1.41421 −0.153393
\(86\) −3.70711 6.42090i −0.399748 0.692383i
\(87\) −0.121320 + 0.210133i −0.0130069 + 0.0225286i
\(88\) −1.70711 + 2.95680i −0.181978 + 0.315195i
\(89\) 5.24264 + 9.08052i 0.555719 + 0.962533i 0.997847 + 0.0655814i \(0.0208902\pi\)
−0.442128 + 0.896952i \(0.645776\pi\)
\(90\) −1.00000 −0.105409
\(91\) 0 0
\(92\) −0.828427 −0.0863695
\(93\) 4.53553 + 7.85578i 0.470313 + 0.814606i
\(94\) 2.53553 4.39167i 0.261520 0.452967i
\(95\) −1.41421 + 2.44949i −0.145095 + 0.251312i
\(96\) 0.500000 + 0.866025i 0.0510310 + 0.0883883i
\(97\) −3.17157 −0.322024 −0.161012 0.986952i \(-0.551476\pi\)
−0.161012 + 0.986952i \(0.551476\pi\)
\(98\) 0 0
\(99\) 3.41421 0.343141
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) −8.82843 + 15.2913i −0.878461 + 1.52154i −0.0254321 + 0.999677i \(0.508096\pi\)
−0.853029 + 0.521863i \(0.825237\pi\)
\(102\) 0.707107 1.22474i 0.0700140 0.121268i
\(103\) 9.07107 + 15.7116i 0.893799 + 1.54811i 0.835284 + 0.549819i \(0.185303\pi\)
0.0585147 + 0.998287i \(0.481364\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 13.3137 1.29314
\(107\) 2.00000 + 3.46410i 0.193347 + 0.334887i 0.946357 0.323122i \(-0.104732\pi\)
−0.753010 + 0.658009i \(0.771399\pi\)
\(108\) 0.500000 0.866025i 0.0481125 0.0833333i
\(109\) 8.65685 14.9941i 0.829176 1.43618i −0.0695090 0.997581i \(-0.522143\pi\)
0.898685 0.438594i \(-0.144523\pi\)
\(110\) 1.70711 + 2.95680i 0.162766 + 0.281919i
\(111\) −1.41421 −0.134231
\(112\) 0 0
\(113\) −13.3137 −1.25245 −0.626224 0.779643i \(-0.715401\pi\)
−0.626224 + 0.779643i \(0.715401\pi\)
\(114\) −1.41421 2.44949i −0.132453 0.229416i
\(115\) −0.414214 + 0.717439i −0.0386256 + 0.0669015i
\(116\) 0.121320 0.210133i 0.0112643 0.0195104i
\(117\) 0 0
\(118\) 14.4853 1.33348
\(119\) 0 0
\(120\) 1.00000 0.0912871
\(121\) −0.328427 0.568852i −0.0298570 0.0517139i
\(122\) −0.171573 + 0.297173i −0.0155335 + 0.0269048i
\(123\) 1.58579 2.74666i 0.142986 0.247658i
\(124\) −4.53553 7.85578i −0.407303 0.705469i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 14.1421 1.25491 0.627456 0.778652i \(-0.284096\pi\)
0.627456 + 0.778652i \(0.284096\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 3.70711 6.42090i 0.326393 0.565328i
\(130\) 0 0
\(131\) −5.58579 9.67487i −0.488032 0.845297i 0.511873 0.859061i \(-0.328952\pi\)
−0.999905 + 0.0137643i \(0.995619\pi\)
\(132\) −3.41421 −0.297169
\(133\) 0 0
\(134\) −11.8995 −1.02796
\(135\) −0.500000 0.866025i −0.0430331 0.0745356i
\(136\) −0.707107 + 1.22474i −0.0606339 + 0.105021i
\(137\) 8.00000 13.8564i 0.683486 1.18383i −0.290424 0.956898i \(-0.593796\pi\)
0.973910 0.226935i \(-0.0728704\pi\)
\(138\) −0.414214 0.717439i −0.0352602 0.0610725i
\(139\) −6.34315 −0.538019 −0.269009 0.963138i \(-0.586696\pi\)
−0.269009 + 0.963138i \(0.586696\pi\)
\(140\) 0 0
\(141\) 5.07107 0.427061
\(142\) −2.58579 4.47871i −0.216994 0.375845i
\(143\) 0 0
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) −0.121320 0.210133i −0.0100751 0.0174506i
\(146\) 3.65685 0.302643
\(147\) 0 0
\(148\) 1.41421 0.116248
\(149\) −2.94975 5.10911i −0.241653 0.418555i 0.719532 0.694459i \(-0.244356\pi\)
−0.961185 + 0.275904i \(0.911023\pi\)
\(150\) 0.500000 0.866025i 0.0408248 0.0707107i
\(151\) 10.8995 18.8785i 0.886988 1.53631i 0.0435707 0.999050i \(-0.486127\pi\)
0.843418 0.537258i \(-0.180540\pi\)
\(152\) 1.41421 + 2.44949i 0.114708 + 0.198680i
\(153\) 1.41421 0.114332
\(154\) 0 0
\(155\) −9.07107 −0.728606
\(156\) 0 0
\(157\) 5.82843 10.0951i 0.465159 0.805679i −0.534050 0.845453i \(-0.679330\pi\)
0.999209 + 0.0397739i \(0.0126638\pi\)
\(158\) −5.65685 + 9.79796i −0.450035 + 0.779484i
\(159\) 6.65685 + 11.5300i 0.527923 + 0.914389i
\(160\) −1.00000 −0.0790569
\(161\) 0 0
\(162\) 1.00000 0.0785674
\(163\) 5.36396 + 9.29065i 0.420138 + 0.727700i 0.995953 0.0898801i \(-0.0286484\pi\)
−0.575815 + 0.817580i \(0.695315\pi\)
\(164\) −1.58579 + 2.74666i −0.123829 + 0.214478i
\(165\) −1.70711 + 2.95680i −0.132898 + 0.230186i
\(166\) −5.41421 9.37769i −0.420224 0.727850i
\(167\) 13.0711 1.01147 0.505735 0.862689i \(-0.331221\pi\)
0.505735 + 0.862689i \(0.331221\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0.707107 + 1.22474i 0.0542326 + 0.0939336i
\(171\) 1.41421 2.44949i 0.108148 0.187317i
\(172\) −3.70711 + 6.42090i −0.282664 + 0.489589i
\(173\) 0.757359 + 1.31178i 0.0575810 + 0.0997332i 0.893379 0.449304i \(-0.148328\pi\)
−0.835798 + 0.549037i \(0.814995\pi\)
\(174\) 0.242641 0.0183945
\(175\) 0 0
\(176\) 3.41421 0.257356
\(177\) 7.24264 + 12.5446i 0.544390 + 0.942912i
\(178\) 5.24264 9.08052i 0.392953 0.680614i
\(179\) −1.70711 + 2.95680i −0.127595 + 0.221001i −0.922744 0.385413i \(-0.874059\pi\)
0.795149 + 0.606414i \(0.207392\pi\)
\(180\) 0.500000 + 0.866025i 0.0372678 + 0.0645497i
\(181\) 3.17157 0.235741 0.117871 0.993029i \(-0.462393\pi\)
0.117871 + 0.993029i \(0.462393\pi\)
\(182\) 0 0
\(183\) −0.343146 −0.0253661
\(184\) 0.414214 + 0.717439i 0.0305362 + 0.0528903i
\(185\) 0.707107 1.22474i 0.0519875 0.0900450i
\(186\) 4.53553 7.85578i 0.332561 0.576013i
\(187\) −2.41421 4.18154i −0.176545 0.305785i
\(188\) −5.07107 −0.369846
\(189\) 0 0
\(190\) 2.82843 0.205196
\(191\) −5.65685 9.79796i −0.409316 0.708955i 0.585498 0.810674i \(-0.300899\pi\)
−0.994813 + 0.101719i \(0.967566\pi\)
\(192\) 0.500000 0.866025i 0.0360844 0.0625000i
\(193\) −8.89949 + 15.4144i −0.640600 + 1.10955i 0.344699 + 0.938713i \(0.387981\pi\)
−0.985299 + 0.170838i \(0.945353\pi\)
\(194\) 1.58579 + 2.74666i 0.113853 + 0.197199i
\(195\) 0 0
\(196\) 0 0
\(197\) −15.1716 −1.08093 −0.540465 0.841367i \(-0.681752\pi\)
−0.540465 + 0.841367i \(0.681752\pi\)
\(198\) −1.70711 2.95680i −0.121319 0.210130i
\(199\) 8.53553 14.7840i 0.605068 1.04801i −0.386973 0.922091i \(-0.626479\pi\)
0.992041 0.125917i \(-0.0401874\pi\)
\(200\) −0.500000 + 0.866025i −0.0353553 + 0.0612372i
\(201\) −5.94975 10.3053i −0.419663 0.726877i
\(202\) 17.6569 1.24233
\(203\) 0 0
\(204\) −1.41421 −0.0990148
\(205\) 1.58579 + 2.74666i 0.110756 + 0.191835i
\(206\) 9.07107 15.7116i 0.632011 1.09468i
\(207\) 0.414214 0.717439i 0.0287898 0.0498655i
\(208\) 0 0
\(209\) −9.65685 −0.667979
\(210\) 0 0
\(211\) 9.65685 0.664805 0.332403 0.943138i \(-0.392141\pi\)
0.332403 + 0.943138i \(0.392141\pi\)
\(212\) −6.65685 11.5300i −0.457195 0.791884i
\(213\) 2.58579 4.47871i 0.177175 0.306876i
\(214\) 2.00000 3.46410i 0.136717 0.236801i
\(215\) 3.70711 + 6.42090i 0.252823 + 0.437902i
\(216\) −1.00000 −0.0680414
\(217\) 0 0
\(218\) −17.3137 −1.17263
\(219\) 1.82843 + 3.16693i 0.123554 + 0.214001i
\(220\) 1.70711 2.95680i 0.115093 0.199347i
\(221\) 0 0
\(222\) 0.707107 + 1.22474i 0.0474579 + 0.0821995i
\(223\) −6.34315 −0.424768 −0.212384 0.977186i \(-0.568123\pi\)
−0.212384 + 0.977186i \(0.568123\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 6.65685 + 11.5300i 0.442807 + 0.766965i
\(227\) −1.17157 + 2.02922i −0.0777600 + 0.134684i −0.902283 0.431144i \(-0.858110\pi\)
0.824523 + 0.565828i \(0.191443\pi\)
\(228\) −1.41421 + 2.44949i −0.0936586 + 0.162221i
\(229\) −6.89949 11.9503i −0.455931 0.789696i 0.542810 0.839856i \(-0.317360\pi\)
−0.998741 + 0.0501592i \(0.984027\pi\)
\(230\) 0.828427 0.0546249
\(231\) 0 0
\(232\) −0.242641 −0.0159301
\(233\) 13.4853 + 23.3572i 0.883450 + 1.53018i 0.847480 + 0.530828i \(0.178119\pi\)
0.0359704 + 0.999353i \(0.488548\pi\)
\(234\) 0 0
\(235\) −2.53553 + 4.39167i −0.165400 + 0.286481i
\(236\) −7.24264 12.5446i −0.471456 0.816585i
\(237\) −11.3137 −0.734904
\(238\) 0 0
\(239\) 0.686292 0.0443925 0.0221963 0.999754i \(-0.492934\pi\)
0.0221963 + 0.999754i \(0.492934\pi\)
\(240\) −0.500000 0.866025i −0.0322749 0.0559017i
\(241\) −3.87868 + 6.71807i −0.249848 + 0.432749i −0.963483 0.267768i \(-0.913714\pi\)
0.713636 + 0.700517i \(0.247047\pi\)
\(242\) −0.328427 + 0.568852i −0.0211121 + 0.0365672i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 0.343146 0.0219677
\(245\) 0 0
\(246\) −3.17157 −0.202212
\(247\) 0 0
\(248\) −4.53553 + 7.85578i −0.288007 + 0.498842i
\(249\) 5.41421 9.37769i 0.343112 0.594287i
\(250\) 0.500000 + 0.866025i 0.0316228 + 0.0547723i
\(251\) 6.34315 0.400376 0.200188 0.979758i \(-0.435845\pi\)
0.200188 + 0.979758i \(0.435845\pi\)
\(252\) 0 0
\(253\) −2.82843 −0.177822
\(254\) −7.07107 12.2474i −0.443678 0.768473i
\(255\) −0.707107 + 1.22474i −0.0442807 + 0.0766965i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −8.94975 15.5014i −0.558270 0.966952i −0.997641 0.0686462i \(-0.978132\pi\)
0.439371 0.898306i \(-0.355201\pi\)
\(258\) −7.41421 −0.461589
\(259\) 0 0
\(260\) 0 0
\(261\) 0.121320 + 0.210133i 0.00750954 + 0.0130069i
\(262\) −5.58579 + 9.67487i −0.345091 + 0.597715i
\(263\) −8.89949 + 15.4144i −0.548766 + 0.950491i 0.449593 + 0.893233i \(0.351569\pi\)
−0.998359 + 0.0572577i \(0.981764\pi\)
\(264\) 1.70711 + 2.95680i 0.105065 + 0.181978i
\(265\) −13.3137 −0.817855
\(266\) 0 0
\(267\) 10.4853 0.641689
\(268\) 5.94975 + 10.3053i 0.363439 + 0.629494i
\(269\) −1.82843 + 3.16693i −0.111481 + 0.193091i −0.916368 0.400338i \(-0.868893\pi\)
0.804886 + 0.593429i \(0.202226\pi\)
\(270\) −0.500000 + 0.866025i −0.0304290 + 0.0527046i
\(271\) −2.87868 4.98602i −0.174867 0.302879i 0.765248 0.643736i \(-0.222616\pi\)
−0.940115 + 0.340856i \(0.889283\pi\)
\(272\) 1.41421 0.0857493
\(273\) 0 0
\(274\) −16.0000 −0.966595
\(275\) −1.70711 2.95680i −0.102942 0.178301i
\(276\) −0.414214 + 0.717439i −0.0249327 + 0.0431847i
\(277\) −1.05025 + 1.81909i −0.0631036 + 0.109299i −0.895851 0.444354i \(-0.853433\pi\)
0.832748 + 0.553653i \(0.186767\pi\)
\(278\) 3.17157 + 5.49333i 0.190218 + 0.329468i
\(279\) 9.07107 0.543071
\(280\) 0 0
\(281\) −30.4853 −1.81860 −0.909300 0.416142i \(-0.863382\pi\)
−0.909300 + 0.416142i \(0.863382\pi\)
\(282\) −2.53553 4.39167i −0.150989 0.261520i
\(283\) 6.75736 11.7041i 0.401683 0.695736i −0.592246 0.805757i \(-0.701759\pi\)
0.993929 + 0.110021i \(0.0350919\pi\)
\(284\) −2.58579 + 4.47871i −0.153438 + 0.265763i
\(285\) 1.41421 + 2.44949i 0.0837708 + 0.145095i
\(286\) 0 0
\(287\) 0 0
\(288\) 1.00000 0.0589256
\(289\) 7.50000 + 12.9904i 0.441176 + 0.764140i
\(290\) −0.121320 + 0.210133i −0.00712418 + 0.0123394i
\(291\) −1.58579 + 2.74666i −0.0929604 + 0.161012i
\(292\) −1.82843 3.16693i −0.107001 0.185330i
\(293\) −16.6274 −0.971384 −0.485692 0.874130i \(-0.661432\pi\)
−0.485692 + 0.874130i \(0.661432\pi\)
\(294\) 0 0
\(295\) −14.4853 −0.843366
\(296\) −0.707107 1.22474i −0.0410997 0.0711868i
\(297\) 1.70711 2.95680i 0.0990564 0.171571i
\(298\) −2.94975 + 5.10911i −0.170874 + 0.295963i
\(299\) 0 0
\(300\) −1.00000 −0.0577350
\(301\) 0 0
\(302\) −21.7990 −1.25439
\(303\) 8.82843 + 15.2913i 0.507180 + 0.878461i
\(304\) 1.41421 2.44949i 0.0811107 0.140488i
\(305\) 0.171573 0.297173i 0.00982423 0.0170161i
\(306\) −0.707107 1.22474i −0.0404226 0.0700140i
\(307\) −15.3137 −0.874000 −0.437000 0.899462i \(-0.643959\pi\)
−0.437000 + 0.899462i \(0.643959\pi\)
\(308\) 0 0
\(309\) 18.1421 1.03207
\(310\) 4.53553 + 7.85578i 0.257601 + 0.446178i
\(311\) −17.4142 + 30.1623i −0.987469 + 1.71035i −0.357067 + 0.934079i \(0.616223\pi\)
−0.630402 + 0.776269i \(0.717110\pi\)
\(312\) 0 0
\(313\) 11.5858 + 20.0672i 0.654867 + 1.13426i 0.981927 + 0.189260i \(0.0606089\pi\)
−0.327060 + 0.945004i \(0.606058\pi\)
\(314\) −11.6569 −0.657834
\(315\) 0 0
\(316\) 11.3137 0.636446
\(317\) 9.00000 + 15.5885i 0.505490 + 0.875535i 0.999980 + 0.00635137i \(0.00202172\pi\)
−0.494489 + 0.869184i \(0.664645\pi\)
\(318\) 6.65685 11.5300i 0.373298 0.646571i
\(319\) 0.414214 0.717439i 0.0231915 0.0401689i
\(320\) 0.500000 + 0.866025i 0.0279508 + 0.0484123i
\(321\) 4.00000 0.223258
\(322\) 0 0
\(323\) −4.00000 −0.222566
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) 0 0
\(326\) 5.36396 9.29065i 0.297082 0.514562i
\(327\) −8.65685 14.9941i −0.478725 0.829176i
\(328\) 3.17157 0.175121
\(329\) 0 0
\(330\) 3.41421 0.187946
\(331\) −13.3137 23.0600i −0.731788 1.26749i −0.956118 0.292980i \(-0.905353\pi\)
0.224331 0.974513i \(-0.427980\pi\)
\(332\) −5.41421 + 9.37769i −0.297144 + 0.514668i
\(333\) −0.707107 + 1.22474i −0.0387492 + 0.0671156i
\(334\) −6.53553 11.3199i −0.357609 0.619396i
\(335\) 11.8995 0.650139
\(336\) 0 0
\(337\) −8.82843 −0.480915 −0.240458 0.970660i \(-0.577297\pi\)
−0.240458 + 0.970660i \(0.577297\pi\)
\(338\) 6.50000 + 11.2583i 0.353553 + 0.612372i
\(339\) −6.65685 + 11.5300i −0.361551 + 0.626224i
\(340\) 0.707107 1.22474i 0.0383482 0.0664211i
\(341\) −15.4853 26.8213i −0.838575 1.45245i
\(342\) −2.82843 −0.152944
\(343\) 0 0
\(344\) 7.41421 0.399748
\(345\) 0.414214 + 0.717439i 0.0223005 + 0.0386256i
\(346\) 0.757359 1.31178i 0.0407159 0.0705220i
\(347\) 4.82843 8.36308i 0.259204 0.448954i −0.706825 0.707388i \(-0.749873\pi\)
0.966029 + 0.258435i \(0.0832066\pi\)
\(348\) −0.121320 0.210133i −0.00650345 0.0112643i
\(349\) −33.7990 −1.80922 −0.904609 0.426242i \(-0.859837\pi\)
−0.904609 + 0.426242i \(0.859837\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.70711 2.95680i −0.0909891 0.157598i
\(353\) 12.3640 21.4150i 0.658067 1.13981i −0.323048 0.946383i \(-0.604708\pi\)
0.981115 0.193423i \(-0.0619591\pi\)
\(354\) 7.24264 12.5446i 0.384942 0.666739i
\(355\) 2.58579 + 4.47871i 0.137239 + 0.237705i
\(356\) −10.4853 −0.555719
\(357\) 0 0
\(358\) 3.41421 0.180447
\(359\) −6.58579 11.4069i −0.347585 0.602034i 0.638235 0.769841i \(-0.279665\pi\)
−0.985820 + 0.167807i \(0.946331\pi\)
\(360\) 0.500000 0.866025i 0.0263523 0.0456435i
\(361\) 5.50000 9.52628i 0.289474 0.501383i
\(362\) −1.58579 2.74666i −0.0833471 0.144361i
\(363\) −0.656854 −0.0344759
\(364\) 0 0
\(365\) −3.65685 −0.191408
\(366\) 0.171573 + 0.297173i 0.00896826 + 0.0155335i
\(367\) −0.242641 + 0.420266i −0.0126657 + 0.0219377i −0.872289 0.488991i \(-0.837365\pi\)
0.859623 + 0.510929i \(0.170698\pi\)
\(368\) 0.414214 0.717439i 0.0215924 0.0373991i
\(369\) −1.58579 2.74666i −0.0825527 0.142986i
\(370\) −1.41421 −0.0735215
\(371\) 0 0
\(372\) −9.07107 −0.470313
\(373\) 1.53553 + 2.65962i 0.0795069 + 0.137710i 0.903037 0.429562i \(-0.141332\pi\)
−0.823530 + 0.567272i \(0.807999\pi\)
\(374\) −2.41421 + 4.18154i −0.124836 + 0.216222i
\(375\) −0.500000 + 0.866025i −0.0258199 + 0.0447214i
\(376\) 2.53553 + 4.39167i 0.130760 + 0.226483i
\(377\) 0 0
\(378\) 0 0
\(379\) −7.51472 −0.386005 −0.193003 0.981198i \(-0.561823\pi\)
−0.193003 + 0.981198i \(0.561823\pi\)
\(380\) −1.41421 2.44949i −0.0725476 0.125656i
\(381\) 7.07107 12.2474i 0.362262 0.627456i
\(382\) −5.65685 + 9.79796i −0.289430 + 0.501307i
\(383\) −1.94975 3.37706i −0.0996274 0.172560i 0.811903 0.583792i \(-0.198432\pi\)
−0.911530 + 0.411233i \(0.865098\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 17.7990 0.905945
\(387\) −3.70711 6.42090i −0.188443 0.326393i
\(388\) 1.58579 2.74666i 0.0805061 0.139441i
\(389\) −6.46447 + 11.1968i −0.327761 + 0.567699i −0.982067 0.188531i \(-0.939628\pi\)
0.654306 + 0.756230i \(0.272961\pi\)
\(390\) 0 0
\(391\) −1.17157 −0.0592490
\(392\) 0 0
\(393\) −11.1716 −0.563531
\(394\) 7.58579 + 13.1390i 0.382166 + 0.661932i
\(395\) 5.65685 9.79796i 0.284627 0.492989i
\(396\) −1.70711 + 2.95680i −0.0857853 + 0.148585i
\(397\) −12.3137 21.3280i −0.618007 1.07042i −0.989849 0.142124i \(-0.954607\pi\)
0.371842 0.928296i \(-0.378726\pi\)
\(398\) −17.0711 −0.855695
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 1.34315 + 2.32640i 0.0670735 + 0.116175i 0.897612 0.440787i \(-0.145300\pi\)
−0.830538 + 0.556961i \(0.811967\pi\)
\(402\) −5.94975 + 10.3053i −0.296746 + 0.513980i
\(403\) 0 0
\(404\) −8.82843 15.2913i −0.439231 0.760770i
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 4.82843 0.239336
\(408\) 0.707107 + 1.22474i 0.0350070 + 0.0606339i
\(409\) 9.19239 15.9217i 0.454534 0.787277i −0.544127 0.839003i \(-0.683139\pi\)
0.998661 + 0.0517263i \(0.0164724\pi\)
\(410\) 1.58579 2.74666i 0.0783164 0.135648i
\(411\) −8.00000 13.8564i −0.394611 0.683486i
\(412\) −18.1421 −0.893799
\(413\) 0 0
\(414\) −0.828427 −0.0407150
\(415\) 5.41421 + 9.37769i 0.265773 + 0.460333i
\(416\) 0 0
\(417\) −3.17157 + 5.49333i −0.155313 + 0.269009i
\(418\) 4.82843 + 8.36308i 0.236166 + 0.409052i
\(419\) 6.34315 0.309883 0.154941 0.987924i \(-0.450481\pi\)
0.154941 + 0.987924i \(0.450481\pi\)
\(420\) 0 0
\(421\) −28.6274 −1.39521 −0.697607 0.716480i \(-0.745752\pi\)
−0.697607 + 0.716480i \(0.745752\pi\)
\(422\) −4.82843 8.36308i −0.235044 0.407108i
\(423\) 2.53553 4.39167i 0.123282 0.213530i
\(424\) −6.65685 + 11.5300i −0.323285 + 0.559947i
\(425\) −0.707107 1.22474i −0.0342997 0.0594089i
\(426\) −5.17157 −0.250564
\(427\) 0 0
\(428\) −4.00000 −0.193347
\(429\) 0 0
\(430\) 3.70711 6.42090i 0.178773 0.309643i
\(431\) 7.07107 12.2474i 0.340601 0.589939i −0.643943 0.765073i \(-0.722703\pi\)
0.984545 + 0.175134i \(0.0560360\pi\)
\(432\) 0.500000 + 0.866025i 0.0240563 + 0.0416667i
\(433\) −3.17157 −0.152416 −0.0762080 0.997092i \(-0.524281\pi\)
−0.0762080 + 0.997092i \(0.524281\pi\)
\(434\) 0 0
\(435\) −0.242641 −0.0116337
\(436\) 8.65685 + 14.9941i 0.414588 + 0.718088i
\(437\) −1.17157 + 2.02922i −0.0560439 + 0.0970709i
\(438\) 1.82843 3.16693i 0.0873656 0.151322i
\(439\) 1.22183 + 2.11626i 0.0583145 + 0.101004i 0.893709 0.448647i \(-0.148094\pi\)
−0.835394 + 0.549651i \(0.814761\pi\)
\(440\) −3.41421 −0.162766
\(441\) 0 0
\(442\) 0 0
\(443\) −1.17157 2.02922i −0.0556631 0.0964113i 0.836851 0.547430i \(-0.184394\pi\)
−0.892514 + 0.451019i \(0.851061\pi\)
\(444\) 0.707107 1.22474i 0.0335578 0.0581238i
\(445\) −5.24264 + 9.08052i −0.248525 + 0.430458i
\(446\) 3.17157 + 5.49333i 0.150178 + 0.260116i
\(447\) −5.89949 −0.279037
\(448\) 0 0
\(449\) 37.1127 1.75146 0.875728 0.482804i \(-0.160382\pi\)
0.875728 + 0.482804i \(0.160382\pi\)
\(450\) −0.500000 0.866025i −0.0235702 0.0408248i
\(451\) −5.41421 + 9.37769i −0.254945 + 0.441578i
\(452\) 6.65685 11.5300i 0.313112 0.542326i
\(453\) −10.8995 18.8785i −0.512103 0.886988i
\(454\) 2.34315 0.109969
\(455\) 0 0
\(456\) 2.82843 0.132453
\(457\) −14.8995 25.8067i −0.696969 1.20719i −0.969512 0.245042i \(-0.921198\pi\)
0.272543 0.962143i \(-0.412135\pi\)
\(458\) −6.89949 + 11.9503i −0.322392 + 0.558400i
\(459\) 0.707107 1.22474i 0.0330049 0.0571662i
\(460\) −0.414214 0.717439i −0.0193128 0.0334508i
\(461\) 14.0000 0.652045 0.326023 0.945362i \(-0.394291\pi\)
0.326023 + 0.945362i \(0.394291\pi\)
\(462\) 0 0
\(463\) 22.3431 1.03837 0.519187 0.854661i \(-0.326235\pi\)
0.519187 + 0.854661i \(0.326235\pi\)
\(464\) 0.121320 + 0.210133i 0.00563216 + 0.00975518i
\(465\) −4.53553 + 7.85578i −0.210330 + 0.364303i
\(466\) 13.4853 23.3572i 0.624694 1.08200i
\(467\) −1.75736 3.04384i −0.0813209 0.140852i 0.822497 0.568770i \(-0.192581\pi\)
−0.903818 + 0.427918i \(0.859247\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 5.07107 0.233911
\(471\) −5.82843 10.0951i −0.268560 0.465159i
\(472\) −7.24264 + 12.5446i −0.333370 + 0.577413i
\(473\) −12.6569 + 21.9223i −0.581963 + 1.00799i
\(474\) 5.65685 + 9.79796i 0.259828 + 0.450035i
\(475\) −2.82843 −0.129777
\(476\) 0 0
\(477\) 13.3137 0.609593
\(478\) −0.343146 0.594346i −0.0156951 0.0271847i
\(479\) −0.242641 + 0.420266i −0.0110865 + 0.0192024i −0.871515 0.490368i \(-0.836862\pi\)
0.860429 + 0.509570i \(0.170196\pi\)
\(480\) −0.500000 + 0.866025i −0.0228218 + 0.0395285i
\(481\) 0 0
\(482\) 7.75736 0.353338
\(483\) 0 0
\(484\) 0.656854 0.0298570
\(485\) −1.58579 2.74666i −0.0720069 0.124720i
\(486\) 0.500000 0.866025i 0.0226805 0.0392837i
\(487\) −3.75736 + 6.50794i −0.170262 + 0.294903i −0.938511 0.345248i \(-0.887795\pi\)
0.768249 + 0.640151i \(0.221128\pi\)
\(488\) −0.171573 0.297173i −0.00776674 0.0134524i
\(489\) 10.7279 0.485133
\(490\) 0 0
\(491\) −7.89949 −0.356499 −0.178250 0.983985i \(-0.557043\pi\)
−0.178250 + 0.983985i \(0.557043\pi\)
\(492\) 1.58579 + 2.74666i 0.0714928 + 0.123829i
\(493\) 0.171573 0.297173i 0.00772725 0.0133840i
\(494\) 0 0
\(495\) 1.70711 + 2.95680i 0.0767287 + 0.132898i
\(496\) 9.07107 0.407303
\(497\) 0 0
\(498\) −10.8284 −0.485233
\(499\) 11.8995 + 20.6105i 0.532695 + 0.922654i 0.999271 + 0.0381732i \(0.0121539\pi\)
−0.466577 + 0.884481i \(0.654513\pi\)
\(500\) 0.500000 0.866025i 0.0223607 0.0387298i
\(501\) 6.53553 11.3199i 0.291986 0.505735i
\(502\) −3.17157 5.49333i −0.141554 0.245179i
\(503\) −4.10051 −0.182832 −0.0914162 0.995813i \(-0.529139\pi\)
−0.0914162 + 0.995813i \(0.529139\pi\)
\(504\) 0 0
\(505\) −17.6569 −0.785720
\(506\) 1.41421 + 2.44949i 0.0628695 + 0.108893i
\(507\) −6.50000 + 11.2583i −0.288675 + 0.500000i
\(508\) −7.07107 + 12.2474i −0.313728 + 0.543393i
\(509\) −14.8284 25.6836i −0.657258 1.13841i −0.981322 0.192370i \(-0.938383\pi\)
0.324064 0.946035i \(-0.394951\pi\)
\(510\) 1.41421 0.0626224
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) −1.41421 2.44949i −0.0624391 0.108148i
\(514\) −8.94975 + 15.5014i −0.394756 + 0.683738i
\(515\) −9.07107 + 15.7116i −0.399719 + 0.692334i
\(516\) 3.70711 + 6.42090i 0.163196 + 0.282664i
\(517\) −17.3137 −0.761456
\(518\) 0 0
\(519\) 1.51472 0.0664888
\(520\) 0 0
\(521\) 8.07107 13.9795i 0.353600 0.612453i −0.633277 0.773925i \(-0.718291\pi\)
0.986877 + 0.161472i \(0.0516241\pi\)
\(522\) 0.121320 0.210133i 0.00531005 0.00919727i
\(523\) 20.5563 + 35.6046i 0.898866 + 1.55688i 0.828945 + 0.559330i \(0.188941\pi\)
0.0699211 + 0.997553i \(0.477725\pi\)
\(524\) 11.1716 0.488032
\(525\) 0 0
\(526\) 17.7990 0.776073
\(527\) −6.41421 11.1097i −0.279408 0.483948i
\(528\) 1.70711 2.95680i 0.0742923 0.128678i
\(529\) 11.1569 19.3242i 0.485081 0.840184i
\(530\) 6.65685 + 11.5300i 0.289155 + 0.500832i
\(531\) 14.4853 0.628608
\(532\) 0 0
\(533\) 0 0
\(534\) −5.24264 9.08052i −0.226871 0.392953i
\(535\) −2.00000 + 3.46410i −0.0864675 + 0.149766i
\(536\) 5.94975 10.3053i 0.256990 0.445120i
\(537\) 1.70711 + 2.95680i 0.0736671 + 0.127595i
\(538\) 3.65685 0.157658
\(539\) 0 0
\(540\) 1.00000 0.0430331
\(541\) −7.24264 12.5446i −0.311385 0.539335i 0.667277 0.744810i \(-0.267460\pi\)
−0.978663 + 0.205474i \(0.934126\pi\)
\(542\) −2.87868 + 4.98602i −0.123650 + 0.214168i
\(543\) 1.58579 2.74666i 0.0680526 0.117871i
\(544\) −0.707107 1.22474i −0.0303170 0.0525105i
\(545\) 17.3137 0.741638
\(546\) 0 0
\(547\) 24.5858 1.05121 0.525606 0.850728i \(-0.323839\pi\)
0.525606 + 0.850728i \(0.323839\pi\)
\(548\) 8.00000 + 13.8564i 0.341743 + 0.591916i
\(549\) −0.171573 + 0.297173i −0.00732255 + 0.0126830i
\(550\) −1.70711 + 2.95680i −0.0727913 + 0.126078i
\(551\) −0.343146 0.594346i −0.0146185 0.0253200i
\(552\) 0.828427 0.0352602
\(553\) 0 0
\(554\) 2.10051 0.0892419
\(555\) −0.707107 1.22474i −0.0300150 0.0519875i
\(556\) 3.17157 5.49333i 0.134505 0.232969i
\(557\) 16.3137 28.2562i 0.691234 1.19725i −0.280200 0.959942i \(-0.590401\pi\)
0.971434 0.237311i \(-0.0762660\pi\)
\(558\) −4.53553 7.85578i −0.192004 0.332561i
\(559\) 0 0
\(560\) 0 0
\(561\) −4.82843 −0.203856
\(562\) 15.2426 + 26.4010i 0.642972 + 1.11366i
\(563\) 1.07107 1.85514i 0.0451401 0.0781850i −0.842573 0.538583i \(-0.818960\pi\)
0.887713 + 0.460398i \(0.152293\pi\)
\(564\) −2.53553 + 4.39167i −0.106765 + 0.184923i
\(565\) −6.65685 11.5300i −0.280056 0.485071i
\(566\) −13.5147 −0.568066
\(567\) 0 0
\(568\) 5.17157 0.216994
\(569\) −0.514719 0.891519i −0.0215781 0.0373744i 0.855035 0.518571i \(-0.173536\pi\)
−0.876613 + 0.481196i \(0.840202\pi\)
\(570\) 1.41421 2.44949i 0.0592349 0.102598i
\(571\) −13.6569 + 23.6544i −0.571522 + 0.989904i 0.424888 + 0.905246i \(0.360313\pi\)
−0.996410 + 0.0846587i \(0.973020\pi\)
\(572\) 0 0
\(573\) −11.3137 −0.472637
\(574\) 0 0
\(575\) −0.828427 −0.0345478
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) 8.07107 13.9795i 0.336003 0.581974i −0.647674 0.761918i \(-0.724258\pi\)
0.983677 + 0.179943i \(0.0575915\pi\)
\(578\) 7.50000 12.9904i 0.311959 0.540329i
\(579\) 8.89949 + 15.4144i 0.369850 + 0.640600i
\(580\) 0.242641 0.0100751
\(581\) 0 0
\(582\) 3.17157 0.131466
\(583\) −22.7279 39.3659i −0.941294 1.63037i
\(584\) −1.82843 + 3.16693i −0.0756609 + 0.131048i
\(585\) 0 0
\(586\) 8.31371 + 14.3998i 0.343436 + 0.594849i
\(587\) 19.7990 0.817192 0.408596 0.912715i \(-0.366019\pi\)
0.408596 + 0.912715i \(0.366019\pi\)
\(588\) 0 0
\(589\) −25.6569 −1.05717
\(590\) 7.24264 + 12.5446i 0.298175 + 0.516454i
\(591\) −7.58579 + 13.1390i −0.312038 + 0.540465i
\(592\) −0.707107 + 1.22474i −0.0290619 + 0.0503367i
\(593\) −2.60660 4.51477i −0.107040 0.185399i 0.807530 0.589827i \(-0.200804\pi\)
−0.914570 + 0.404428i \(0.867471\pi\)
\(594\) −3.41421 −0.140087
\(595\) 0 0
\(596\) 5.89949 0.241653
\(597\) −8.53553 14.7840i −0.349336 0.605068i
\(598\) 0 0
\(599\) −13.6569 + 23.6544i −0.558004 + 0.966491i 0.439659 + 0.898165i \(0.355099\pi\)
−0.997663 + 0.0683264i \(0.978234\pi\)
\(600\) 0.500000 + 0.866025i 0.0204124 + 0.0353553i
\(601\) 34.1838 1.39438 0.697192 0.716884i \(-0.254432\pi\)
0.697192 + 0.716884i \(0.254432\pi\)
\(602\) 0 0
\(603\) −11.8995 −0.484585
\(604\) 10.8995 + 18.8785i 0.443494 + 0.768154i
\(605\) 0.328427 0.568852i 0.0133525 0.0231271i
\(606\) 8.82843 15.2913i 0.358630 0.621166i
\(607\) 14.4853 + 25.0892i 0.587939 + 1.01834i 0.994502 + 0.104718i \(0.0333940\pi\)
−0.406563 + 0.913623i \(0.633273\pi\)
\(608\) −2.82843 −0.114708
\(609\) 0 0
\(610\) −0.343146 −0.0138936
\(611\) 0 0
\(612\) −0.707107 + 1.22474i −0.0285831 + 0.0495074i
\(613\) −18.6066 + 32.2276i −0.751514 + 1.30166i 0.195575 + 0.980689i \(0.437343\pi\)
−0.947089 + 0.320971i \(0.895991\pi\)
\(614\) 7.65685 + 13.2621i 0.309005 + 0.535213i
\(615\) 3.17157 0.127890
\(616\) 0 0
\(617\) 12.2843 0.494546 0.247273 0.968946i \(-0.420466\pi\)
0.247273 + 0.968946i \(0.420466\pi\)
\(618\) −9.07107 15.7116i −0.364892 0.632011i
\(619\) 15.0711 26.1039i 0.605757 1.04920i −0.386174 0.922426i \(-0.626204\pi\)
0.991931 0.126777i \(-0.0404631\pi\)
\(620\) 4.53553 7.85578i 0.182151 0.315496i
\(621\) −0.414214 0.717439i −0.0166218 0.0287898i
\(622\) 34.8284 1.39649
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 11.5858 20.0672i 0.463061 0.802045i
\(627\) −4.82843 + 8.36308i −0.192829 + 0.333989i
\(628\) 5.82843 + 10.0951i 0.232580 + 0.402840i
\(629\) 2.00000 0.0797452
\(630\) 0 0
\(631\) 19.1716 0.763208 0.381604 0.924326i \(-0.375372\pi\)
0.381604 + 0.924326i \(0.375372\pi\)
\(632\) −5.65685 9.79796i −0.225018 0.389742i
\(633\) 4.82843 8.36308i 0.191913 0.332403i
\(634\) 9.00000 15.5885i 0.357436 0.619097i
\(635\) 7.07107 + 12.2474i 0.280607 + 0.486025i
\(636\) −13.3137 −0.527923
\(637\) 0 0
\(638\) −0.828427 −0.0327977
\(639\) −2.58579 4.47871i −0.102292 0.177175i
\(640\) 0.500000 0.866025i 0.0197642 0.0342327i
\(641\) 15.0000 25.9808i 0.592464 1.02618i −0.401435 0.915888i \(-0.631488\pi\)
0.993899 0.110291i \(-0.0351782\pi\)
\(642\) −2.00000 3.46410i −0.0789337 0.136717i
\(643\) 36.4264 1.43652 0.718259 0.695776i \(-0.244939\pi\)
0.718259 + 0.695776i \(0.244939\pi\)
\(644\) 0 0
\(645\) 7.41421 0.291934
\(646\) 2.00000 + 3.46410i 0.0786889 + 0.136293i
\(647\) 9.46447 16.3929i 0.372087 0.644473i −0.617800 0.786335i \(-0.711976\pi\)
0.989886 + 0.141863i \(0.0453091\pi\)
\(648\) −0.500000 + 0.866025i −0.0196419 + 0.0340207i
\(649\) −24.7279 42.8300i −0.970656 1.68123i
\(650\) 0 0
\(651\) 0 0
\(652\) −10.7279 −0.420138
\(653\) −13.5858 23.5313i −0.531653 0.920850i −0.999317 0.0369438i \(-0.988238\pi\)
0.467664 0.883906i \(-0.345096\pi\)
\(654\) −8.65685 + 14.9941i −0.338510 + 0.586316i
\(655\) 5.58579 9.67487i 0.218255 0.378028i
\(656\) −1.58579 2.74666i −0.0619146 0.107239i
\(657\) 3.65685 0.142667
\(658\) 0 0
\(659\) 39.8995 1.55426 0.777132 0.629338i \(-0.216674\pi\)
0.777132 + 0.629338i \(0.216674\pi\)
\(660\) −1.70711 2.95680i −0.0664490 0.115093i
\(661\) −8.17157 + 14.1536i −0.317837 + 0.550510i −0.980037 0.198817i \(-0.936290\pi\)
0.662199 + 0.749328i \(0.269623\pi\)
\(662\) −13.3137 + 23.0600i −0.517452 + 0.896253i
\(663\) 0 0
\(664\) 10.8284 0.420224
\(665\) 0 0
\(666\) 1.41421 0.0547997
\(667\) −0.100505 0.174080i −0.00389157 0.00674040i
\(668\) −6.53553 + 11.3199i −0.252867 + 0.437979i
\(669\) −3.17157 + 5.49333i −0.122620 + 0.212384i
\(670\) −5.94975 10.3053i −0.229859 0.398127i
\(671\) 1.17157 0.0452281
\(672\) 0 0
\(673\) −37.5980 −1.44930 −0.724648 0.689119i \(-0.757998\pi\)
−0.724648 + 0.689119i \(0.757998\pi\)
\(674\) 4.41421 + 7.64564i 0.170029 + 0.294499i
\(675\) 0.500000 0.866025i 0.0192450 0.0333333i
\(676\) 6.50000 11.2583i 0.250000 0.433013i
\(677\) 8.41421 + 14.5738i 0.323384 + 0.560118i 0.981184 0.193075i \(-0.0618460\pi\)
−0.657800 + 0.753193i \(0.728513\pi\)
\(678\) 13.3137 0.511310
\(679\) 0 0
\(680\) −1.41421 −0.0542326
\(681\) 1.17157 + 2.02922i 0.0448948 + 0.0777600i
\(682\) −15.4853 + 26.8213i −0.592962 + 1.02704i
\(683\) 3.89949 6.75412i 0.149210 0.258439i −0.781726 0.623622i \(-0.785660\pi\)
0.930936 + 0.365183i \(0.118994\pi\)
\(684\) 1.41421 + 2.44949i 0.0540738 + 0.0936586i
\(685\) 16.0000 0.611329
\(686\) 0 0
\(687\) −13.7990 −0.526464
\(688\) −3.70711 6.42090i −0.141332 0.244794i
\(689\) 0 0
\(690\) 0.414214 0.717439i 0.0157688 0.0273124i
\(691\) 22.1421 + 38.3513i 0.842327 + 1.45895i 0.887923 + 0.459992i \(0.152148\pi\)
−0.0455963 + 0.998960i \(0.514519\pi\)
\(692\) −1.51472 −0.0575810
\(693\) 0 0
\(694\) −9.65685 −0.366569
\(695\) −3.17157 5.49333i −0.120305 0.208374i
\(696\) −0.121320 + 0.210133i −0.00459864 + 0.00796507i
\(697\) −2.24264 + 3.88437i −0.0849461 + 0.147131i
\(698\) 16.8995 + 29.2708i 0.639655 + 1.10792i
\(699\) 26.9706 1.02012
\(700\) 0 0
\(701\) 19.5563 0.738633 0.369317 0.929304i \(-0.379592\pi\)
0.369317 + 0.929304i \(0.379592\pi\)
\(702\) 0 0
\(703\) 2.00000 3.46410i 0.0754314 0.130651i
\(704\) −1.70711 + 2.95680i −0.0643390 + 0.111438i
\(705\) 2.53553 + 4.39167i 0.0954937 + 0.165400i
\(706\) −24.7279 −0.930648
\(707\) 0 0
\(708\) −14.4853 −0.544390
\(709\) −8.55635 14.8200i −0.321340 0.556578i 0.659424 0.751771i \(-0.270800\pi\)
−0.980765 + 0.195193i \(0.937467\pi\)
\(710\) 2.58579 4.47871i 0.0970428 0.168083i
\(711\) −5.65685 + 9.79796i −0.212149 + 0.367452i
\(712\) 5.24264 + 9.08052i 0.196476 + 0.340307i
\(713\) −7.51472 −0.281428
\(714\) 0 0
\(715\) 0 0
\(716\) −1.70711 2.95680i −0.0637976 0.110501i
\(717\) 0.343146 0.594346i 0.0128150 0.0221963i
\(718\) −6.58579 + 11.4069i −0.245779 + 0.425702i
\(719\) 22.1421 + 38.3513i 0.825762 + 1.43026i 0.901335 + 0.433122i \(0.142588\pi\)
−0.0755730 + 0.997140i \(0.524079\pi\)
\(720\) −1.00000 −0.0372678
\(721\) 0 0
\(722\) −11.0000 −0.409378
\(723\) 3.87868 + 6.71807i 0.144250 + 0.249848i
\(724\) −1.58579 + 2.74666i −0.0589353 + 0.102079i
\(725\) 0.121320 0.210133i 0.00450572 0.00780414i
\(726\) 0.328427 + 0.568852i 0.0121891 + 0.0211121i
\(727\) −34.3431 −1.27372 −0.636858 0.770981i \(-0.719766\pi\)
−0.636858 + 0.770981i \(0.719766\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 1.82843 + 3.16693i 0.0676731 + 0.117213i
\(731\) −5.24264 + 9.08052i −0.193906 + 0.335855i
\(732\) 0.171573 0.297173i 0.00634152 0.0109838i
\(733\) 25.9706 + 44.9823i 0.959245 + 1.66146i 0.724341 + 0.689442i \(0.242144\pi\)
0.234903 + 0.972019i \(0.424523\pi\)
\(734\) 0.485281 0.0179121
\(735\) 0 0
\(736\) −0.828427 −0.0305362
\(737\) 20.3137 + 35.1844i 0.748265 + 1.29603i
\(738\) −1.58579 + 2.74666i −0.0583736 + 0.101106i
\(739\) −9.55635 + 16.5521i −0.351536 + 0.608878i −0.986519 0.163648i \(-0.947674\pi\)
0.634983 + 0.772526i \(0.281007\pi\)
\(740\) 0.707107 + 1.22474i 0.0259938 + 0.0450225i
\(741\) 0 0
\(742\) 0 0
\(743\) −5.65685 −0.207530 −0.103765 0.994602i \(-0.533089\pi\)
−0.103765 + 0.994602i \(0.533089\pi\)
\(744\) 4.53553 + 7.85578i 0.166281 + 0.288007i
\(745\) 2.94975 5.10911i 0.108070 0.187183i
\(746\) 1.53553 2.65962i 0.0562199 0.0973757i
\(747\) −5.41421 9.37769i −0.198096 0.343112i
\(748\) 4.82843 0.176545
\(749\) 0 0
\(750\) 1.00000 0.0365148
\(751\) −21.2426 36.7933i −0.775155 1.34261i −0.934707 0.355418i \(-0.884338\pi\)
0.159552 0.987189i \(-0.448995\pi\)
\(752\) 2.53553 4.39167i 0.0924614 0.160148i
\(753\) 3.17157 5.49333i 0.115579 0.200188i
\(754\) 0 0
\(755\) 21.7990 0.793346
\(756\) 0 0
\(757\) 32.2426 1.17188 0.585939 0.810355i \(-0.300726\pi\)
0.585939 + 0.810355i \(0.300726\pi\)
\(758\) 3.75736 + 6.50794i 0.136473 + 0.236379i
\(759\) −1.41421 + 2.44949i −0.0513327 + 0.0889108i
\(760\) −1.41421 + 2.44949i −0.0512989 + 0.0888523i
\(761\) 7.48528 + 12.9649i 0.271341 + 0.469977i 0.969206 0.246253i \(-0.0791995\pi\)
−0.697864 + 0.716230i \(0.745866\pi\)
\(762\) −14.1421 −0.512316
\(763\) 0 0
\(764\) 11.3137 0.409316
\(765\) 0.707107 + 1.22474i 0.0255655 + 0.0442807i
\(766\) −1.94975 + 3.37706i −0.0704472 + 0.122018i
\(767\) 0 0
\(768\) 0.500000 + 0.866025i 0.0180422 + 0.0312500i
\(769\) 33.4142 1.20495 0.602474 0.798139i \(-0.294182\pi\)
0.602474 + 0.798139i \(0.294182\pi\)
\(770\) 0 0
\(771\) −17.8995 −0.644635
\(772\) −8.89949 15.4144i −0.320300 0.554776i
\(773\) 19.8284 34.3438i 0.713179 1.23526i −0.250479 0.968122i \(-0.580588\pi\)
0.963658 0.267140i \(-0.0860786\pi\)
\(774\) −3.70711 + 6.42090i −0.133249 + 0.230794i
\(775\) −4.53553 7.85578i −0.162921 0.282188i
\(776\) −3.17157 −0.113853
\(777\) 0 0
\(778\) 12.9289 0.463525
\(779\) 4.48528 + 7.76874i 0.160702 + 0.278344i
\(780\) 0 0
\(781\) −8.82843 + 15.2913i −0.315906 + 0.547165i
\(782\) 0.585786 + 1.01461i 0.0209477 + 0.0362824i
\(783\) 0.242641 0.00867127
\(784\) 0 0
\(785\) 11.6569 0.416051
\(786\) 5.58579 + 9.67487i 0.199238 + 0.345091i
\(787\) −2.48528 + 4.30463i −0.0885907 + 0.153444i −0.906916 0.421312i \(-0.861570\pi\)
0.818325 + 0.574756i \(0.194903\pi\)
\(788\) 7.58579 13.1390i 0.270232 0.468056i
\(789\) 8.89949 + 15.4144i 0.316830 + 0.548766i
\(790\) −11.3137 −0.402524
\(791\) 0 0
\(792\) 3.41421 0.121319
\(793\) 0 0
\(794\) −12.3137 + 21.3280i −0.436997 + 0.756901i
\(795\) −6.65685 + 11.5300i −0.236094 + 0.408927i
\(796\) 8.53553 + 14.7840i 0.302534 + 0.524004i
\(797\) −9.51472 −0.337029 −0.168514 0.985699i \(-0.553897\pi\)
−0.168514 + 0.985699i \(0.553897\pi\)
\(798\) 0 0
\(799\) −7.17157 −0.253712
\(800\) −0.500000 0.866025i −0.0176777 0.0306186i
\(801\) 5.24264 9.08052i 0.185240 0.320844i
\(802\) 1.34315 2.32640i 0.0474281 0.0821479i
\(803\) −6.24264 10.8126i −0.220298 0.381567i
\(804\) 11.8995 0.419663
\(805\) 0 0
\(806\) 0 0
\(807\) 1.82843 + 3.16693i 0.0643637 + 0.111481i
\(808\) −8.82843 + 15.2913i −0.310583 + 0.537946i
\(809\) 18.5563 32.1405i 0.652406 1.13000i −0.330131 0.943935i \(-0.607093\pi\)
0.982537 0.186066i \(-0.0595738\pi\)
\(810\) 0.500000 + 0.866025i 0.0175682 + 0.0304290i
\(811\) 36.9706 1.29821 0.649106 0.760698i \(-0.275143\pi\)
0.649106 + 0.760698i \(0.275143\pi\)
\(812\) 0 0
\(813\) −5.75736 −0.201919
\(814\) −2.41421 4.18154i −0.0846181 0.146563i
\(815\) −5.36396 + 9.29065i −0.187891 + 0.325437i
\(816\) 0.707107 1.22474i 0.0247537 0.0428746i
\(817\) 10.4853 + 18.1610i 0.366834 + 0.635374i
\(818\) −18.3848 −0.642809
\(819\) 0 0
\(820\) −3.17157 −0.110756
\(821\) 17.7782 + 30.7927i 0.620463 + 1.07467i 0.989400 + 0.145218i \(0.0463885\pi\)
−0.368937 + 0.929454i \(0.620278\pi\)
\(822\) −8.00000 + 13.8564i −0.279032 + 0.483298i
\(823\) 20.1421 34.8872i 0.702111 1.21609i −0.265613 0.964080i \(-0.585574\pi\)
0.967724 0.252012i \(-0.0810922\pi\)
\(824\) 9.07107 + 15.7116i 0.316006 + 0.547338i
\(825\) −3.41421 −0.118868
\(826\) 0 0
\(827\) 51.1127 1.77736 0.888681 0.458525i \(-0.151622\pi\)
0.888681 + 0.458525i \(0.151622\pi\)
\(828\) 0.414214 + 0.717439i 0.0143949 + 0.0249327i
\(829\) −11.3431 + 19.6469i −0.393964 + 0.682365i −0.992968 0.118380i \(-0.962230\pi\)
0.599005 + 0.800746i \(0.295563\pi\)
\(830\) 5.41421 9.37769i 0.187930 0.325504i
\(831\) 1.05025 + 1.81909i 0.0364329 + 0.0631036i
\(832\) 0 0
\(833\) 0 0
\(834\) 6.34315 0.219645
\(835\) 6.53553 + 11.3199i 0.226171 + 0.391740i
\(836\) 4.82843 8.36308i 0.166995 0.289243i
\(837\) 4.53553 7.85578i 0.156771 0.271535i
\(838\) −3.17157 5.49333i −0.109560 0.189764i
\(839\) −10.8284 −0.373839 −0.186919 0.982375i \(-0.559850\pi\)
−0.186919 + 0.982375i \(0.559850\pi\)
\(840\) 0 0
\(841\) −28.9411 −0.997970
\(842\) 14.3137 + 24.7921i 0.493283 + 0.854391i
\(843\) −15.2426 + 26.4010i −0.524984 + 0.909300i
\(844\) −4.82843 + 8.36308i −0.166201 + 0.287869i
\(845\) −6.50000 11.2583i −0.223607 0.387298i
\(846\) −5.07107 −0.174347
\(847\) 0 0
\(848\) 13.3137 0.457195
\(849\) −6.75736 11.7041i −0.231912 0.401683i
\(850\) −0.707107 + 1.22474i −0.0242536 + 0.0420084i
\(851\) 0.585786 1.01461i 0.0200805 0.0347804i
\(852\) 2.58579 + 4.47871i 0.0885876 + 0.153438i
\(853\) −29.3137 −1.00368 −0.501841 0.864960i \(-0.667344\pi\)
−0.501841 + 0.864960i \(0.667344\pi\)
\(854\) 0 0
\(855\) 2.82843 0.0967302
\(856\) 2.00000 + 3.46410i 0.0683586 + 0.118401i
\(857\) 26.3640 45.6637i 0.900576 1.55984i 0.0738274 0.997271i \(-0.476479\pi\)
0.826748 0.562572i \(-0.190188\pi\)
\(858\) 0 0
\(859\) −8.48528 14.6969i −0.289514 0.501453i 0.684180 0.729313i \(-0.260160\pi\)
−0.973694 + 0.227860i \(0.926827\pi\)
\(860\) −7.41421 −0.252823
\(861\) 0 0
\(862\) −14.1421 −0.481683
\(863\) −16.4853 28.5533i −0.561166 0.971967i −0.997395 0.0721318i \(-0.977020\pi\)
0.436230 0.899835i \(-0.356314\pi\)
\(864\) 0.500000 0.866025i 0.0170103 0.0294628i
\(865\) −0.757359 + 1.31178i −0.0257510 + 0.0446020i
\(866\) 1.58579 + 2.74666i 0.0538872 + 0.0933354i
\(867\) 15.0000 0.509427
\(868\) 0 0
\(869\) 38.6274 1.31035
\(870\) 0.121320 + 0.210133i 0.00411314 + 0.00712418i
\(871\) 0 0
\(872\) 8.65685 14.9941i 0.293158 0.507765i
\(873\) 1.58579 + 2.74666i 0.0536707 + 0.0929604i
\(874\) 2.34315 0.0792581
\(875\) 0 0
\(876\) −3.65685 −0.123554
\(877\) −9.29289 16.0958i −0.313799 0.543515i 0.665383 0.746502i \(-0.268268\pi\)
−0.979181 + 0.202987i \(0.934935\pi\)
\(878\) 1.22183 2.11626i 0.0412346 0.0714204i
\(879\) −8.31371 + 14.3998i −0.280414 + 0.485692i
\(880\) 1.70711 + 2.95680i 0.0575466 + 0.0996736i
\(881\) −20.3431 −0.685378 −0.342689 0.939449i \(-0.611338\pi\)
−0.342689 + 0.939449i \(0.611338\pi\)
\(882\) 0 0
\(883\) 38.0416 1.28020 0.640101 0.768290i \(-0.278892\pi\)
0.640101 + 0.768290i \(0.278892\pi\)
\(884\) 0 0
\(885\) −7.24264 + 12.5446i −0.243459 + 0.421683i
\(886\) −1.17157 + 2.02922i −0.0393598 + 0.0681731i
\(887\) 17.8492 + 30.9158i 0.599319 + 1.03805i 0.992922 + 0.118770i \(0.0378952\pi\)
−0.393603 + 0.919281i \(0.628771\pi\)
\(888\) −1.41421 −0.0474579
\(889\) 0 0
\(890\) 10.4853 0.351467
\(891\) −1.70711 2.95680i −0.0571902 0.0990564i
\(892\) 3.17157 5.49333i 0.106192 0.183930i
\(893\) −7.17157 + 12.4215i −0.239988 + 0.415671i
\(894\) 2.94975 + 5.10911i 0.0986543 + 0.170874i
\(895\) −3.41421 −0.114125
\(896\) 0 0
\(897\) 0 0
\(898\) −18.5563 32.1405i −0.619233 1.07254i
\(899\) 1.10051 1.90613i 0.0367039 0.0635730i
\(900\) −0.500000 + 0.866025i −0.0166667 + 0.0288675i
\(901\) −9.41421 16.3059i −0.313633 0.543228i
\(902\) 10.8284 0.360547
\(903\) 0 0
\(904\) −13.3137 −0.442807
\(905\) 1.58579 + 2.74666i 0.0527133 + 0.0913022i
\(906\) −10.8995 + 18.8785i −0.362111 + 0.627195i
\(907\) −0.393398 + 0.681386i −0.0130626 + 0.0226250i −0.872483 0.488645i \(-0.837491\pi\)
0.859420 + 0.511270i \(0.170825\pi\)
\(908\) −1.17157 2.02922i −0.0388800 0.0673422i
\(909\) 17.6569 0.585641
\(910\) 0 0
\(911\) −5.65685 −0.187420 −0.0937100 0.995600i \(-0.529873\pi\)
−0.0937100 + 0.995600i \(0.529873\pi\)
\(912\) −1.41421 2.44949i −0.0468293 0.0811107i
\(913\) −18.4853 + 32.0174i −0.611774 + 1.05962i
\(914\) −14.8995 + 25.8067i −0.492831 + 0.853609i
\(915\) −0.171573 0.297173i −0.00567202 0.00982423i
\(916\) 13.7990 0.455931
\(917\) 0 0
\(918\) −1.41421 −0.0466760
\(919\) 23.3848 + 40.5036i 0.771393 + 1.33609i 0.936800 + 0.349866i \(0.113773\pi\)
−0.165407 + 0.986225i \(0.552894\pi\)
\(920\) −0.414214 + 0.717439i −0.0136562 + 0.0236533i
\(921\) −7.65685 + 13.2621i −0.252302 + 0.437000i
\(922\) −7.00000 12.1244i −0.230533 0.399294i
\(923\) 0 0
\(924\) 0 0
\(925\) 1.41421 0.0464991
\(926\) −11.1716 19.3497i −0.367121 0.635872i
\(927\) 9.07107 15.7116i 0.297933 0.516035i
\(928\) 0.121320 0.210133i 0.00398254 0.00689795i
\(929\) −0.171573 0.297173i −0.00562912 0.00974993i 0.863197 0.504867i \(-0.168458\pi\)
−0.868826 + 0.495117i \(0.835125\pi\)
\(930\) 9.07107 0.297452
\(931\) 0 0
\(932\) −26.9706 −0.883450
\(933\) 17.4142 + 30.1623i 0.570116 + 0.987469i
\(934\) −1.75736 + 3.04384i −0.0575026 + 0.0995973i
\(935\) 2.41421 4.18154i 0.0789532 0.136751i
\(936\) 0 0
\(937\) 50.9706 1.66514 0.832568 0.553923i \(-0.186870\pi\)
0.832568 + 0.553923i \(0.186870\pi\)
\(938\) 0 0
\(939\) 23.1716 0.756176
\(940\) −2.53553 4.39167i −0.0827000 0.143241i
\(941\) −10.1421 + 17.5667i −0.330624 + 0.572658i −0.982634 0.185552i \(-0.940593\pi\)
0.652010 + 0.758210i \(0.273926\pi\)
\(942\) −5.82843 + 10.0951i −0.189900 + 0.328917i
\(943\) 1.31371 + 2.27541i 0.0427802 + 0.0740975i
\(944\) 14.4853 0.471456
\(945\) 0 0
\(946\) 25.3137 0.823020
\(947\) −9.75736 16.9002i −0.317072 0.549184i 0.662804 0.748793i \(-0.269366\pi\)
−0.979876 + 0.199609i \(0.936033\pi\)
\(948\) 5.65685 9.79796i 0.183726 0.318223i
\(949\) 0 0
\(950\) 1.41421 + 2.44949i 0.0458831 + 0.0794719i
\(951\) 18.0000 0.583690
\(952\) 0 0
\(953\) 55.5980 1.80100 0.900498 0.434861i \(-0.143202\pi\)
0.900498 + 0.434861i \(0.143202\pi\)
\(954\) −6.65685 11.5300i −0.215524 0.373298i
\(955\) 5.65685 9.79796i 0.183052 0.317055i
\(956\) −0.343146 + 0.594346i −0.0110981 + 0.0192225i
\(957\) −0.414214 0.717439i −0.0133896 0.0231915i
\(958\) 0.485281 0.0156787
\(959\) 0 0
\(960\) 1.00000 0.0322749
\(961\) −25.6421 44.4135i −0.827166 1.43269i
\(962\) 0 0
\(963\) 2.00000 3.46410i 0.0644491 0.111629i
\(964\) −3.87868 6.71807i −0.124924 0.216374i
\(965\) −17.7990 −0.572970
\(966\) 0 0
\(967\) 12.2843 0.395036 0.197518 0.980299i \(-0.436712\pi\)
0.197518 + 0.980299i \(0.436712\pi\)
\(968\) −0.328427 0.568852i −0.0105560 0.0182836i
\(969\) −2.00000 + 3.46410i −0.0642493 + 0.111283i
\(970\) −1.58579 + 2.74666i −0.0509165 + 0.0881900i
\(971\) 5.51472 + 9.55177i 0.176976 + 0.306531i 0.940843 0.338842i \(-0.110035\pi\)
−0.763868 + 0.645373i \(0.776702\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 0 0
\(974\) 7.51472 0.240787
\(975\) 0 0
\(976\) −0.171573 + 0.297173i −0.00549191 + 0.00951227i
\(977\) 8.65685 14.9941i 0.276957 0.479704i −0.693670 0.720293i \(-0.744007\pi\)
0.970627 + 0.240589i \(0.0773406\pi\)
\(978\) −5.36396 9.29065i −0.171521 0.297082i
\(979\) −35.7990 −1.14414
\(980\) 0 0
\(981\) −17.3137 −0.552784
\(982\) 3.94975 + 6.84116i 0.126042 + 0.218310i
\(983\) 18.4350 31.9304i 0.587986 1.01842i −0.406510 0.913646i \(-0.633254\pi\)
0.994496 0.104775i \(-0.0334124\pi\)
\(984\) 1.58579 2.74666i 0.0505530 0.0875604i
\(985\) −7.58579 13.1390i −0.241703 0.418642i
\(986\) −0.343146 −0.0109280
\(987\) 0 0
\(988\) 0 0
\(989\) 3.07107 + 5.31925i 0.0976543 + 0.169142i
\(990\) 1.70711 2.95680i 0.0542554 0.0939731i
\(991\) −7.58579 + 13.1390i −0.240970 + 0.417373i −0.960991 0.276580i \(-0.910799\pi\)
0.720021 + 0.693953i \(0.244132\pi\)
\(992\) −4.53553 7.85578i −0.144003 0.249421i
\(993\) −26.6274 −0.844996
\(994\) 0 0
\(995\) 17.0711 0.541189
\(996\) 5.41421 + 9.37769i 0.171556 + 0.297144i
\(997\) −12.6569 + 21.9223i −0.400847 + 0.694287i −0.993828 0.110929i \(-0.964617\pi\)
0.592982 + 0.805216i \(0.297951\pi\)
\(998\) 11.8995 20.6105i 0.376672 0.652415i
\(999\) 0.707107 + 1.22474i 0.0223719 + 0.0387492i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1470.2.i.v.361.1 4
7.2 even 3 inner 1470.2.i.v.961.1 4
7.3 odd 6 1470.2.a.v.1.2 yes 2
7.4 even 3 1470.2.a.u.1.2 2
7.5 odd 6 1470.2.i.u.961.1 4
7.6 odd 2 1470.2.i.u.361.1 4
21.11 odd 6 4410.2.a.br.1.1 2
21.17 even 6 4410.2.a.bn.1.1 2
35.4 even 6 7350.2.a.df.1.2 2
35.24 odd 6 7350.2.a.dd.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1470.2.a.u.1.2 2 7.4 even 3
1470.2.a.v.1.2 yes 2 7.3 odd 6
1470.2.i.u.361.1 4 7.6 odd 2
1470.2.i.u.961.1 4 7.5 odd 6
1470.2.i.v.361.1 4 1.1 even 1 trivial
1470.2.i.v.961.1 4 7.2 even 3 inner
4410.2.a.bn.1.1 2 21.17 even 6
4410.2.a.br.1.1 2 21.11 odd 6
7350.2.a.dd.1.2 2 35.24 odd 6
7350.2.a.df.1.2 2 35.4 even 6