# Properties

 Label 1470.2.i.s Level $1470$ Weight $2$ Character orbit 1470.i Analytic conductor $11.738$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1470.i (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$11.7380090971$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 210) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \zeta_{6} q^{2} + ( 1 - \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} + \zeta_{6} q^{5} + q^{6} - q^{8} -\zeta_{6} q^{9} +O(q^{10})$$ $$q + \zeta_{6} q^{2} + ( 1 - \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} + \zeta_{6} q^{5} + q^{6} - q^{8} -\zeta_{6} q^{9} + ( -1 + \zeta_{6} ) q^{10} + \zeta_{6} q^{12} -2 q^{13} + q^{15} -\zeta_{6} q^{16} + ( -6 + 6 \zeta_{6} ) q^{17} + ( 1 - \zeta_{6} ) q^{18} + 8 \zeta_{6} q^{19} - q^{20} + ( -1 + \zeta_{6} ) q^{24} + ( -1 + \zeta_{6} ) q^{25} -2 \zeta_{6} q^{26} - q^{27} + 6 q^{29} + \zeta_{6} q^{30} + ( -4 + 4 \zeta_{6} ) q^{31} + ( 1 - \zeta_{6} ) q^{32} -6 q^{34} + q^{36} + 10 \zeta_{6} q^{37} + ( -8 + 8 \zeta_{6} ) q^{38} + ( -2 + 2 \zeta_{6} ) q^{39} -\zeta_{6} q^{40} + 6 q^{41} -4 q^{43} + ( 1 - \zeta_{6} ) q^{45} - q^{48} - q^{50} + 6 \zeta_{6} q^{51} + ( 2 - 2 \zeta_{6} ) q^{52} + ( 6 - 6 \zeta_{6} ) q^{53} -\zeta_{6} q^{54} + 8 q^{57} + 6 \zeta_{6} q^{58} + ( -12 + 12 \zeta_{6} ) q^{59} + ( -1 + \zeta_{6} ) q^{60} -10 \zeta_{6} q^{61} -4 q^{62} + q^{64} -2 \zeta_{6} q^{65} + ( 4 - 4 \zeta_{6} ) q^{67} -6 \zeta_{6} q^{68} + 12 q^{71} + \zeta_{6} q^{72} + ( -10 + 10 \zeta_{6} ) q^{73} + ( -10 + 10 \zeta_{6} ) q^{74} + \zeta_{6} q^{75} -8 q^{76} -2 q^{78} -8 \zeta_{6} q^{79} + ( 1 - \zeta_{6} ) q^{80} + ( -1 + \zeta_{6} ) q^{81} + 6 \zeta_{6} q^{82} -12 q^{83} -6 q^{85} -4 \zeta_{6} q^{86} + ( 6 - 6 \zeta_{6} ) q^{87} -6 \zeta_{6} q^{89} + q^{90} + 4 \zeta_{6} q^{93} + ( -8 + 8 \zeta_{6} ) q^{95} -\zeta_{6} q^{96} + 10 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + q^{2} + q^{3} - q^{4} + q^{5} + 2q^{6} - 2q^{8} - q^{9} + O(q^{10})$$ $$2q + q^{2} + q^{3} - q^{4} + q^{5} + 2q^{6} - 2q^{8} - q^{9} - q^{10} + q^{12} - 4q^{13} + 2q^{15} - q^{16} - 6q^{17} + q^{18} + 8q^{19} - 2q^{20} - q^{24} - q^{25} - 2q^{26} - 2q^{27} + 12q^{29} + q^{30} - 4q^{31} + q^{32} - 12q^{34} + 2q^{36} + 10q^{37} - 8q^{38} - 2q^{39} - q^{40} + 12q^{41} - 8q^{43} + q^{45} - 2q^{48} - 2q^{50} + 6q^{51} + 2q^{52} + 6q^{53} - q^{54} + 16q^{57} + 6q^{58} - 12q^{59} - q^{60} - 10q^{61} - 8q^{62} + 2q^{64} - 2q^{65} + 4q^{67} - 6q^{68} + 24q^{71} + q^{72} - 10q^{73} - 10q^{74} + q^{75} - 16q^{76} - 4q^{78} - 8q^{79} + q^{80} - q^{81} + 6q^{82} - 24q^{83} - 12q^{85} - 4q^{86} + 6q^{87} - 6q^{89} + 2q^{90} + 4q^{93} - 8q^{95} - q^{96} + 20q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times$$.

 $$n$$ $$491$$ $$1081$$ $$1177$$ $$\chi(n)$$ $$1$$ $$-\zeta_{6}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
361.1
 0.5 + 0.866025i 0.5 − 0.866025i
0.500000 + 0.866025i 0.500000 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 0 −1.00000 −0.500000 0.866025i −0.500000 + 0.866025i
961.1 0.500000 0.866025i 0.500000 + 0.866025i −0.500000 0.866025i 0.500000 0.866025i 1.00000 0 −1.00000 −0.500000 + 0.866025i −0.500000 0.866025i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1470.2.i.s 2
7.b odd 2 1 1470.2.i.l 2
7.c even 3 1 1470.2.a.b 1
7.c even 3 1 inner 1470.2.i.s 2
7.d odd 6 1 210.2.a.b 1
7.d odd 6 1 1470.2.i.l 2
21.g even 6 1 630.2.a.h 1
21.h odd 6 1 4410.2.a.bi 1
28.f even 6 1 1680.2.a.g 1
35.i odd 6 1 1050.2.a.k 1
35.j even 6 1 7350.2.a.cs 1
35.k even 12 2 1050.2.g.c 2
56.j odd 6 1 6720.2.a.n 1
56.m even 6 1 6720.2.a.bi 1
84.j odd 6 1 5040.2.a.g 1
105.p even 6 1 3150.2.a.f 1
105.w odd 12 2 3150.2.g.i 2
140.s even 6 1 8400.2.a.cm 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.a.b 1 7.d odd 6 1
630.2.a.h 1 21.g even 6 1
1050.2.a.k 1 35.i odd 6 1
1050.2.g.c 2 35.k even 12 2
1470.2.a.b 1 7.c even 3 1
1470.2.i.l 2 7.b odd 2 1
1470.2.i.l 2 7.d odd 6 1
1470.2.i.s 2 1.a even 1 1 trivial
1470.2.i.s 2 7.c even 3 1 inner
1680.2.a.g 1 28.f even 6 1
3150.2.a.f 1 105.p even 6 1
3150.2.g.i 2 105.w odd 12 2
4410.2.a.bi 1 21.h odd 6 1
5040.2.a.g 1 84.j odd 6 1
6720.2.a.n 1 56.j odd 6 1
6720.2.a.bi 1 56.m even 6 1
7350.2.a.cs 1 35.j even 6 1
8400.2.a.cm 1 140.s even 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1470, [\chi])$$:

 $$T_{11}$$ $$T_{13} + 2$$ $$T_{17}^{2} + 6 T_{17} + 36$$ $$T_{19}^{2} - 8 T_{19} + 64$$ $$T_{31}^{2} + 4 T_{31} + 16$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 - T + T^{2}$$
$3$ $$1 - T + T^{2}$$
$5$ $$1 - T + T^{2}$$
$7$ $$T^{2}$$
$11$ $$T^{2}$$
$13$ $$( 2 + T )^{2}$$
$17$ $$36 + 6 T + T^{2}$$
$19$ $$64 - 8 T + T^{2}$$
$23$ $$T^{2}$$
$29$ $$( -6 + T )^{2}$$
$31$ $$16 + 4 T + T^{2}$$
$37$ $$100 - 10 T + T^{2}$$
$41$ $$( -6 + T )^{2}$$
$43$ $$( 4 + T )^{2}$$
$47$ $$T^{2}$$
$53$ $$36 - 6 T + T^{2}$$
$59$ $$144 + 12 T + T^{2}$$
$61$ $$100 + 10 T + T^{2}$$
$67$ $$16 - 4 T + T^{2}$$
$71$ $$( -12 + T )^{2}$$
$73$ $$100 + 10 T + T^{2}$$
$79$ $$64 + 8 T + T^{2}$$
$83$ $$( 12 + T )^{2}$$
$89$ $$36 + 6 T + T^{2}$$
$97$ $$( -10 + T )^{2}$$