# Properties

 Label 1470.2.i.q Level $1470$ Weight $2$ Character orbit 1470.i Analytic conductor $11.738$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1470,2,Mod(361,1470)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1470, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([0, 0, 4]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1470.361");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1470.i (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$11.7380090971$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 30) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \zeta_{6} q^{2} + ( - \zeta_{6} + 1) q^{3} + (\zeta_{6} - 1) q^{4} - \zeta_{6} q^{5} + q^{6} - q^{8} - \zeta_{6} q^{9} +O(q^{10})$$ q + z * q^2 + (-z + 1) * q^3 + (z - 1) * q^4 - z * q^5 + q^6 - q^8 - z * q^9 $$q + \zeta_{6} q^{2} + ( - \zeta_{6} + 1) q^{3} + (\zeta_{6} - 1) q^{4} - \zeta_{6} q^{5} + q^{6} - q^{8} - \zeta_{6} q^{9} + ( - \zeta_{6} + 1) q^{10} + \zeta_{6} q^{12} - 2 q^{13} - q^{15} - \zeta_{6} q^{16} + ( - 6 \zeta_{6} + 6) q^{17} + ( - \zeta_{6} + 1) q^{18} - 4 \zeta_{6} q^{19} + q^{20} + (\zeta_{6} - 1) q^{24} + (\zeta_{6} - 1) q^{25} - 2 \zeta_{6} q^{26} - q^{27} - 6 q^{29} - \zeta_{6} q^{30} + ( - 8 \zeta_{6} + 8) q^{31} + ( - \zeta_{6} + 1) q^{32} + 6 q^{34} + q^{36} - 2 \zeta_{6} q^{37} + ( - 4 \zeta_{6} + 4) q^{38} + (2 \zeta_{6} - 2) q^{39} + \zeta_{6} q^{40} + 6 q^{41} - 4 q^{43} + (\zeta_{6} - 1) q^{45} - q^{48} - q^{50} - 6 \zeta_{6} q^{51} + ( - 2 \zeta_{6} + 2) q^{52} + ( - 6 \zeta_{6} + 6) q^{53} - \zeta_{6} q^{54} - 4 q^{57} - 6 \zeta_{6} q^{58} + ( - \zeta_{6} + 1) q^{60} - 10 \zeta_{6} q^{61} + 8 q^{62} + q^{64} + 2 \zeta_{6} q^{65} + ( - 4 \zeta_{6} + 4) q^{67} + 6 \zeta_{6} q^{68} + \zeta_{6} q^{72} + ( - 2 \zeta_{6} + 2) q^{73} + ( - 2 \zeta_{6} + 2) q^{74} + \zeta_{6} q^{75} + 4 q^{76} - 2 q^{78} - 8 \zeta_{6} q^{79} + (\zeta_{6} - 1) q^{80} + (\zeta_{6} - 1) q^{81} + 6 \zeta_{6} q^{82} - 12 q^{83} - 6 q^{85} - 4 \zeta_{6} q^{86} + (6 \zeta_{6} - 6) q^{87} + 18 \zeta_{6} q^{89} - q^{90} - 8 \zeta_{6} q^{93} + (4 \zeta_{6} - 4) q^{95} - \zeta_{6} q^{96} - 2 q^{97} +O(q^{100})$$ q + z * q^2 + (-z + 1) * q^3 + (z - 1) * q^4 - z * q^5 + q^6 - q^8 - z * q^9 + (-z + 1) * q^10 + z * q^12 - 2 * q^13 - q^15 - z * q^16 + (-6*z + 6) * q^17 + (-z + 1) * q^18 - 4*z * q^19 + q^20 + (z - 1) * q^24 + (z - 1) * q^25 - 2*z * q^26 - q^27 - 6 * q^29 - z * q^30 + (-8*z + 8) * q^31 + (-z + 1) * q^32 + 6 * q^34 + q^36 - 2*z * q^37 + (-4*z + 4) * q^38 + (2*z - 2) * q^39 + z * q^40 + 6 * q^41 - 4 * q^43 + (z - 1) * q^45 - q^48 - q^50 - 6*z * q^51 + (-2*z + 2) * q^52 + (-6*z + 6) * q^53 - z * q^54 - 4 * q^57 - 6*z * q^58 + (-z + 1) * q^60 - 10*z * q^61 + 8 * q^62 + q^64 + 2*z * q^65 + (-4*z + 4) * q^67 + 6*z * q^68 + z * q^72 + (-2*z + 2) * q^73 + (-2*z + 2) * q^74 + z * q^75 + 4 * q^76 - 2 * q^78 - 8*z * q^79 + (z - 1) * q^80 + (z - 1) * q^81 + 6*z * q^82 - 12 * q^83 - 6 * q^85 - 4*z * q^86 + (6*z - 6) * q^87 + 18*z * q^89 - q^90 - 8*z * q^93 + (4*z - 4) * q^95 - z * q^96 - 2 * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + q^{2} + q^{3} - q^{4} - q^{5} + 2 q^{6} - 2 q^{8} - q^{9}+O(q^{10})$$ 2 * q + q^2 + q^3 - q^4 - q^5 + 2 * q^6 - 2 * q^8 - q^9 $$2 q + q^{2} + q^{3} - q^{4} - q^{5} + 2 q^{6} - 2 q^{8} - q^{9} + q^{10} + q^{12} - 4 q^{13} - 2 q^{15} - q^{16} + 6 q^{17} + q^{18} - 4 q^{19} + 2 q^{20} - q^{24} - q^{25} - 2 q^{26} - 2 q^{27} - 12 q^{29} - q^{30} + 8 q^{31} + q^{32} + 12 q^{34} + 2 q^{36} - 2 q^{37} + 4 q^{38} - 2 q^{39} + q^{40} + 12 q^{41} - 8 q^{43} - q^{45} - 2 q^{48} - 2 q^{50} - 6 q^{51} + 2 q^{52} + 6 q^{53} - q^{54} - 8 q^{57} - 6 q^{58} + q^{60} - 10 q^{61} + 16 q^{62} + 2 q^{64} + 2 q^{65} + 4 q^{67} + 6 q^{68} + q^{72} + 2 q^{73} + 2 q^{74} + q^{75} + 8 q^{76} - 4 q^{78} - 8 q^{79} - q^{80} - q^{81} + 6 q^{82} - 24 q^{83} - 12 q^{85} - 4 q^{86} - 6 q^{87} + 18 q^{89} - 2 q^{90} - 8 q^{93} - 4 q^{95} - q^{96} - 4 q^{97}+O(q^{100})$$ 2 * q + q^2 + q^3 - q^4 - q^5 + 2 * q^6 - 2 * q^8 - q^9 + q^10 + q^12 - 4 * q^13 - 2 * q^15 - q^16 + 6 * q^17 + q^18 - 4 * q^19 + 2 * q^20 - q^24 - q^25 - 2 * q^26 - 2 * q^27 - 12 * q^29 - q^30 + 8 * q^31 + q^32 + 12 * q^34 + 2 * q^36 - 2 * q^37 + 4 * q^38 - 2 * q^39 + q^40 + 12 * q^41 - 8 * q^43 - q^45 - 2 * q^48 - 2 * q^50 - 6 * q^51 + 2 * q^52 + 6 * q^53 - q^54 - 8 * q^57 - 6 * q^58 + q^60 - 10 * q^61 + 16 * q^62 + 2 * q^64 + 2 * q^65 + 4 * q^67 + 6 * q^68 + q^72 + 2 * q^73 + 2 * q^74 + q^75 + 8 * q^76 - 4 * q^78 - 8 * q^79 - q^80 - q^81 + 6 * q^82 - 24 * q^83 - 12 * q^85 - 4 * q^86 - 6 * q^87 + 18 * q^89 - 2 * q^90 - 8 * q^93 - 4 * q^95 - q^96 - 4 * q^97

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times$$.

 $$n$$ $$491$$ $$1081$$ $$1177$$ $$\chi(n)$$ $$1$$ $$-\zeta_{6}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
361.1
 0.5 + 0.866025i 0.5 − 0.866025i
0.500000 + 0.866025i 0.500000 0.866025i −0.500000 + 0.866025i −0.500000 0.866025i 1.00000 0 −1.00000 −0.500000 0.866025i 0.500000 0.866025i
961.1 0.500000 0.866025i 0.500000 + 0.866025i −0.500000 0.866025i −0.500000 + 0.866025i 1.00000 0 −1.00000 −0.500000 + 0.866025i 0.500000 + 0.866025i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1470.2.i.q 2
7.b odd 2 1 1470.2.i.o 2
7.c even 3 1 1470.2.a.d 1
7.c even 3 1 inner 1470.2.i.q 2
7.d odd 6 1 30.2.a.a 1
7.d odd 6 1 1470.2.i.o 2
21.g even 6 1 90.2.a.c 1
21.h odd 6 1 4410.2.a.z 1
28.f even 6 1 240.2.a.b 1
35.i odd 6 1 150.2.a.b 1
35.j even 6 1 7350.2.a.ct 1
35.k even 12 2 150.2.c.a 2
56.j odd 6 1 960.2.a.e 1
56.m even 6 1 960.2.a.p 1
63.i even 6 1 810.2.e.b 2
63.k odd 6 1 810.2.e.l 2
63.s even 6 1 810.2.e.b 2
63.t odd 6 1 810.2.e.l 2
77.i even 6 1 3630.2.a.w 1
84.j odd 6 1 720.2.a.j 1
91.s odd 6 1 5070.2.a.w 1
91.bb even 12 2 5070.2.b.k 2
105.p even 6 1 450.2.a.d 1
105.w odd 12 2 450.2.c.b 2
112.v even 12 2 3840.2.k.f 2
112.x odd 12 2 3840.2.k.y 2
119.h odd 6 1 8670.2.a.g 1
140.s even 6 1 1200.2.a.k 1
140.x odd 12 2 1200.2.f.e 2
168.ba even 6 1 2880.2.a.a 1
168.be odd 6 1 2880.2.a.q 1
280.ba even 6 1 4800.2.a.d 1
280.bk odd 6 1 4800.2.a.cq 1
280.bp odd 12 2 4800.2.f.w 2
280.bv even 12 2 4800.2.f.p 2
420.be odd 6 1 3600.2.a.f 1
420.br even 12 2 3600.2.f.i 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.2.a.a 1 7.d odd 6 1
90.2.a.c 1 21.g even 6 1
150.2.a.b 1 35.i odd 6 1
150.2.c.a 2 35.k even 12 2
240.2.a.b 1 28.f even 6 1
450.2.a.d 1 105.p even 6 1
450.2.c.b 2 105.w odd 12 2
720.2.a.j 1 84.j odd 6 1
810.2.e.b 2 63.i even 6 1
810.2.e.b 2 63.s even 6 1
810.2.e.l 2 63.k odd 6 1
810.2.e.l 2 63.t odd 6 1
960.2.a.e 1 56.j odd 6 1
960.2.a.p 1 56.m even 6 1
1200.2.a.k 1 140.s even 6 1
1200.2.f.e 2 140.x odd 12 2
1470.2.a.d 1 7.c even 3 1
1470.2.i.o 2 7.b odd 2 1
1470.2.i.o 2 7.d odd 6 1
1470.2.i.q 2 1.a even 1 1 trivial
1470.2.i.q 2 7.c even 3 1 inner
2880.2.a.a 1 168.ba even 6 1
2880.2.a.q 1 168.be odd 6 1
3600.2.a.f 1 420.be odd 6 1
3600.2.f.i 2 420.br even 12 2
3630.2.a.w 1 77.i even 6 1
3840.2.k.f 2 112.v even 12 2
3840.2.k.y 2 112.x odd 12 2
4410.2.a.z 1 21.h odd 6 1
4800.2.a.d 1 280.ba even 6 1
4800.2.a.cq 1 280.bk odd 6 1
4800.2.f.p 2 280.bv even 12 2
4800.2.f.w 2 280.bp odd 12 2
5070.2.a.w 1 91.s odd 6 1
5070.2.b.k 2 91.bb even 12 2
7350.2.a.ct 1 35.j even 6 1
8670.2.a.g 1 119.h odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1470, [\chi])$$:

 $$T_{11}$$ T11 $$T_{13} + 2$$ T13 + 2 $$T_{17}^{2} - 6T_{17} + 36$$ T17^2 - 6*T17 + 36 $$T_{19}^{2} + 4T_{19} + 16$$ T19^2 + 4*T19 + 16 $$T_{31}^{2} - 8T_{31} + 64$$ T31^2 - 8*T31 + 64

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} - T + 1$$
$3$ $$T^{2} - T + 1$$
$5$ $$T^{2} + T + 1$$
$7$ $$T^{2}$$
$11$ $$T^{2}$$
$13$ $$(T + 2)^{2}$$
$17$ $$T^{2} - 6T + 36$$
$19$ $$T^{2} + 4T + 16$$
$23$ $$T^{2}$$
$29$ $$(T + 6)^{2}$$
$31$ $$T^{2} - 8T + 64$$
$37$ $$T^{2} + 2T + 4$$
$41$ $$(T - 6)^{2}$$
$43$ $$(T + 4)^{2}$$
$47$ $$T^{2}$$
$53$ $$T^{2} - 6T + 36$$
$59$ $$T^{2}$$
$61$ $$T^{2} + 10T + 100$$
$67$ $$T^{2} - 4T + 16$$
$71$ $$T^{2}$$
$73$ $$T^{2} - 2T + 4$$
$79$ $$T^{2} + 8T + 64$$
$83$ $$(T + 12)^{2}$$
$89$ $$T^{2} - 18T + 324$$
$97$ $$(T + 2)^{2}$$