# Properties

 Label 1470.2.i.p Level $1470$ Weight $2$ Character orbit 1470.i Analytic conductor $11.738$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1470,2,Mod(361,1470)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1470, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([0, 0, 4]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1470.361");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1470.i (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$11.7380090971$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 210) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \zeta_{6} q^{2} + ( - \zeta_{6} + 1) q^{3} + (\zeta_{6} - 1) q^{4} - \zeta_{6} q^{5} + q^{6} - q^{8} - \zeta_{6} q^{9} +O(q^{10})$$ q + z * q^2 + (-z + 1) * q^3 + (z - 1) * q^4 - z * q^5 + q^6 - q^8 - z * q^9 $$q + \zeta_{6} q^{2} + ( - \zeta_{6} + 1) q^{3} + (\zeta_{6} - 1) q^{4} - \zeta_{6} q^{5} + q^{6} - q^{8} - \zeta_{6} q^{9} + ( - \zeta_{6} + 1) q^{10} + (3 \zeta_{6} - 3) q^{11} + \zeta_{6} q^{12} - 5 q^{13} - q^{15} - \zeta_{6} q^{16} + ( - \zeta_{6} + 1) q^{18} + 5 \zeta_{6} q^{19} + q^{20} - 3 q^{22} + 9 \zeta_{6} q^{23} + (\zeta_{6} - 1) q^{24} + (\zeta_{6} - 1) q^{25} - 5 \zeta_{6} q^{26} - q^{27} - \zeta_{6} q^{30} + (10 \zeta_{6} - 10) q^{31} + ( - \zeta_{6} + 1) q^{32} + 3 \zeta_{6} q^{33} + q^{36} + \zeta_{6} q^{37} + (5 \zeta_{6} - 5) q^{38} + (5 \zeta_{6} - 5) q^{39} + \zeta_{6} q^{40} - 9 q^{41} + 8 q^{43} - 3 \zeta_{6} q^{44} + (\zeta_{6} - 1) q^{45} + (9 \zeta_{6} - 9) q^{46} + 3 \zeta_{6} q^{47} - q^{48} - q^{50} + ( - 5 \zeta_{6} + 5) q^{52} + ( - 3 \zeta_{6} + 3) q^{53} - \zeta_{6} q^{54} + 3 q^{55} + 5 q^{57} + ( - 12 \zeta_{6} + 12) q^{59} + ( - \zeta_{6} + 1) q^{60} + 8 \zeta_{6} q^{61} - 10 q^{62} + q^{64} + 5 \zeta_{6} q^{65} + (3 \zeta_{6} - 3) q^{66} + (8 \zeta_{6} - 8) q^{67} + 9 q^{69} - 6 q^{71} + \zeta_{6} q^{72} + ( - 2 \zeta_{6} + 2) q^{73} + (\zeta_{6} - 1) q^{74} + \zeta_{6} q^{75} - 5 q^{76} - 5 q^{78} - 8 \zeta_{6} q^{79} + (\zeta_{6} - 1) q^{80} + (\zeta_{6} - 1) q^{81} - 9 \zeta_{6} q^{82} + 8 \zeta_{6} q^{86} + ( - 3 \zeta_{6} + 3) q^{88} + 6 \zeta_{6} q^{89} - q^{90} - 9 q^{92} + 10 \zeta_{6} q^{93} + (3 \zeta_{6} - 3) q^{94} + ( - 5 \zeta_{6} + 5) q^{95} - \zeta_{6} q^{96} - 8 q^{97} + 3 q^{99} +O(q^{100})$$ q + z * q^2 + (-z + 1) * q^3 + (z - 1) * q^4 - z * q^5 + q^6 - q^8 - z * q^9 + (-z + 1) * q^10 + (3*z - 3) * q^11 + z * q^12 - 5 * q^13 - q^15 - z * q^16 + (-z + 1) * q^18 + 5*z * q^19 + q^20 - 3 * q^22 + 9*z * q^23 + (z - 1) * q^24 + (z - 1) * q^25 - 5*z * q^26 - q^27 - z * q^30 + (10*z - 10) * q^31 + (-z + 1) * q^32 + 3*z * q^33 + q^36 + z * q^37 + (5*z - 5) * q^38 + (5*z - 5) * q^39 + z * q^40 - 9 * q^41 + 8 * q^43 - 3*z * q^44 + (z - 1) * q^45 + (9*z - 9) * q^46 + 3*z * q^47 - q^48 - q^50 + (-5*z + 5) * q^52 + (-3*z + 3) * q^53 - z * q^54 + 3 * q^55 + 5 * q^57 + (-12*z + 12) * q^59 + (-z + 1) * q^60 + 8*z * q^61 - 10 * q^62 + q^64 + 5*z * q^65 + (3*z - 3) * q^66 + (8*z - 8) * q^67 + 9 * q^69 - 6 * q^71 + z * q^72 + (-2*z + 2) * q^73 + (z - 1) * q^74 + z * q^75 - 5 * q^76 - 5 * q^78 - 8*z * q^79 + (z - 1) * q^80 + (z - 1) * q^81 - 9*z * q^82 + 8*z * q^86 + (-3*z + 3) * q^88 + 6*z * q^89 - q^90 - 9 * q^92 + 10*z * q^93 + (3*z - 3) * q^94 + (-5*z + 5) * q^95 - z * q^96 - 8 * q^97 + 3 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + q^{2} + q^{3} - q^{4} - q^{5} + 2 q^{6} - 2 q^{8} - q^{9}+O(q^{10})$$ 2 * q + q^2 + q^3 - q^4 - q^5 + 2 * q^6 - 2 * q^8 - q^9 $$2 q + q^{2} + q^{3} - q^{4} - q^{5} + 2 q^{6} - 2 q^{8} - q^{9} + q^{10} - 3 q^{11} + q^{12} - 10 q^{13} - 2 q^{15} - q^{16} + q^{18} + 5 q^{19} + 2 q^{20} - 6 q^{22} + 9 q^{23} - q^{24} - q^{25} - 5 q^{26} - 2 q^{27} - q^{30} - 10 q^{31} + q^{32} + 3 q^{33} + 2 q^{36} + q^{37} - 5 q^{38} - 5 q^{39} + q^{40} - 18 q^{41} + 16 q^{43} - 3 q^{44} - q^{45} - 9 q^{46} + 3 q^{47} - 2 q^{48} - 2 q^{50} + 5 q^{52} + 3 q^{53} - q^{54} + 6 q^{55} + 10 q^{57} + 12 q^{59} + q^{60} + 8 q^{61} - 20 q^{62} + 2 q^{64} + 5 q^{65} - 3 q^{66} - 8 q^{67} + 18 q^{69} - 12 q^{71} + q^{72} + 2 q^{73} - q^{74} + q^{75} - 10 q^{76} - 10 q^{78} - 8 q^{79} - q^{80} - q^{81} - 9 q^{82} + 8 q^{86} + 3 q^{88} + 6 q^{89} - 2 q^{90} - 18 q^{92} + 10 q^{93} - 3 q^{94} + 5 q^{95} - q^{96} - 16 q^{97} + 6 q^{99}+O(q^{100})$$ 2 * q + q^2 + q^3 - q^4 - q^5 + 2 * q^6 - 2 * q^8 - q^9 + q^10 - 3 * q^11 + q^12 - 10 * q^13 - 2 * q^15 - q^16 + q^18 + 5 * q^19 + 2 * q^20 - 6 * q^22 + 9 * q^23 - q^24 - q^25 - 5 * q^26 - 2 * q^27 - q^30 - 10 * q^31 + q^32 + 3 * q^33 + 2 * q^36 + q^37 - 5 * q^38 - 5 * q^39 + q^40 - 18 * q^41 + 16 * q^43 - 3 * q^44 - q^45 - 9 * q^46 + 3 * q^47 - 2 * q^48 - 2 * q^50 + 5 * q^52 + 3 * q^53 - q^54 + 6 * q^55 + 10 * q^57 + 12 * q^59 + q^60 + 8 * q^61 - 20 * q^62 + 2 * q^64 + 5 * q^65 - 3 * q^66 - 8 * q^67 + 18 * q^69 - 12 * q^71 + q^72 + 2 * q^73 - q^74 + q^75 - 10 * q^76 - 10 * q^78 - 8 * q^79 - q^80 - q^81 - 9 * q^82 + 8 * q^86 + 3 * q^88 + 6 * q^89 - 2 * q^90 - 18 * q^92 + 10 * q^93 - 3 * q^94 + 5 * q^95 - q^96 - 16 * q^97 + 6 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times$$.

 $$n$$ $$491$$ $$1081$$ $$1177$$ $$\chi(n)$$ $$1$$ $$-\zeta_{6}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
361.1
 0.5 + 0.866025i 0.5 − 0.866025i
0.500000 + 0.866025i 0.500000 0.866025i −0.500000 + 0.866025i −0.500000 0.866025i 1.00000 0 −1.00000 −0.500000 0.866025i 0.500000 0.866025i
961.1 0.500000 0.866025i 0.500000 + 0.866025i −0.500000 0.866025i −0.500000 + 0.866025i 1.00000 0 −1.00000 −0.500000 + 0.866025i 0.500000 + 0.866025i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1470.2.i.p 2
7.b odd 2 1 210.2.i.c 2
7.c even 3 1 1470.2.a.e 1
7.c even 3 1 inner 1470.2.i.p 2
7.d odd 6 1 210.2.i.c 2
7.d odd 6 1 1470.2.a.f 1
21.c even 2 1 630.2.k.a 2
21.g even 6 1 630.2.k.a 2
21.g even 6 1 4410.2.a.bh 1
21.h odd 6 1 4410.2.a.w 1
28.d even 2 1 1680.2.bg.n 2
28.f even 6 1 1680.2.bg.n 2
35.c odd 2 1 1050.2.i.i 2
35.f even 4 2 1050.2.o.c 4
35.i odd 6 1 1050.2.i.i 2
35.i odd 6 1 7350.2.a.cd 1
35.j even 6 1 7350.2.a.cx 1
35.k even 12 2 1050.2.o.c 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.i.c 2 7.b odd 2 1
210.2.i.c 2 7.d odd 6 1
630.2.k.a 2 21.c even 2 1
630.2.k.a 2 21.g even 6 1
1050.2.i.i 2 35.c odd 2 1
1050.2.i.i 2 35.i odd 6 1
1050.2.o.c 4 35.f even 4 2
1050.2.o.c 4 35.k even 12 2
1470.2.a.e 1 7.c even 3 1
1470.2.a.f 1 7.d odd 6 1
1470.2.i.p 2 1.a even 1 1 trivial
1470.2.i.p 2 7.c even 3 1 inner
1680.2.bg.n 2 28.d even 2 1
1680.2.bg.n 2 28.f even 6 1
4410.2.a.w 1 21.h odd 6 1
4410.2.a.bh 1 21.g even 6 1
7350.2.a.cd 1 35.i odd 6 1
7350.2.a.cx 1 35.j even 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1470, [\chi])$$:

 $$T_{11}^{2} + 3T_{11} + 9$$ T11^2 + 3*T11 + 9 $$T_{13} + 5$$ T13 + 5 $$T_{17}$$ T17 $$T_{19}^{2} - 5T_{19} + 25$$ T19^2 - 5*T19 + 25 $$T_{31}^{2} + 10T_{31} + 100$$ T31^2 + 10*T31 + 100

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} - T + 1$$
$3$ $$T^{2} - T + 1$$
$5$ $$T^{2} + T + 1$$
$7$ $$T^{2}$$
$11$ $$T^{2} + 3T + 9$$
$13$ $$(T + 5)^{2}$$
$17$ $$T^{2}$$
$19$ $$T^{2} - 5T + 25$$
$23$ $$T^{2} - 9T + 81$$
$29$ $$T^{2}$$
$31$ $$T^{2} + 10T + 100$$
$37$ $$T^{2} - T + 1$$
$41$ $$(T + 9)^{2}$$
$43$ $$(T - 8)^{2}$$
$47$ $$T^{2} - 3T + 9$$
$53$ $$T^{2} - 3T + 9$$
$59$ $$T^{2} - 12T + 144$$
$61$ $$T^{2} - 8T + 64$$
$67$ $$T^{2} + 8T + 64$$
$71$ $$(T + 6)^{2}$$
$73$ $$T^{2} - 2T + 4$$
$79$ $$T^{2} + 8T + 64$$
$83$ $$T^{2}$$
$89$ $$T^{2} - 6T + 36$$
$97$ $$(T + 8)^{2}$$