Properties

Label 1470.2.i.m
Level $1470$
Weight $2$
Character orbit 1470.i
Analytic conductor $11.738$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(11.7380090971\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} -\zeta_{6} q^{5} - q^{6} - q^{8} -\zeta_{6} q^{9} +O(q^{10})\) \( q + \zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} -\zeta_{6} q^{5} - q^{6} - q^{8} -\zeta_{6} q^{9} + ( 1 - \zeta_{6} ) q^{10} + ( 1 - \zeta_{6} ) q^{11} -\zeta_{6} q^{12} - q^{13} + q^{15} -\zeta_{6} q^{16} + ( 1 - \zeta_{6} ) q^{18} -3 \zeta_{6} q^{19} + q^{20} + q^{22} -7 \zeta_{6} q^{23} + ( 1 - \zeta_{6} ) q^{24} + ( -1 + \zeta_{6} ) q^{25} -\zeta_{6} q^{26} + q^{27} -8 q^{29} + \zeta_{6} q^{30} + ( -2 + 2 \zeta_{6} ) q^{31} + ( 1 - \zeta_{6} ) q^{32} + \zeta_{6} q^{33} + q^{36} -11 \zeta_{6} q^{37} + ( 3 - 3 \zeta_{6} ) q^{38} + ( 1 - \zeta_{6} ) q^{39} + \zeta_{6} q^{40} + 11 q^{41} + 8 q^{43} + \zeta_{6} q^{44} + ( -1 + \zeta_{6} ) q^{45} + ( 7 - 7 \zeta_{6} ) q^{46} -5 \zeta_{6} q^{47} + q^{48} - q^{50} + ( 1 - \zeta_{6} ) q^{52} + ( 11 - 11 \zeta_{6} ) q^{53} + \zeta_{6} q^{54} - q^{55} + 3 q^{57} -8 \zeta_{6} q^{58} + ( 4 - 4 \zeta_{6} ) q^{59} + ( -1 + \zeta_{6} ) q^{60} -2 q^{62} + q^{64} + \zeta_{6} q^{65} + ( -1 + \zeta_{6} ) q^{66} + 7 q^{69} -6 q^{71} + \zeta_{6} q^{72} + ( -6 + 6 \zeta_{6} ) q^{73} + ( 11 - 11 \zeta_{6} ) q^{74} -\zeta_{6} q^{75} + 3 q^{76} + q^{78} + 8 \zeta_{6} q^{79} + ( -1 + \zeta_{6} ) q^{80} + ( -1 + \zeta_{6} ) q^{81} + 11 \zeta_{6} q^{82} -8 q^{83} + 8 \zeta_{6} q^{86} + ( 8 - 8 \zeta_{6} ) q^{87} + ( -1 + \zeta_{6} ) q^{88} -10 \zeta_{6} q^{89} - q^{90} + 7 q^{92} -2 \zeta_{6} q^{93} + ( 5 - 5 \zeta_{6} ) q^{94} + ( -3 + 3 \zeta_{6} ) q^{95} + \zeta_{6} q^{96} + 16 q^{97} - q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{2} - q^{3} - q^{4} - q^{5} - 2q^{6} - 2q^{8} - q^{9} + O(q^{10}) \) \( 2q + q^{2} - q^{3} - q^{4} - q^{5} - 2q^{6} - 2q^{8} - q^{9} + q^{10} + q^{11} - q^{12} - 2q^{13} + 2q^{15} - q^{16} + q^{18} - 3q^{19} + 2q^{20} + 2q^{22} - 7q^{23} + q^{24} - q^{25} - q^{26} + 2q^{27} - 16q^{29} + q^{30} - 2q^{31} + q^{32} + q^{33} + 2q^{36} - 11q^{37} + 3q^{38} + q^{39} + q^{40} + 22q^{41} + 16q^{43} + q^{44} - q^{45} + 7q^{46} - 5q^{47} + 2q^{48} - 2q^{50} + q^{52} + 11q^{53} + q^{54} - 2q^{55} + 6q^{57} - 8q^{58} + 4q^{59} - q^{60} - 4q^{62} + 2q^{64} + q^{65} - q^{66} + 14q^{69} - 12q^{71} + q^{72} - 6q^{73} + 11q^{74} - q^{75} + 6q^{76} + 2q^{78} + 8q^{79} - q^{80} - q^{81} + 11q^{82} - 16q^{83} + 8q^{86} + 8q^{87} - q^{88} - 10q^{89} - 2q^{90} + 14q^{92} - 2q^{93} + 5q^{94} - 3q^{95} + q^{96} + 32q^{97} - 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times\).

\(n\) \(491\) \(1081\) \(1177\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 + 0.866025i −0.500000 + 0.866025i −0.500000 + 0.866025i −0.500000 0.866025i −1.00000 0 −1.00000 −0.500000 0.866025i 0.500000 0.866025i
961.1 0.500000 0.866025i −0.500000 0.866025i −0.500000 0.866025i −0.500000 + 0.866025i −1.00000 0 −1.00000 −0.500000 + 0.866025i 0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1470.2.i.m 2
7.b odd 2 1 210.2.i.d 2
7.c even 3 1 1470.2.a.h 1
7.c even 3 1 inner 1470.2.i.m 2
7.d odd 6 1 210.2.i.d 2
7.d odd 6 1 1470.2.a.a 1
21.c even 2 1 630.2.k.c 2
21.g even 6 1 630.2.k.c 2
21.g even 6 1 4410.2.a.bj 1
21.h odd 6 1 4410.2.a.ba 1
28.d even 2 1 1680.2.bg.g 2
28.f even 6 1 1680.2.bg.g 2
35.c odd 2 1 1050.2.i.b 2
35.f even 4 2 1050.2.o.i 4
35.i odd 6 1 1050.2.i.b 2
35.i odd 6 1 7350.2.a.cp 1
35.j even 6 1 7350.2.a.bu 1
35.k even 12 2 1050.2.o.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.i.d 2 7.b odd 2 1
210.2.i.d 2 7.d odd 6 1
630.2.k.c 2 21.c even 2 1
630.2.k.c 2 21.g even 6 1
1050.2.i.b 2 35.c odd 2 1
1050.2.i.b 2 35.i odd 6 1
1050.2.o.i 4 35.f even 4 2
1050.2.o.i 4 35.k even 12 2
1470.2.a.a 1 7.d odd 6 1
1470.2.a.h 1 7.c even 3 1
1470.2.i.m 2 1.a even 1 1 trivial
1470.2.i.m 2 7.c even 3 1 inner
1680.2.bg.g 2 28.d even 2 1
1680.2.bg.g 2 28.f even 6 1
4410.2.a.ba 1 21.h odd 6 1
4410.2.a.bj 1 21.g even 6 1
7350.2.a.bu 1 35.j even 6 1
7350.2.a.cp 1 35.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1470, [\chi])\):

\( T_{11}^{2} - T_{11} + 1 \)
\( T_{13} + 1 \)
\( T_{17} \)
\( T_{19}^{2} + 3 T_{19} + 9 \)
\( T_{31}^{2} + 2 T_{31} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T + T^{2} \)
$3$ \( 1 + T + T^{2} \)
$5$ \( 1 + T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( 1 - T + T^{2} \)
$13$ \( ( 1 + T )^{2} \)
$17$ \( T^{2} \)
$19$ \( 9 + 3 T + T^{2} \)
$23$ \( 49 + 7 T + T^{2} \)
$29$ \( ( 8 + T )^{2} \)
$31$ \( 4 + 2 T + T^{2} \)
$37$ \( 121 + 11 T + T^{2} \)
$41$ \( ( -11 + T )^{2} \)
$43$ \( ( -8 + T )^{2} \)
$47$ \( 25 + 5 T + T^{2} \)
$53$ \( 121 - 11 T + T^{2} \)
$59$ \( 16 - 4 T + T^{2} \)
$61$ \( T^{2} \)
$67$ \( T^{2} \)
$71$ \( ( 6 + T )^{2} \)
$73$ \( 36 + 6 T + T^{2} \)
$79$ \( 64 - 8 T + T^{2} \)
$83$ \( ( 8 + T )^{2} \)
$89$ \( 100 + 10 T + T^{2} \)
$97$ \( ( -16 + T )^{2} \)
show more
show less