Properties

Label 1470.2.i.e
Level 1470
Weight 2
Character orbit 1470.i
Analytic conductor 11.738
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(11.7380090971\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} + \zeta_{6} q^{5} + q^{6} + q^{8} -\zeta_{6} q^{9} +O(q^{10})\) \( q -\zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} + \zeta_{6} q^{5} + q^{6} + q^{8} -\zeta_{6} q^{9} + ( 1 - \zeta_{6} ) q^{10} + ( 5 - 5 \zeta_{6} ) q^{11} -\zeta_{6} q^{12} + 5 q^{13} - q^{15} -\zeta_{6} q^{16} + ( -4 + 4 \zeta_{6} ) q^{17} + ( -1 + \zeta_{6} ) q^{18} -7 \zeta_{6} q^{19} - q^{20} -5 q^{22} -\zeta_{6} q^{23} + ( -1 + \zeta_{6} ) q^{24} + ( -1 + \zeta_{6} ) q^{25} -5 \zeta_{6} q^{26} + q^{27} + \zeta_{6} q^{30} + ( -2 + 2 \zeta_{6} ) q^{31} + ( -1 + \zeta_{6} ) q^{32} + 5 \zeta_{6} q^{33} + 4 q^{34} + q^{36} -\zeta_{6} q^{37} + ( -7 + 7 \zeta_{6} ) q^{38} + ( -5 + 5 \zeta_{6} ) q^{39} + \zeta_{6} q^{40} -5 q^{41} + 12 q^{43} + 5 \zeta_{6} q^{44} + ( 1 - \zeta_{6} ) q^{45} + ( -1 + \zeta_{6} ) q^{46} -11 \zeta_{6} q^{47} + q^{48} + q^{50} -4 \zeta_{6} q^{51} + ( -5 + 5 \zeta_{6} ) q^{52} + ( 9 - 9 \zeta_{6} ) q^{53} -\zeta_{6} q^{54} + 5 q^{55} + 7 q^{57} + ( 4 - 4 \zeta_{6} ) q^{59} + ( 1 - \zeta_{6} ) q^{60} + 4 \zeta_{6} q^{61} + 2 q^{62} + q^{64} + 5 \zeta_{6} q^{65} + ( 5 - 5 \zeta_{6} ) q^{66} + ( 12 - 12 \zeta_{6} ) q^{67} -4 \zeta_{6} q^{68} + q^{69} + 2 q^{71} -\zeta_{6} q^{72} + ( 10 - 10 \zeta_{6} ) q^{73} + ( -1 + \zeta_{6} ) q^{74} -\zeta_{6} q^{75} + 7 q^{76} + 5 q^{78} + 12 \zeta_{6} q^{79} + ( 1 - \zeta_{6} ) q^{80} + ( -1 + \zeta_{6} ) q^{81} + 5 \zeta_{6} q^{82} + 12 q^{83} -4 q^{85} -12 \zeta_{6} q^{86} + ( 5 - 5 \zeta_{6} ) q^{88} + 14 \zeta_{6} q^{89} - q^{90} + q^{92} -2 \zeta_{6} q^{93} + ( -11 + 11 \zeta_{6} ) q^{94} + ( 7 - 7 \zeta_{6} ) q^{95} -\zeta_{6} q^{96} + 8 q^{97} -5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{2} - q^{3} - q^{4} + q^{5} + 2q^{6} + 2q^{8} - q^{9} + O(q^{10}) \) \( 2q - q^{2} - q^{3} - q^{4} + q^{5} + 2q^{6} + 2q^{8} - q^{9} + q^{10} + 5q^{11} - q^{12} + 10q^{13} - 2q^{15} - q^{16} - 4q^{17} - q^{18} - 7q^{19} - 2q^{20} - 10q^{22} - q^{23} - q^{24} - q^{25} - 5q^{26} + 2q^{27} + q^{30} - 2q^{31} - q^{32} + 5q^{33} + 8q^{34} + 2q^{36} - q^{37} - 7q^{38} - 5q^{39} + q^{40} - 10q^{41} + 24q^{43} + 5q^{44} + q^{45} - q^{46} - 11q^{47} + 2q^{48} + 2q^{50} - 4q^{51} - 5q^{52} + 9q^{53} - q^{54} + 10q^{55} + 14q^{57} + 4q^{59} + q^{60} + 4q^{61} + 4q^{62} + 2q^{64} + 5q^{65} + 5q^{66} + 12q^{67} - 4q^{68} + 2q^{69} + 4q^{71} - q^{72} + 10q^{73} - q^{74} - q^{75} + 14q^{76} + 10q^{78} + 12q^{79} + q^{80} - q^{81} + 5q^{82} + 24q^{83} - 8q^{85} - 12q^{86} + 5q^{88} + 14q^{89} - 2q^{90} + 2q^{92} - 2q^{93} - 11q^{94} + 7q^{95} - q^{96} + 16q^{97} - 10q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times\).

\(n\) \(491\) \(1081\) \(1177\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 0.866025i −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 0 1.00000 −0.500000 0.866025i 0.500000 0.866025i
961.1 −0.500000 + 0.866025i −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 1.00000 0 1.00000 −0.500000 + 0.866025i 0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1470.2.i.e 2
7.b odd 2 1 210.2.i.b 2
7.c even 3 1 1470.2.a.o 1
7.c even 3 1 inner 1470.2.i.e 2
7.d odd 6 1 210.2.i.b 2
7.d odd 6 1 1470.2.a.l 1
21.c even 2 1 630.2.k.g 2
21.g even 6 1 630.2.k.g 2
21.g even 6 1 4410.2.a.j 1
21.h odd 6 1 4410.2.a.u 1
28.d even 2 1 1680.2.bg.d 2
28.f even 6 1 1680.2.bg.d 2
35.c odd 2 1 1050.2.i.p 2
35.f even 4 2 1050.2.o.g 4
35.i odd 6 1 1050.2.i.p 2
35.i odd 6 1 7350.2.a.u 1
35.j even 6 1 7350.2.a.a 1
35.k even 12 2 1050.2.o.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.i.b 2 7.b odd 2 1
210.2.i.b 2 7.d odd 6 1
630.2.k.g 2 21.c even 2 1
630.2.k.g 2 21.g even 6 1
1050.2.i.p 2 35.c odd 2 1
1050.2.i.p 2 35.i odd 6 1
1050.2.o.g 4 35.f even 4 2
1050.2.o.g 4 35.k even 12 2
1470.2.a.l 1 7.d odd 6 1
1470.2.a.o 1 7.c even 3 1
1470.2.i.e 2 1.a even 1 1 trivial
1470.2.i.e 2 7.c even 3 1 inner
1680.2.bg.d 2 28.d even 2 1
1680.2.bg.d 2 28.f even 6 1
4410.2.a.j 1 21.g even 6 1
4410.2.a.u 1 21.h odd 6 1
7350.2.a.a 1 35.j even 6 1
7350.2.a.u 1 35.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1470, [\chi])\):

\( T_{11}^{2} - 5 T_{11} + 25 \)
\( T_{13} - 5 \)
\( T_{17}^{2} + 4 T_{17} + 16 \)
\( T_{19}^{2} + 7 T_{19} + 49 \)
\( T_{31}^{2} + 2 T_{31} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T + T^{2} \)
$3$ \( 1 + T + T^{2} \)
$5$ \( 1 - T + T^{2} \)
$7$ 1
$11$ \( 1 - 5 T + 14 T^{2} - 55 T^{3} + 121 T^{4} \)
$13$ \( ( 1 - 5 T + 13 T^{2} )^{2} \)
$17$ \( 1 + 4 T - T^{2} + 68 T^{3} + 289 T^{4} \)
$19$ \( ( 1 - T + 19 T^{2} )( 1 + 8 T + 19 T^{2} ) \)
$23$ \( 1 + T - 22 T^{2} + 23 T^{3} + 529 T^{4} \)
$29$ \( ( 1 + 29 T^{2} )^{2} \)
$31$ \( 1 + 2 T - 27 T^{2} + 62 T^{3} + 961 T^{4} \)
$37$ \( ( 1 - 10 T + 37 T^{2} )( 1 + 11 T + 37 T^{2} ) \)
$41$ \( ( 1 + 5 T + 41 T^{2} )^{2} \)
$43$ \( ( 1 - 12 T + 43 T^{2} )^{2} \)
$47$ \( 1 + 11 T + 74 T^{2} + 517 T^{3} + 2209 T^{4} \)
$53$ \( 1 - 9 T + 28 T^{2} - 477 T^{3} + 2809 T^{4} \)
$59$ \( 1 - 4 T - 43 T^{2} - 236 T^{3} + 3481 T^{4} \)
$61$ \( 1 - 4 T - 45 T^{2} - 244 T^{3} + 3721 T^{4} \)
$67$ \( 1 - 12 T + 77 T^{2} - 804 T^{3} + 4489 T^{4} \)
$71$ \( ( 1 - 2 T + 71 T^{2} )^{2} \)
$73$ \( ( 1 - 17 T + 73 T^{2} )( 1 + 7 T + 73 T^{2} ) \)
$79$ \( 1 - 12 T + 65 T^{2} - 948 T^{3} + 6241 T^{4} \)
$83$ \( ( 1 - 12 T + 83 T^{2} )^{2} \)
$89$ \( 1 - 14 T + 107 T^{2} - 1246 T^{3} + 7921 T^{4} \)
$97$ \( ( 1 - 8 T + 97 T^{2} )^{2} \)
show more
show less