# Properties

 Label 1470.2.d.b Level $1470$ Weight $2$ Character orbit 1470.d Analytic conductor $11.738$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1470.d (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$11.7380090971$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\sqrt{-3}, \sqrt{-11})$$ Defining polynomial: $$x^{4} - x^{3} - 2 x^{2} - 3 x + 9$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 210) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - q^{2} + \beta_{1} q^{3} + q^{4} + ( -1 - \beta_{1} + \beta_{2} ) q^{5} -\beta_{1} q^{6} - q^{8} + ( 3 \beta_{2} + \beta_{3} ) q^{9} +O(q^{10})$$ $$q - q^{2} + \beta_{1} q^{3} + q^{4} + ( -1 - \beta_{1} + \beta_{2} ) q^{5} -\beta_{1} q^{6} - q^{8} + ( 3 \beta_{2} + \beta_{3} ) q^{9} + ( 1 + \beta_{1} - \beta_{2} ) q^{10} + ( 1 + \beta_{1} - 3 \beta_{2} - \beta_{3} ) q^{11} + \beta_{1} q^{12} -2 q^{13} + ( -3 \beta_{2} - 2 \beta_{3} ) q^{15} + q^{16} + ( 2 - 4 \beta_{1} + 4 \beta_{3} ) q^{17} + ( -3 \beta_{2} - \beta_{3} ) q^{18} + ( 2 - 4 \beta_{2} ) q^{19} + ( -1 - \beta_{1} + \beta_{2} ) q^{20} + ( -1 - \beta_{1} + 3 \beta_{2} + \beta_{3} ) q^{22} + ( -2 + \beta_{1} + \beta_{2} + \beta_{3} ) q^{23} -\beta_{1} q^{24} + ( 2 \beta_{2} + 3 \beta_{3} ) q^{25} + 2 q^{26} + ( 3 + 2 \beta_{1} - 2 \beta_{3} ) q^{27} + ( 1 - 2 \beta_{1} + 2 \beta_{3} ) q^{29} + ( 3 \beta_{2} + 2 \beta_{3} ) q^{30} + ( 3 - 3 \beta_{1} - 3 \beta_{2} + 3 \beta_{3} ) q^{31} - q^{32} + ( -3 - \beta_{1} + 3 \beta_{2} + 3 \beta_{3} ) q^{33} + ( -2 + 4 \beta_{1} - 4 \beta_{3} ) q^{34} + ( 3 \beta_{2} + \beta_{3} ) q^{36} + ( -2 + 6 \beta_{1} - 2 \beta_{2} - 6 \beta_{3} ) q^{37} + ( -2 + 4 \beta_{2} ) q^{38} -2 \beta_{1} q^{39} + ( 1 + \beta_{1} - \beta_{2} ) q^{40} + ( 4 + \beta_{1} + \beta_{2} + \beta_{3} ) q^{41} + ( 2 + 3 \beta_{1} - 7 \beta_{2} - 3 \beta_{3} ) q^{43} + ( 1 + \beta_{1} - 3 \beta_{2} - \beta_{3} ) q^{44} + ( -6 - \beta_{1} + \beta_{3} ) q^{45} + ( 2 - \beta_{1} - \beta_{2} - \beta_{3} ) q^{46} + ( -4 + 2 \beta_{1} + 6 \beta_{2} - 2 \beta_{3} ) q^{47} + \beta_{1} q^{48} + ( -2 \beta_{2} - 3 \beta_{3} ) q^{50} + ( 12 - 2 \beta_{1} - 12 \beta_{2} ) q^{51} -2 q^{52} + ( 1 + \beta_{1} + \beta_{2} + \beta_{3} ) q^{53} + ( -3 - 2 \beta_{1} + 2 \beta_{3} ) q^{54} + ( 5 - 2 \beta_{2} - 3 \beta_{3} ) q^{55} + ( -2 \beta_{1} + 4 \beta_{3} ) q^{57} + ( -1 + 2 \beta_{1} - 2 \beta_{3} ) q^{58} + ( 3 + 3 \beta_{1} + 3 \beta_{2} + 3 \beta_{3} ) q^{59} + ( -3 \beta_{2} - 2 \beta_{3} ) q^{60} + ( 6 - 3 \beta_{1} - 9 \beta_{2} + 3 \beta_{3} ) q^{61} + ( -3 + 3 \beta_{1} + 3 \beta_{2} - 3 \beta_{3} ) q^{62} + q^{64} + ( 2 + 2 \beta_{1} - 2 \beta_{2} ) q^{65} + ( 3 + \beta_{1} - 3 \beta_{2} - 3 \beta_{3} ) q^{66} + ( 3 \beta_{1} - 3 \beta_{2} - 3 \beta_{3} ) q^{67} + ( 2 - 4 \beta_{1} + 4 \beta_{3} ) q^{68} + ( 3 - 2 \beta_{1} + 3 \beta_{2} + \beta_{3} ) q^{69} + ( 4 - 2 \beta_{1} - 6 \beta_{2} + 2 \beta_{3} ) q^{71} + ( -3 \beta_{2} - \beta_{3} ) q^{72} -2 q^{73} + ( 2 - 6 \beta_{1} + 2 \beta_{2} + 6 \beta_{3} ) q^{74} + ( 9 - \beta_{1} + \beta_{3} ) q^{75} + ( 2 - 4 \beta_{2} ) q^{76} + 2 \beta_{1} q^{78} + ( -1 + 3 \beta_{1} + 3 \beta_{2} + 3 \beta_{3} ) q^{79} + ( -1 - \beta_{1} + \beta_{2} ) q^{80} + ( -6 + 5 \beta_{1} + 6 \beta_{2} ) q^{81} + ( -4 - \beta_{1} - \beta_{2} - \beta_{3} ) q^{82} + ( 5 - 4 \beta_{1} - 6 \beta_{2} + 4 \beta_{3} ) q^{83} + ( -14 + 6 \beta_{1} + 14 \beta_{2} ) q^{85} + ( -2 - 3 \beta_{1} + 7 \beta_{2} + 3 \beta_{3} ) q^{86} + ( 6 - \beta_{1} - 6 \beta_{2} ) q^{87} + ( -1 - \beta_{1} + 3 \beta_{2} + \beta_{3} ) q^{88} + ( -2 + \beta_{1} + \beta_{2} + \beta_{3} ) q^{89} + ( 6 + \beta_{1} - \beta_{3} ) q^{90} + ( -2 + \beta_{1} + \beta_{2} + \beta_{3} ) q^{92} + ( 9 - 3 \beta_{1} - 9 \beta_{2} + 3 \beta_{3} ) q^{93} + ( 4 - 2 \beta_{1} - 6 \beta_{2} + 2 \beta_{3} ) q^{94} + ( 2 + 2 \beta_{1} + 2 \beta_{2} - 4 \beta_{3} ) q^{95} -\beta_{1} q^{96} + ( -5 - 3 \beta_{1} - 3 \beta_{2} - 3 \beta_{3} ) q^{97} + ( 9 - 3 \beta_{1} - 3 \beta_{2} - \beta_{3} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q - 4q^{2} + q^{3} + 4q^{4} - 3q^{5} - q^{6} - 4q^{8} + 5q^{9} + O(q^{10})$$ $$4q - 4q^{2} + q^{3} + 4q^{4} - 3q^{5} - q^{6} - 4q^{8} + 5q^{9} + 3q^{10} + q^{12} - 8q^{13} - 4q^{15} + 4q^{16} - 5q^{18} - 3q^{20} - 6q^{23} - q^{24} + q^{25} + 8q^{26} + 16q^{27} + 4q^{30} - 4q^{32} - 10q^{33} + 5q^{36} - 2q^{39} + 3q^{40} + 18q^{41} - 26q^{45} + 6q^{46} + q^{48} - q^{50} + 22q^{51} - 8q^{52} + 6q^{53} - 16q^{54} + 19q^{55} - 6q^{57} + 18q^{59} - 4q^{60} + 4q^{64} + 6q^{65} + 10q^{66} + 15q^{69} - 5q^{72} - 8q^{73} + 34q^{75} + 2q^{78} + 2q^{79} - 3q^{80} - 7q^{81} - 18q^{82} - 22q^{85} + 11q^{87} - 6q^{89} + 26q^{90} - 6q^{92} + 12q^{93} + 18q^{95} - q^{96} - 26q^{97} + 28q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} - x^{3} - 2 x^{2} - 3 x + 9$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$($$$$\nu^{3} + 2 \nu^{2} - 2 \nu - 3$$$$)/6$$ $$\beta_{3}$$ $$=$$ $$($$$$-\nu^{3} + 2 \nu + 3$$$$)/2$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$\beta_{3} + 3 \beta_{2}$$ $$\nu^{3}$$ $$=$$ $$-2 \beta_{3} + 2 \beta_{1} + 3$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times$$.

 $$n$$ $$491$$ $$1081$$ $$1177$$ $$\chi(n)$$ $$-1$$ $$-1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1469.1
 −1.18614 − 1.26217i −1.18614 + 1.26217i 1.68614 − 0.396143i 1.68614 + 0.396143i
−1.00000 −1.18614 1.26217i 1.00000 0.686141 + 2.12819i 1.18614 + 1.26217i 0 −1.00000 −0.186141 + 2.99422i −0.686141 2.12819i
1469.2 −1.00000 −1.18614 + 1.26217i 1.00000 0.686141 2.12819i 1.18614 1.26217i 0 −1.00000 −0.186141 2.99422i −0.686141 + 2.12819i
1469.3 −1.00000 1.68614 0.396143i 1.00000 −2.18614 0.469882i −1.68614 + 0.396143i 0 −1.00000 2.68614 1.33591i 2.18614 + 0.469882i
1469.4 −1.00000 1.68614 + 0.396143i 1.00000 −2.18614 + 0.469882i −1.68614 0.396143i 0 −1.00000 2.68614 + 1.33591i 2.18614 0.469882i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
105.g even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1470.2.d.b 4
3.b odd 2 1 1470.2.d.d 4
5.b even 2 1 1470.2.d.c 4
7.b odd 2 1 1470.2.d.a 4
7.c even 3 1 210.2.t.c yes 4
7.d odd 6 1 210.2.t.d yes 4
15.d odd 2 1 1470.2.d.a 4
21.c even 2 1 1470.2.d.c 4
21.g even 6 1 210.2.t.b yes 4
21.h odd 6 1 210.2.t.a 4
35.c odd 2 1 1470.2.d.d 4
35.i odd 6 1 210.2.t.a 4
35.j even 6 1 210.2.t.b yes 4
35.k even 12 2 1050.2.s.e 8
35.l odd 12 2 1050.2.s.d 8
105.g even 2 1 inner 1470.2.d.b 4
105.o odd 6 1 210.2.t.d yes 4
105.p even 6 1 210.2.t.c yes 4
105.w odd 12 2 1050.2.s.d 8
105.x even 12 2 1050.2.s.e 8

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.t.a 4 21.h odd 6 1
210.2.t.a 4 35.i odd 6 1
210.2.t.b yes 4 21.g even 6 1
210.2.t.b yes 4 35.j even 6 1
210.2.t.c yes 4 7.c even 3 1
210.2.t.c yes 4 105.p even 6 1
210.2.t.d yes 4 7.d odd 6 1
210.2.t.d yes 4 105.o odd 6 1
1050.2.s.d 8 35.l odd 12 2
1050.2.s.d 8 105.w odd 12 2
1050.2.s.e 8 35.k even 12 2
1050.2.s.e 8 105.x even 12 2
1470.2.d.a 4 7.b odd 2 1
1470.2.d.a 4 15.d odd 2 1
1470.2.d.b 4 1.a even 1 1 trivial
1470.2.d.b 4 105.g even 2 1 inner
1470.2.d.c 4 5.b even 2 1
1470.2.d.c 4 21.c even 2 1
1470.2.d.d 4 3.b odd 2 1
1470.2.d.d 4 35.c odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1470, [\chi])$$:

 $$T_{11}^{4} + 19 T_{11}^{2} + 16$$ $$T_{13} + 2$$ $$T_{23}^{2} + 3 T_{23} - 6$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$( 1 + T )^{4}$$
$3$ $$9 - 3 T - 2 T^{2} - T^{3} + T^{4}$$
$5$ $$25 + 15 T + 4 T^{2} + 3 T^{3} + T^{4}$$
$7$ $$T^{4}$$
$11$ $$16 + 19 T^{2} + T^{4}$$
$13$ $$( 2 + T )^{4}$$
$17$ $$( 44 + T^{2} )^{2}$$
$19$ $$( 12 + T^{2} )^{2}$$
$23$ $$( -6 + 3 T + T^{2} )^{2}$$
$29$ $$( 11 + T^{2} )^{2}$$
$31$ $$324 + 63 T^{2} + T^{4}$$
$37$ $$9216 + 204 T^{2} + T^{4}$$
$41$ $$( 12 - 9 T + T^{2} )^{2}$$
$43$ $$144 + 123 T^{2} + T^{4}$$
$47$ $$256 + 76 T^{2} + T^{4}$$
$53$ $$( -6 - 3 T + T^{2} )^{2}$$
$59$ $$( -54 - 9 T + T^{2} )^{2}$$
$61$ $$1296 + 171 T^{2} + T^{4}$$
$67$ $$324 + 63 T^{2} + T^{4}$$
$71$ $$256 + 76 T^{2} + T^{4}$$
$73$ $$( 2 + T )^{4}$$
$79$ $$( -74 - T + T^{2} )^{2}$$
$83$ $$289 + 142 T^{2} + T^{4}$$
$89$ $$( -6 + 3 T + T^{2} )^{2}$$
$97$ $$( -32 + 13 T + T^{2} )^{2}$$