Properties

Label 1470.2.a.u
Level $1470$
Weight $2$
Character orbit 1470.a
Self dual yes
Analytic conductor $11.738$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(11.7380090971\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \(x^{2} - 2\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + q^{8} + q^{9} +O(q^{10})\) \( q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + q^{8} + q^{9} - q^{10} + ( 2 + \beta ) q^{11} - q^{12} + q^{15} + q^{16} + \beta q^{17} + q^{18} -2 \beta q^{19} - q^{20} + ( 2 + \beta ) q^{22} + ( 2 - 2 \beta ) q^{23} - q^{24} + q^{25} - q^{27} + ( 4 - 3 \beta ) q^{29} + q^{30} + ( 2 + 5 \beta ) q^{31} + q^{32} + ( -2 - \beta ) q^{33} + \beta q^{34} + q^{36} + \beta q^{37} -2 \beta q^{38} - q^{40} + ( 6 - 2 \beta ) q^{41} + ( 6 + \beta ) q^{43} + ( 2 + \beta ) q^{44} - q^{45} + ( 2 - 2 \beta ) q^{46} + ( 2 - 5 \beta ) q^{47} - q^{48} + q^{50} -\beta q^{51} + ( 2 + 8 \beta ) q^{53} - q^{54} + ( -2 - \beta ) q^{55} + 2 \beta q^{57} + ( 4 - 3 \beta ) q^{58} + ( 6 + 6 \beta ) q^{59} + q^{60} + ( 6 - 4 \beta ) q^{61} + ( 2 + 5 \beta ) q^{62} + q^{64} + ( -2 - \beta ) q^{66} + ( -2 - 7 \beta ) q^{67} + \beta q^{68} + ( -2 + 2 \beta ) q^{69} + ( 8 - 2 \beta ) q^{71} + q^{72} + ( -2 + 4 \beta ) q^{73} + \beta q^{74} - q^{75} -2 \beta q^{76} + 8 \beta q^{79} - q^{80} + q^{81} + ( 6 - 2 \beta ) q^{82} + ( 8 + 2 \beta ) q^{83} -\beta q^{85} + ( 6 + \beta ) q^{86} + ( -4 + 3 \beta ) q^{87} + ( 2 + \beta ) q^{88} + ( -2 - 6 \beta ) q^{89} - q^{90} + ( 2 - 2 \beta ) q^{92} + ( -2 - 5 \beta ) q^{93} + ( 2 - 5 \beta ) q^{94} + 2 \beta q^{95} - q^{96} + ( -6 + 2 \beta ) q^{97} + ( 2 + \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{2} - 2q^{3} + 2q^{4} - 2q^{5} - 2q^{6} + 2q^{8} + 2q^{9} + O(q^{10}) \) \( 2q + 2q^{2} - 2q^{3} + 2q^{4} - 2q^{5} - 2q^{6} + 2q^{8} + 2q^{9} - 2q^{10} + 4q^{11} - 2q^{12} + 2q^{15} + 2q^{16} + 2q^{18} - 2q^{20} + 4q^{22} + 4q^{23} - 2q^{24} + 2q^{25} - 2q^{27} + 8q^{29} + 2q^{30} + 4q^{31} + 2q^{32} - 4q^{33} + 2q^{36} - 2q^{40} + 12q^{41} + 12q^{43} + 4q^{44} - 2q^{45} + 4q^{46} + 4q^{47} - 2q^{48} + 2q^{50} + 4q^{53} - 2q^{54} - 4q^{55} + 8q^{58} + 12q^{59} + 2q^{60} + 12q^{61} + 4q^{62} + 2q^{64} - 4q^{66} - 4q^{67} - 4q^{69} + 16q^{71} + 2q^{72} - 4q^{73} - 2q^{75} - 2q^{80} + 2q^{81} + 12q^{82} + 16q^{83} + 12q^{86} - 8q^{87} + 4q^{88} - 4q^{89} - 2q^{90} + 4q^{92} - 4q^{93} + 4q^{94} - 2q^{96} - 12q^{97} + 4q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
1.00000 −1.00000 1.00000 −1.00000 −1.00000 0 1.00000 1.00000 −1.00000
1.2 1.00000 −1.00000 1.00000 −1.00000 −1.00000 0 1.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1470.2.a.u 2
3.b odd 2 1 4410.2.a.br 2
5.b even 2 1 7350.2.a.df 2
7.b odd 2 1 1470.2.a.v yes 2
7.c even 3 2 1470.2.i.v 4
7.d odd 6 2 1470.2.i.u 4
21.c even 2 1 4410.2.a.bn 2
35.c odd 2 1 7350.2.a.dd 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1470.2.a.u 2 1.a even 1 1 trivial
1470.2.a.v yes 2 7.b odd 2 1
1470.2.i.u 4 7.d odd 6 2
1470.2.i.v 4 7.c even 3 2
4410.2.a.bn 2 21.c even 2 1
4410.2.a.br 2 3.b odd 2 1
7350.2.a.dd 2 35.c odd 2 1
7350.2.a.df 2 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1470))\):

\( T_{11}^{2} - 4 T_{11} + 2 \)
\( T_{13} \)
\( T_{17}^{2} - 2 \)
\( T_{19}^{2} - 8 \)
\( T_{31}^{2} - 4 T_{31} - 46 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( -1 + T )^{2} \)
$3$ \( ( 1 + T )^{2} \)
$5$ \( ( 1 + T )^{2} \)
$7$ \( T^{2} \)
$11$ \( 2 - 4 T + T^{2} \)
$13$ \( T^{2} \)
$17$ \( -2 + T^{2} \)
$19$ \( -8 + T^{2} \)
$23$ \( -4 - 4 T + T^{2} \)
$29$ \( -2 - 8 T + T^{2} \)
$31$ \( -46 - 4 T + T^{2} \)
$37$ \( -2 + T^{2} \)
$41$ \( 28 - 12 T + T^{2} \)
$43$ \( 34 - 12 T + T^{2} \)
$47$ \( -46 - 4 T + T^{2} \)
$53$ \( -124 - 4 T + T^{2} \)
$59$ \( -36 - 12 T + T^{2} \)
$61$ \( 4 - 12 T + T^{2} \)
$67$ \( -94 + 4 T + T^{2} \)
$71$ \( 56 - 16 T + T^{2} \)
$73$ \( -28 + 4 T + T^{2} \)
$79$ \( -128 + T^{2} \)
$83$ \( 56 - 16 T + T^{2} \)
$89$ \( -68 + 4 T + T^{2} \)
$97$ \( 28 + 12 T + T^{2} \)
show more
show less