Properties

Label 1470.2.a.r
Level $1470$
Weight $2$
Character orbit 1470.a
Self dual yes
Analytic conductor $11.738$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(11.7380090971\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + q^{8} + q^{9} + O(q^{10}) \) \( q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + q^{8} + q^{9} + q^{10} - q^{11} + q^{12} + 7q^{13} + q^{15} + q^{16} - 4q^{17} + q^{18} + q^{19} + q^{20} - q^{22} + q^{23} + q^{24} + q^{25} + 7q^{26} + q^{27} - 8q^{29} + q^{30} + 6q^{31} + q^{32} - q^{33} - 4q^{34} + q^{36} - 3q^{37} + q^{38} + 7q^{39} + q^{40} + 9q^{41} - 4q^{43} - q^{44} + q^{45} + q^{46} - 3q^{47} + q^{48} + q^{50} - 4q^{51} + 7q^{52} - q^{53} + q^{54} - q^{55} + q^{57} - 8q^{58} + 12q^{59} + q^{60} - 4q^{61} + 6q^{62} + q^{64} + 7q^{65} - q^{66} + 12q^{67} - 4q^{68} + q^{69} - 14q^{71} + q^{72} - 14q^{73} - 3q^{74} + q^{75} + q^{76} + 7q^{78} + 4q^{79} + q^{80} + q^{81} + 9q^{82} + 12q^{83} - 4q^{85} - 4q^{86} - 8q^{87} - q^{88} - 2q^{89} + q^{90} + q^{92} + 6q^{93} - 3q^{94} + q^{95} + q^{96} - 16q^{97} - q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 1.00000 1.00000 1.00000 1.00000 0 1.00000 1.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1470.2.a.r 1
3.b odd 2 1 4410.2.a.g 1
5.b even 2 1 7350.2.a.j 1
7.b odd 2 1 1470.2.a.k 1
7.c even 3 2 210.2.i.a 2
7.d odd 6 2 1470.2.i.i 2
21.c even 2 1 4410.2.a.q 1
21.h odd 6 2 630.2.k.h 2
28.g odd 6 2 1680.2.bg.k 2
35.c odd 2 1 7350.2.a.ba 1
35.j even 6 2 1050.2.i.s 2
35.l odd 12 4 1050.2.o.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.i.a 2 7.c even 3 2
630.2.k.h 2 21.h odd 6 2
1050.2.i.s 2 35.j even 6 2
1050.2.o.j 4 35.l odd 12 4
1470.2.a.k 1 7.b odd 2 1
1470.2.a.r 1 1.a even 1 1 trivial
1470.2.i.i 2 7.d odd 6 2
1680.2.bg.k 2 28.g odd 6 2
4410.2.a.g 1 3.b odd 2 1
4410.2.a.q 1 21.c even 2 1
7350.2.a.j 1 5.b even 2 1
7350.2.a.ba 1 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1470))\):

\( T_{11} + 1 \)
\( T_{13} - 7 \)
\( T_{17} + 4 \)
\( T_{19} - 1 \)
\( T_{31} - 6 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 + T \)
$3$ \( -1 + T \)
$5$ \( -1 + T \)
$7$ \( T \)
$11$ \( 1 + T \)
$13$ \( -7 + T \)
$17$ \( 4 + T \)
$19$ \( -1 + T \)
$23$ \( -1 + T \)
$29$ \( 8 + T \)
$31$ \( -6 + T \)
$37$ \( 3 + T \)
$41$ \( -9 + T \)
$43$ \( 4 + T \)
$47$ \( 3 + T \)
$53$ \( 1 + T \)
$59$ \( -12 + T \)
$61$ \( 4 + T \)
$67$ \( -12 + T \)
$71$ \( 14 + T \)
$73$ \( 14 + T \)
$79$ \( -4 + T \)
$83$ \( -12 + T \)
$89$ \( 2 + T \)
$97$ \( 16 + T \)
show more
show less