# Properties

 Label 1470.2.a.m Level $1470$ Weight $2$ Character orbit 1470.a Self dual yes Analytic conductor $11.738$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1470.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$11.7380090971$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 210) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + q^{8} + q^{9} + O(q^{10})$$ $$q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + q^{8} + q^{9} + q^{10} - q^{12} - 2q^{13} - q^{15} + q^{16} + 6q^{17} + q^{18} + 4q^{19} + q^{20} - q^{24} + q^{25} - 2q^{26} - q^{27} - 6q^{29} - q^{30} + 4q^{31} + q^{32} + 6q^{34} + q^{36} + 2q^{37} + 4q^{38} + 2q^{39} + q^{40} - 6q^{41} + 8q^{43} + q^{45} + 12q^{47} - q^{48} + q^{50} - 6q^{51} - 2q^{52} + 6q^{53} - q^{54} - 4q^{57} - 6q^{58} + 12q^{59} - q^{60} - 2q^{61} + 4q^{62} + q^{64} - 2q^{65} + 8q^{67} + 6q^{68} + q^{72} - 14q^{73} + 2q^{74} - q^{75} + 4q^{76} + 2q^{78} - 16q^{79} + q^{80} + q^{81} - 6q^{82} - 12q^{83} + 6q^{85} + 8q^{86} + 6q^{87} - 6q^{89} + q^{90} - 4q^{93} + 12q^{94} + 4q^{95} - q^{96} - 14q^{97} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 −1.00000 1.00000 1.00000 −1.00000 0 1.00000 1.00000 1.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$1$$
$$5$$ $$-1$$
$$7$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1470.2.a.m 1
3.b odd 2 1 4410.2.a.f 1
5.b even 2 1 7350.2.a.bd 1
7.b odd 2 1 210.2.a.d 1
7.c even 3 2 1470.2.i.h 2
7.d odd 6 2 1470.2.i.d 2
21.c even 2 1 630.2.a.f 1
28.d even 2 1 1680.2.a.b 1
35.c odd 2 1 1050.2.a.a 1
35.f even 4 2 1050.2.g.h 2
56.e even 2 1 6720.2.a.cc 1
56.h odd 2 1 6720.2.a.bb 1
84.h odd 2 1 5040.2.a.ba 1
105.g even 2 1 3150.2.a.ba 1
105.k odd 4 2 3150.2.g.o 2
140.c even 2 1 8400.2.a.cn 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.a.d 1 7.b odd 2 1
630.2.a.f 1 21.c even 2 1
1050.2.a.a 1 35.c odd 2 1
1050.2.g.h 2 35.f even 4 2
1470.2.a.m 1 1.a even 1 1 trivial
1470.2.i.d 2 7.d odd 6 2
1470.2.i.h 2 7.c even 3 2
1680.2.a.b 1 28.d even 2 1
3150.2.a.ba 1 105.g even 2 1
3150.2.g.o 2 105.k odd 4 2
4410.2.a.f 1 3.b odd 2 1
5040.2.a.ba 1 84.h odd 2 1
6720.2.a.bb 1 56.h odd 2 1
6720.2.a.cc 1 56.e even 2 1
7350.2.a.bd 1 5.b even 2 1
8400.2.a.cn 1 140.c even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1470))$$:

 $$T_{11}$$ $$T_{13} + 2$$ $$T_{17} - 6$$ $$T_{19} - 4$$ $$T_{31} - 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$-1 + T$$
$3$ $$1 + T$$
$5$ $$-1 + T$$
$7$ $$T$$
$11$ $$T$$
$13$ $$2 + T$$
$17$ $$-6 + T$$
$19$ $$-4 + T$$
$23$ $$T$$
$29$ $$6 + T$$
$31$ $$-4 + T$$
$37$ $$-2 + T$$
$41$ $$6 + T$$
$43$ $$-8 + T$$
$47$ $$-12 + T$$
$53$ $$-6 + T$$
$59$ $$-12 + T$$
$61$ $$2 + T$$
$67$ $$-8 + T$$
$71$ $$T$$
$73$ $$14 + T$$
$79$ $$16 + T$$
$83$ $$12 + T$$
$89$ $$6 + T$$
$97$ $$14 + T$$