Properties

Label 1470.2.a.j
Level $1470$
Weight $2$
Character orbit 1470.a
Self dual yes
Analytic conductor $11.738$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(11.7380090971\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + q^{8} + q^{9} + O(q^{10}) \) \( q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + q^{8} + q^{9} - q^{10} - 4q^{11} - q^{12} + 2q^{13} + q^{15} + q^{16} - 2q^{17} + q^{18} - 4q^{19} - q^{20} - 4q^{22} - 8q^{23} - q^{24} + q^{25} + 2q^{26} - q^{27} - 2q^{29} + q^{30} + q^{32} + 4q^{33} - 2q^{34} + q^{36} + 6q^{37} - 4q^{38} - 2q^{39} - q^{40} + 6q^{41} - 4q^{43} - 4q^{44} - q^{45} - 8q^{46} - q^{48} + q^{50} + 2q^{51} + 2q^{52} - 10q^{53} - q^{54} + 4q^{55} + 4q^{57} - 2q^{58} - 12q^{59} + q^{60} - 14q^{61} + q^{64} - 2q^{65} + 4q^{66} - 12q^{67} - 2q^{68} + 8q^{69} - 8q^{71} + q^{72} - 10q^{73} + 6q^{74} - q^{75} - 4q^{76} - 2q^{78} + 16q^{79} - q^{80} + q^{81} + 6q^{82} + 12q^{83} + 2q^{85} - 4q^{86} + 2q^{87} - 4q^{88} - 10q^{89} - q^{90} - 8q^{92} + 4q^{95} - q^{96} - 2q^{97} - 4q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −1.00000 1.00000 −1.00000 −1.00000 0 1.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1470.2.a.j 1
3.b odd 2 1 4410.2.a.t 1
5.b even 2 1 7350.2.a.w 1
7.b odd 2 1 210.2.a.e 1
7.c even 3 2 1470.2.i.j 2
7.d odd 6 2 1470.2.i.a 2
21.c even 2 1 630.2.a.a 1
28.d even 2 1 1680.2.a.j 1
35.c odd 2 1 1050.2.a.c 1
35.f even 4 2 1050.2.g.g 2
56.e even 2 1 6720.2.a.bq 1
56.h odd 2 1 6720.2.a.j 1
84.h odd 2 1 5040.2.a.k 1
105.g even 2 1 3150.2.a.bp 1
105.k odd 4 2 3150.2.g.q 2
140.c even 2 1 8400.2.a.ce 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.a.e 1 7.b odd 2 1
630.2.a.a 1 21.c even 2 1
1050.2.a.c 1 35.c odd 2 1
1050.2.g.g 2 35.f even 4 2
1470.2.a.j 1 1.a even 1 1 trivial
1470.2.i.a 2 7.d odd 6 2
1470.2.i.j 2 7.c even 3 2
1680.2.a.j 1 28.d even 2 1
3150.2.a.bp 1 105.g even 2 1
3150.2.g.q 2 105.k odd 4 2
4410.2.a.t 1 3.b odd 2 1
5040.2.a.k 1 84.h odd 2 1
6720.2.a.j 1 56.h odd 2 1
6720.2.a.bq 1 56.e even 2 1
7350.2.a.w 1 5.b even 2 1
8400.2.a.ce 1 140.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1470))\):

\( T_{11} + 4 \)
\( T_{13} - 2 \)
\( T_{17} + 2 \)
\( T_{19} + 4 \)
\( T_{31} \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 + T \)
$3$ \( 1 + T \)
$5$ \( 1 + T \)
$7$ \( T \)
$11$ \( 4 + T \)
$13$ \( -2 + T \)
$17$ \( 2 + T \)
$19$ \( 4 + T \)
$23$ \( 8 + T \)
$29$ \( 2 + T \)
$31$ \( T \)
$37$ \( -6 + T \)
$41$ \( -6 + T \)
$43$ \( 4 + T \)
$47$ \( T \)
$53$ \( 10 + T \)
$59$ \( 12 + T \)
$61$ \( 14 + T \)
$67$ \( 12 + T \)
$71$ \( 8 + T \)
$73$ \( 10 + T \)
$79$ \( -16 + T \)
$83$ \( -12 + T \)
$89$ \( 10 + T \)
$97$ \( 2 + T \)
show more
show less