# Properties

 Label 1470.2.a.h.1.1 Level $1470$ Weight $2$ Character 1470.1 Self dual yes Analytic conductor $11.738$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1470.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$11.7380090971$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 210) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 1470.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{5} -1.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})$$ $$q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{5} -1.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} -1.00000 q^{10} -1.00000 q^{11} +1.00000 q^{12} -1.00000 q^{13} +1.00000 q^{15} +1.00000 q^{16} -1.00000 q^{18} +3.00000 q^{19} +1.00000 q^{20} +1.00000 q^{22} +7.00000 q^{23} -1.00000 q^{24} +1.00000 q^{25} +1.00000 q^{26} +1.00000 q^{27} -8.00000 q^{29} -1.00000 q^{30} +2.00000 q^{31} -1.00000 q^{32} -1.00000 q^{33} +1.00000 q^{36} +11.0000 q^{37} -3.00000 q^{38} -1.00000 q^{39} -1.00000 q^{40} +11.0000 q^{41} +8.00000 q^{43} -1.00000 q^{44} +1.00000 q^{45} -7.00000 q^{46} +5.00000 q^{47} +1.00000 q^{48} -1.00000 q^{50} -1.00000 q^{52} -11.0000 q^{53} -1.00000 q^{54} -1.00000 q^{55} +3.00000 q^{57} +8.00000 q^{58} -4.00000 q^{59} +1.00000 q^{60} -2.00000 q^{62} +1.00000 q^{64} -1.00000 q^{65} +1.00000 q^{66} +7.00000 q^{69} -6.00000 q^{71} -1.00000 q^{72} +6.00000 q^{73} -11.0000 q^{74} +1.00000 q^{75} +3.00000 q^{76} +1.00000 q^{78} -8.00000 q^{79} +1.00000 q^{80} +1.00000 q^{81} -11.0000 q^{82} -8.00000 q^{83} -8.00000 q^{86} -8.00000 q^{87} +1.00000 q^{88} +10.0000 q^{89} -1.00000 q^{90} +7.00000 q^{92} +2.00000 q^{93} -5.00000 q^{94} +3.00000 q^{95} -1.00000 q^{96} +16.0000 q^{97} -1.00000 q^{99} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.00000 −0.707107
$$3$$ 1.00000 0.577350
$$4$$ 1.00000 0.500000
$$5$$ 1.00000 0.447214
$$6$$ −1.00000 −0.408248
$$7$$ 0 0
$$8$$ −1.00000 −0.353553
$$9$$ 1.00000 0.333333
$$10$$ −1.00000 −0.316228
$$11$$ −1.00000 −0.301511 −0.150756 0.988571i $$-0.548171\pi$$
−0.150756 + 0.988571i $$0.548171\pi$$
$$12$$ 1.00000 0.288675
$$13$$ −1.00000 −0.277350 −0.138675 0.990338i $$-0.544284\pi$$
−0.138675 + 0.990338i $$0.544284\pi$$
$$14$$ 0 0
$$15$$ 1.00000 0.258199
$$16$$ 1.00000 0.250000
$$17$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$18$$ −1.00000 −0.235702
$$19$$ 3.00000 0.688247 0.344124 0.938924i $$-0.388176\pi$$
0.344124 + 0.938924i $$0.388176\pi$$
$$20$$ 1.00000 0.223607
$$21$$ 0 0
$$22$$ 1.00000 0.213201
$$23$$ 7.00000 1.45960 0.729800 0.683660i $$-0.239613\pi$$
0.729800 + 0.683660i $$0.239613\pi$$
$$24$$ −1.00000 −0.204124
$$25$$ 1.00000 0.200000
$$26$$ 1.00000 0.196116
$$27$$ 1.00000 0.192450
$$28$$ 0 0
$$29$$ −8.00000 −1.48556 −0.742781 0.669534i $$-0.766494\pi$$
−0.742781 + 0.669534i $$0.766494\pi$$
$$30$$ −1.00000 −0.182574
$$31$$ 2.00000 0.359211 0.179605 0.983739i $$-0.442518\pi$$
0.179605 + 0.983739i $$0.442518\pi$$
$$32$$ −1.00000 −0.176777
$$33$$ −1.00000 −0.174078
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 1.00000 0.166667
$$37$$ 11.0000 1.80839 0.904194 0.427121i $$-0.140472\pi$$
0.904194 + 0.427121i $$0.140472\pi$$
$$38$$ −3.00000 −0.486664
$$39$$ −1.00000 −0.160128
$$40$$ −1.00000 −0.158114
$$41$$ 11.0000 1.71791 0.858956 0.512050i $$-0.171114\pi$$
0.858956 + 0.512050i $$0.171114\pi$$
$$42$$ 0 0
$$43$$ 8.00000 1.21999 0.609994 0.792406i $$-0.291172\pi$$
0.609994 + 0.792406i $$0.291172\pi$$
$$44$$ −1.00000 −0.150756
$$45$$ 1.00000 0.149071
$$46$$ −7.00000 −1.03209
$$47$$ 5.00000 0.729325 0.364662 0.931140i $$-0.381184\pi$$
0.364662 + 0.931140i $$0.381184\pi$$
$$48$$ 1.00000 0.144338
$$49$$ 0 0
$$50$$ −1.00000 −0.141421
$$51$$ 0 0
$$52$$ −1.00000 −0.138675
$$53$$ −11.0000 −1.51097 −0.755483 0.655168i $$-0.772598\pi$$
−0.755483 + 0.655168i $$0.772598\pi$$
$$54$$ −1.00000 −0.136083
$$55$$ −1.00000 −0.134840
$$56$$ 0 0
$$57$$ 3.00000 0.397360
$$58$$ 8.00000 1.05045
$$59$$ −4.00000 −0.520756 −0.260378 0.965507i $$-0.583847\pi$$
−0.260378 + 0.965507i $$0.583847\pi$$
$$60$$ 1.00000 0.129099
$$61$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$62$$ −2.00000 −0.254000
$$63$$ 0 0
$$64$$ 1.00000 0.125000
$$65$$ −1.00000 −0.124035
$$66$$ 1.00000 0.123091
$$67$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$68$$ 0 0
$$69$$ 7.00000 0.842701
$$70$$ 0 0
$$71$$ −6.00000 −0.712069 −0.356034 0.934473i $$-0.615871\pi$$
−0.356034 + 0.934473i $$0.615871\pi$$
$$72$$ −1.00000 −0.117851
$$73$$ 6.00000 0.702247 0.351123 0.936329i $$-0.385800\pi$$
0.351123 + 0.936329i $$0.385800\pi$$
$$74$$ −11.0000 −1.27872
$$75$$ 1.00000 0.115470
$$76$$ 3.00000 0.344124
$$77$$ 0 0
$$78$$ 1.00000 0.113228
$$79$$ −8.00000 −0.900070 −0.450035 0.893011i $$-0.648589\pi$$
−0.450035 + 0.893011i $$0.648589\pi$$
$$80$$ 1.00000 0.111803
$$81$$ 1.00000 0.111111
$$82$$ −11.0000 −1.21475
$$83$$ −8.00000 −0.878114 −0.439057 0.898459i $$-0.644687\pi$$
−0.439057 + 0.898459i $$0.644687\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ −8.00000 −0.862662
$$87$$ −8.00000 −0.857690
$$88$$ 1.00000 0.106600
$$89$$ 10.0000 1.06000 0.529999 0.847998i $$-0.322192\pi$$
0.529999 + 0.847998i $$0.322192\pi$$
$$90$$ −1.00000 −0.105409
$$91$$ 0 0
$$92$$ 7.00000 0.729800
$$93$$ 2.00000 0.207390
$$94$$ −5.00000 −0.515711
$$95$$ 3.00000 0.307794
$$96$$ −1.00000 −0.102062
$$97$$ 16.0000 1.62455 0.812277 0.583272i $$-0.198228\pi$$
0.812277 + 0.583272i $$0.198228\pi$$
$$98$$ 0 0
$$99$$ −1.00000 −0.100504
$$100$$ 1.00000 0.100000
$$101$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$102$$ 0 0
$$103$$ 16.0000 1.57653 0.788263 0.615338i $$-0.210980\pi$$
0.788263 + 0.615338i $$0.210980\pi$$
$$104$$ 1.00000 0.0980581
$$105$$ 0 0
$$106$$ 11.0000 1.06841
$$107$$ −10.0000 −0.966736 −0.483368 0.875417i $$-0.660587\pi$$
−0.483368 + 0.875417i $$0.660587\pi$$
$$108$$ 1.00000 0.0962250
$$109$$ 6.00000 0.574696 0.287348 0.957826i $$-0.407226\pi$$
0.287348 + 0.957826i $$0.407226\pi$$
$$110$$ 1.00000 0.0953463
$$111$$ 11.0000 1.04407
$$112$$ 0 0
$$113$$ 6.00000 0.564433 0.282216 0.959351i $$-0.408930\pi$$
0.282216 + 0.959351i $$0.408930\pi$$
$$114$$ −3.00000 −0.280976
$$115$$ 7.00000 0.652753
$$116$$ −8.00000 −0.742781
$$117$$ −1.00000 −0.0924500
$$118$$ 4.00000 0.368230
$$119$$ 0 0
$$120$$ −1.00000 −0.0912871
$$121$$ −10.0000 −0.909091
$$122$$ 0 0
$$123$$ 11.0000 0.991837
$$124$$ 2.00000 0.179605
$$125$$ 1.00000 0.0894427
$$126$$ 0 0
$$127$$ −17.0000 −1.50851 −0.754253 0.656584i $$-0.772001\pi$$
−0.754253 + 0.656584i $$0.772001\pi$$
$$128$$ −1.00000 −0.0883883
$$129$$ 8.00000 0.704361
$$130$$ 1.00000 0.0877058
$$131$$ 5.00000 0.436852 0.218426 0.975854i $$-0.429908\pi$$
0.218426 + 0.975854i $$0.429908\pi$$
$$132$$ −1.00000 −0.0870388
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 1.00000 0.0860663
$$136$$ 0 0
$$137$$ −18.0000 −1.53784 −0.768922 0.639343i $$-0.779207\pi$$
−0.768922 + 0.639343i $$0.779207\pi$$
$$138$$ −7.00000 −0.595880
$$139$$ −20.0000 −1.69638 −0.848189 0.529694i $$-0.822307\pi$$
−0.848189 + 0.529694i $$0.822307\pi$$
$$140$$ 0 0
$$141$$ 5.00000 0.421076
$$142$$ 6.00000 0.503509
$$143$$ 1.00000 0.0836242
$$144$$ 1.00000 0.0833333
$$145$$ −8.00000 −0.664364
$$146$$ −6.00000 −0.496564
$$147$$ 0 0
$$148$$ 11.0000 0.904194
$$149$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$150$$ −1.00000 −0.0816497
$$151$$ 6.00000 0.488273 0.244137 0.969741i $$-0.421495\pi$$
0.244137 + 0.969741i $$0.421495\pi$$
$$152$$ −3.00000 −0.243332
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 2.00000 0.160644
$$156$$ −1.00000 −0.0800641
$$157$$ 7.00000 0.558661 0.279330 0.960195i $$-0.409888\pi$$
0.279330 + 0.960195i $$0.409888\pi$$
$$158$$ 8.00000 0.636446
$$159$$ −11.0000 −0.872357
$$160$$ −1.00000 −0.0790569
$$161$$ 0 0
$$162$$ −1.00000 −0.0785674
$$163$$ 16.0000 1.25322 0.626608 0.779334i $$-0.284443\pi$$
0.626608 + 0.779334i $$0.284443\pi$$
$$164$$ 11.0000 0.858956
$$165$$ −1.00000 −0.0778499
$$166$$ 8.00000 0.620920
$$167$$ 3.00000 0.232147 0.116073 0.993241i $$-0.462969\pi$$
0.116073 + 0.993241i $$0.462969\pi$$
$$168$$ 0 0
$$169$$ −12.0000 −0.923077
$$170$$ 0 0
$$171$$ 3.00000 0.229416
$$172$$ 8.00000 0.609994
$$173$$ 15.0000 1.14043 0.570214 0.821496i $$-0.306860\pi$$
0.570214 + 0.821496i $$0.306860\pi$$
$$174$$ 8.00000 0.606478
$$175$$ 0 0
$$176$$ −1.00000 −0.0753778
$$177$$ −4.00000 −0.300658
$$178$$ −10.0000 −0.749532
$$179$$ −19.0000 −1.42013 −0.710063 0.704138i $$-0.751334\pi$$
−0.710063 + 0.704138i $$0.751334\pi$$
$$180$$ 1.00000 0.0745356
$$181$$ 24.0000 1.78391 0.891953 0.452128i $$-0.149335\pi$$
0.891953 + 0.452128i $$0.149335\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ −7.00000 −0.516047
$$185$$ 11.0000 0.808736
$$186$$ −2.00000 −0.146647
$$187$$ 0 0
$$188$$ 5.00000 0.364662
$$189$$ 0 0
$$190$$ −3.00000 −0.217643
$$191$$ −6.00000 −0.434145 −0.217072 0.976156i $$-0.569651\pi$$
−0.217072 + 0.976156i $$0.569651\pi$$
$$192$$ 1.00000 0.0721688
$$193$$ 22.0000 1.58359 0.791797 0.610784i $$-0.209146\pi$$
0.791797 + 0.610784i $$0.209146\pi$$
$$194$$ −16.0000 −1.14873
$$195$$ −1.00000 −0.0716115
$$196$$ 0 0
$$197$$ −1.00000 −0.0712470 −0.0356235 0.999365i $$-0.511342\pi$$
−0.0356235 + 0.999365i $$0.511342\pi$$
$$198$$ 1.00000 0.0710669
$$199$$ 24.0000 1.70131 0.850657 0.525720i $$-0.176204\pi$$
0.850657 + 0.525720i $$0.176204\pi$$
$$200$$ −1.00000 −0.0707107
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 11.0000 0.768273
$$206$$ −16.0000 −1.11477
$$207$$ 7.00000 0.486534
$$208$$ −1.00000 −0.0693375
$$209$$ −3.00000 −0.207514
$$210$$ 0 0
$$211$$ 5.00000 0.344214 0.172107 0.985078i $$-0.444942\pi$$
0.172107 + 0.985078i $$0.444942\pi$$
$$212$$ −11.0000 −0.755483
$$213$$ −6.00000 −0.411113
$$214$$ 10.0000 0.683586
$$215$$ 8.00000 0.545595
$$216$$ −1.00000 −0.0680414
$$217$$ 0 0
$$218$$ −6.00000 −0.406371
$$219$$ 6.00000 0.405442
$$220$$ −1.00000 −0.0674200
$$221$$ 0 0
$$222$$ −11.0000 −0.738272
$$223$$ −12.0000 −0.803579 −0.401790 0.915732i $$-0.631612\pi$$
−0.401790 + 0.915732i $$0.631612\pi$$
$$224$$ 0 0
$$225$$ 1.00000 0.0666667
$$226$$ −6.00000 −0.399114
$$227$$ −8.00000 −0.530979 −0.265489 0.964114i $$-0.585534\pi$$
−0.265489 + 0.964114i $$0.585534\pi$$
$$228$$ 3.00000 0.198680
$$229$$ −14.0000 −0.925146 −0.462573 0.886581i $$-0.653074\pi$$
−0.462573 + 0.886581i $$0.653074\pi$$
$$230$$ −7.00000 −0.461566
$$231$$ 0 0
$$232$$ 8.00000 0.525226
$$233$$ 18.0000 1.17922 0.589610 0.807688i $$-0.299282\pi$$
0.589610 + 0.807688i $$0.299282\pi$$
$$234$$ 1.00000 0.0653720
$$235$$ 5.00000 0.326164
$$236$$ −4.00000 −0.260378
$$237$$ −8.00000 −0.519656
$$238$$ 0 0
$$239$$ −18.0000 −1.16432 −0.582162 0.813073i $$-0.697793\pi$$
−0.582162 + 0.813073i $$0.697793\pi$$
$$240$$ 1.00000 0.0645497
$$241$$ −7.00000 −0.450910 −0.225455 0.974254i $$-0.572387\pi$$
−0.225455 + 0.974254i $$0.572387\pi$$
$$242$$ 10.0000 0.642824
$$243$$ 1.00000 0.0641500
$$244$$ 0 0
$$245$$ 0 0
$$246$$ −11.0000 −0.701334
$$247$$ −3.00000 −0.190885
$$248$$ −2.00000 −0.127000
$$249$$ −8.00000 −0.506979
$$250$$ −1.00000 −0.0632456
$$251$$ −13.0000 −0.820553 −0.410276 0.911961i $$-0.634568\pi$$
−0.410276 + 0.911961i $$0.634568\pi$$
$$252$$ 0 0
$$253$$ −7.00000 −0.440086
$$254$$ 17.0000 1.06667
$$255$$ 0 0
$$256$$ 1.00000 0.0625000
$$257$$ 20.0000 1.24757 0.623783 0.781598i $$-0.285595\pi$$
0.623783 + 0.781598i $$0.285595\pi$$
$$258$$ −8.00000 −0.498058
$$259$$ 0 0
$$260$$ −1.00000 −0.0620174
$$261$$ −8.00000 −0.495188
$$262$$ −5.00000 −0.308901
$$263$$ 24.0000 1.47990 0.739952 0.672660i $$-0.234848\pi$$
0.739952 + 0.672660i $$0.234848\pi$$
$$264$$ 1.00000 0.0615457
$$265$$ −11.0000 −0.675725
$$266$$ 0 0
$$267$$ 10.0000 0.611990
$$268$$ 0 0
$$269$$ −20.0000 −1.21942 −0.609711 0.792624i $$-0.708714\pi$$
−0.609711 + 0.792624i $$0.708714\pi$$
$$270$$ −1.00000 −0.0608581
$$271$$ −32.0000 −1.94386 −0.971931 0.235267i $$-0.924404\pi$$
−0.971931 + 0.235267i $$0.924404\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 18.0000 1.08742
$$275$$ −1.00000 −0.0603023
$$276$$ 7.00000 0.421350
$$277$$ −22.0000 −1.32185 −0.660926 0.750451i $$-0.729836\pi$$
−0.660926 + 0.750451i $$0.729836\pi$$
$$278$$ 20.0000 1.19952
$$279$$ 2.00000 0.119737
$$280$$ 0 0
$$281$$ −1.00000 −0.0596550 −0.0298275 0.999555i $$-0.509496\pi$$
−0.0298275 + 0.999555i $$0.509496\pi$$
$$282$$ −5.00000 −0.297746
$$283$$ 14.0000 0.832214 0.416107 0.909316i $$-0.363394\pi$$
0.416107 + 0.909316i $$0.363394\pi$$
$$284$$ −6.00000 −0.356034
$$285$$ 3.00000 0.177705
$$286$$ −1.00000 −0.0591312
$$287$$ 0 0
$$288$$ −1.00000 −0.0589256
$$289$$ −17.0000 −1.00000
$$290$$ 8.00000 0.469776
$$291$$ 16.0000 0.937937
$$292$$ 6.00000 0.351123
$$293$$ −27.0000 −1.57736 −0.788678 0.614806i $$-0.789234\pi$$
−0.788678 + 0.614806i $$0.789234\pi$$
$$294$$ 0 0
$$295$$ −4.00000 −0.232889
$$296$$ −11.0000 −0.639362
$$297$$ −1.00000 −0.0580259
$$298$$ 0 0
$$299$$ −7.00000 −0.404820
$$300$$ 1.00000 0.0577350
$$301$$ 0 0
$$302$$ −6.00000 −0.345261
$$303$$ 0 0
$$304$$ 3.00000 0.172062
$$305$$ 0 0
$$306$$ 0 0
$$307$$ −20.0000 −1.14146 −0.570730 0.821138i $$-0.693340\pi$$
−0.570730 + 0.821138i $$0.693340\pi$$
$$308$$ 0 0
$$309$$ 16.0000 0.910208
$$310$$ −2.00000 −0.113592
$$311$$ −12.0000 −0.680458 −0.340229 0.940343i $$-0.610505\pi$$
−0.340229 + 0.940343i $$0.610505\pi$$
$$312$$ 1.00000 0.0566139
$$313$$ 12.0000 0.678280 0.339140 0.940736i $$-0.389864\pi$$
0.339140 + 0.940736i $$0.389864\pi$$
$$314$$ −7.00000 −0.395033
$$315$$ 0 0
$$316$$ −8.00000 −0.450035
$$317$$ −18.0000 −1.01098 −0.505490 0.862832i $$-0.668688\pi$$
−0.505490 + 0.862832i $$0.668688\pi$$
$$318$$ 11.0000 0.616849
$$319$$ 8.00000 0.447914
$$320$$ 1.00000 0.0559017
$$321$$ −10.0000 −0.558146
$$322$$ 0 0
$$323$$ 0 0
$$324$$ 1.00000 0.0555556
$$325$$ −1.00000 −0.0554700
$$326$$ −16.0000 −0.886158
$$327$$ 6.00000 0.331801
$$328$$ −11.0000 −0.607373
$$329$$ 0 0
$$330$$ 1.00000 0.0550482
$$331$$ −13.0000 −0.714545 −0.357272 0.934000i $$-0.616293\pi$$
−0.357272 + 0.934000i $$0.616293\pi$$
$$332$$ −8.00000 −0.439057
$$333$$ 11.0000 0.602796
$$334$$ −3.00000 −0.164153
$$335$$ 0 0
$$336$$ 0 0
$$337$$ −12.0000 −0.653682 −0.326841 0.945079i $$-0.605984\pi$$
−0.326841 + 0.945079i $$0.605984\pi$$
$$338$$ 12.0000 0.652714
$$339$$ 6.00000 0.325875
$$340$$ 0 0
$$341$$ −2.00000 −0.108306
$$342$$ −3.00000 −0.162221
$$343$$ 0 0
$$344$$ −8.00000 −0.431331
$$345$$ 7.00000 0.376867
$$346$$ −15.0000 −0.806405
$$347$$ 14.0000 0.751559 0.375780 0.926709i $$-0.377375\pi$$
0.375780 + 0.926709i $$0.377375\pi$$
$$348$$ −8.00000 −0.428845
$$349$$ −12.0000 −0.642345 −0.321173 0.947021i $$-0.604077\pi$$
−0.321173 + 0.947021i $$0.604077\pi$$
$$350$$ 0 0
$$351$$ −1.00000 −0.0533761
$$352$$ 1.00000 0.0533002
$$353$$ −24.0000 −1.27739 −0.638696 0.769460i $$-0.720526\pi$$
−0.638696 + 0.769460i $$0.720526\pi$$
$$354$$ 4.00000 0.212598
$$355$$ −6.00000 −0.318447
$$356$$ 10.0000 0.529999
$$357$$ 0 0
$$358$$ 19.0000 1.00418
$$359$$ 4.00000 0.211112 0.105556 0.994413i $$-0.466338\pi$$
0.105556 + 0.994413i $$0.466338\pi$$
$$360$$ −1.00000 −0.0527046
$$361$$ −10.0000 −0.526316
$$362$$ −24.0000 −1.26141
$$363$$ −10.0000 −0.524864
$$364$$ 0 0
$$365$$ 6.00000 0.314054
$$366$$ 0 0
$$367$$ −25.0000 −1.30499 −0.652495 0.757793i $$-0.726278\pi$$
−0.652495 + 0.757793i $$0.726278\pi$$
$$368$$ 7.00000 0.364900
$$369$$ 11.0000 0.572637
$$370$$ −11.0000 −0.571863
$$371$$ 0 0
$$372$$ 2.00000 0.103695
$$373$$ 6.00000 0.310668 0.155334 0.987862i $$-0.450355\pi$$
0.155334 + 0.987862i $$0.450355\pi$$
$$374$$ 0 0
$$375$$ 1.00000 0.0516398
$$376$$ −5.00000 −0.257855
$$377$$ 8.00000 0.412021
$$378$$ 0 0
$$379$$ −19.0000 −0.975964 −0.487982 0.872854i $$-0.662267\pi$$
−0.487982 + 0.872854i $$0.662267\pi$$
$$380$$ 3.00000 0.153897
$$381$$ −17.0000 −0.870936
$$382$$ 6.00000 0.306987
$$383$$ −35.0000 −1.78842 −0.894208 0.447651i $$-0.852261\pi$$
−0.894208 + 0.447651i $$0.852261\pi$$
$$384$$ −1.00000 −0.0510310
$$385$$ 0 0
$$386$$ −22.0000 −1.11977
$$387$$ 8.00000 0.406663
$$388$$ 16.0000 0.812277
$$389$$ 10.0000 0.507020 0.253510 0.967333i $$-0.418415\pi$$
0.253510 + 0.967333i $$0.418415\pi$$
$$390$$ 1.00000 0.0506370
$$391$$ 0 0
$$392$$ 0 0
$$393$$ 5.00000 0.252217
$$394$$ 1.00000 0.0503793
$$395$$ −8.00000 −0.402524
$$396$$ −1.00000 −0.0502519
$$397$$ −14.0000 −0.702640 −0.351320 0.936255i $$-0.614267\pi$$
−0.351320 + 0.936255i $$0.614267\pi$$
$$398$$ −24.0000 −1.20301
$$399$$ 0 0
$$400$$ 1.00000 0.0500000
$$401$$ −5.00000 −0.249688 −0.124844 0.992176i $$-0.539843\pi$$
−0.124844 + 0.992176i $$0.539843\pi$$
$$402$$ 0 0
$$403$$ −2.00000 −0.0996271
$$404$$ 0 0
$$405$$ 1.00000 0.0496904
$$406$$ 0 0
$$407$$ −11.0000 −0.545250
$$408$$ 0 0
$$409$$ −2.00000 −0.0988936 −0.0494468 0.998777i $$-0.515746\pi$$
−0.0494468 + 0.998777i $$0.515746\pi$$
$$410$$ −11.0000 −0.543251
$$411$$ −18.0000 −0.887875
$$412$$ 16.0000 0.788263
$$413$$ 0 0
$$414$$ −7.00000 −0.344031
$$415$$ −8.00000 −0.392705
$$416$$ 1.00000 0.0490290
$$417$$ −20.0000 −0.979404
$$418$$ 3.00000 0.146735
$$419$$ 5.00000 0.244266 0.122133 0.992514i $$-0.461027\pi$$
0.122133 + 0.992514i $$0.461027\pi$$
$$420$$ 0 0
$$421$$ 22.0000 1.07221 0.536107 0.844150i $$-0.319894\pi$$
0.536107 + 0.844150i $$0.319894\pi$$
$$422$$ −5.00000 −0.243396
$$423$$ 5.00000 0.243108
$$424$$ 11.0000 0.534207
$$425$$ 0 0
$$426$$ 6.00000 0.290701
$$427$$ 0 0
$$428$$ −10.0000 −0.483368
$$429$$ 1.00000 0.0482805
$$430$$ −8.00000 −0.385794
$$431$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$432$$ 1.00000 0.0481125
$$433$$ 32.0000 1.53782 0.768911 0.639356i $$-0.220799\pi$$
0.768911 + 0.639356i $$0.220799\pi$$
$$434$$ 0 0
$$435$$ −8.00000 −0.383571
$$436$$ 6.00000 0.287348
$$437$$ 21.0000 1.00457
$$438$$ −6.00000 −0.286691
$$439$$ −32.0000 −1.52728 −0.763638 0.645644i $$-0.776589\pi$$
−0.763638 + 0.645644i $$0.776589\pi$$
$$440$$ 1.00000 0.0476731
$$441$$ 0 0
$$442$$ 0 0
$$443$$ 16.0000 0.760183 0.380091 0.924949i $$-0.375893\pi$$
0.380091 + 0.924949i $$0.375893\pi$$
$$444$$ 11.0000 0.522037
$$445$$ 10.0000 0.474045
$$446$$ 12.0000 0.568216
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 11.0000 0.519122 0.259561 0.965727i $$-0.416422\pi$$
0.259561 + 0.965727i $$0.416422\pi$$
$$450$$ −1.00000 −0.0471405
$$451$$ −11.0000 −0.517970
$$452$$ 6.00000 0.282216
$$453$$ 6.00000 0.281905
$$454$$ 8.00000 0.375459
$$455$$ 0 0
$$456$$ −3.00000 −0.140488
$$457$$ −18.0000 −0.842004 −0.421002 0.907060i $$-0.638322\pi$$
−0.421002 + 0.907060i $$0.638322\pi$$
$$458$$ 14.0000 0.654177
$$459$$ 0 0
$$460$$ 7.00000 0.326377
$$461$$ 12.0000 0.558896 0.279448 0.960161i $$-0.409849\pi$$
0.279448 + 0.960161i $$0.409849\pi$$
$$462$$ 0 0
$$463$$ −13.0000 −0.604161 −0.302081 0.953282i $$-0.597681\pi$$
−0.302081 + 0.953282i $$0.597681\pi$$
$$464$$ −8.00000 −0.371391
$$465$$ 2.00000 0.0927478
$$466$$ −18.0000 −0.833834
$$467$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$468$$ −1.00000 −0.0462250
$$469$$ 0 0
$$470$$ −5.00000 −0.230633
$$471$$ 7.00000 0.322543
$$472$$ 4.00000 0.184115
$$473$$ −8.00000 −0.367840
$$474$$ 8.00000 0.367452
$$475$$ 3.00000 0.137649
$$476$$ 0 0
$$477$$ −11.0000 −0.503655
$$478$$ 18.0000 0.823301
$$479$$ −22.0000 −1.00521 −0.502603 0.864517i $$-0.667624\pi$$
−0.502603 + 0.864517i $$0.667624\pi$$
$$480$$ −1.00000 −0.0456435
$$481$$ −11.0000 −0.501557
$$482$$ 7.00000 0.318841
$$483$$ 0 0
$$484$$ −10.0000 −0.454545
$$485$$ 16.0000 0.726523
$$486$$ −1.00000 −0.0453609
$$487$$ −16.0000 −0.725029 −0.362515 0.931978i $$-0.618082\pi$$
−0.362515 + 0.931978i $$0.618082\pi$$
$$488$$ 0 0
$$489$$ 16.0000 0.723545
$$490$$ 0 0
$$491$$ 20.0000 0.902587 0.451294 0.892375i $$-0.350963\pi$$
0.451294 + 0.892375i $$0.350963\pi$$
$$492$$ 11.0000 0.495918
$$493$$ 0 0
$$494$$ 3.00000 0.134976
$$495$$ −1.00000 −0.0449467
$$496$$ 2.00000 0.0898027
$$497$$ 0 0
$$498$$ 8.00000 0.358489
$$499$$ −32.0000 −1.43252 −0.716258 0.697835i $$-0.754147\pi$$
−0.716258 + 0.697835i $$0.754147\pi$$
$$500$$ 1.00000 0.0447214
$$501$$ 3.00000 0.134030
$$502$$ 13.0000 0.580218
$$503$$ −36.0000 −1.60516 −0.802580 0.596544i $$-0.796540\pi$$
−0.802580 + 0.596544i $$0.796540\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 7.00000 0.311188
$$507$$ −12.0000 −0.532939
$$508$$ −17.0000 −0.754253
$$509$$ 34.0000 1.50702 0.753512 0.657434i $$-0.228358\pi$$
0.753512 + 0.657434i $$0.228358\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ −1.00000 −0.0441942
$$513$$ 3.00000 0.132453
$$514$$ −20.0000 −0.882162
$$515$$ 16.0000 0.705044
$$516$$ 8.00000 0.352180
$$517$$ −5.00000 −0.219900
$$518$$ 0 0
$$519$$ 15.0000 0.658427
$$520$$ 1.00000 0.0438529
$$521$$ 33.0000 1.44576 0.722878 0.690976i $$-0.242819\pi$$
0.722878 + 0.690976i $$0.242819\pi$$
$$522$$ 8.00000 0.350150
$$523$$ −2.00000 −0.0874539 −0.0437269 0.999044i $$-0.513923\pi$$
−0.0437269 + 0.999044i $$0.513923\pi$$
$$524$$ 5.00000 0.218426
$$525$$ 0 0
$$526$$ −24.0000 −1.04645
$$527$$ 0 0
$$528$$ −1.00000 −0.0435194
$$529$$ 26.0000 1.13043
$$530$$ 11.0000 0.477809
$$531$$ −4.00000 −0.173585
$$532$$ 0 0
$$533$$ −11.0000 −0.476463
$$534$$ −10.0000 −0.432742
$$535$$ −10.0000 −0.432338
$$536$$ 0 0
$$537$$ −19.0000 −0.819911
$$538$$ 20.0000 0.862261
$$539$$ 0 0
$$540$$ 1.00000 0.0430331
$$541$$ −10.0000 −0.429934 −0.214967 0.976621i $$-0.568964\pi$$
−0.214967 + 0.976621i $$0.568964\pi$$
$$542$$ 32.0000 1.37452
$$543$$ 24.0000 1.02994
$$544$$ 0 0
$$545$$ 6.00000 0.257012
$$546$$ 0 0
$$547$$ 16.0000 0.684111 0.342055 0.939680i $$-0.388877\pi$$
0.342055 + 0.939680i $$0.388877\pi$$
$$548$$ −18.0000 −0.768922
$$549$$ 0 0
$$550$$ 1.00000 0.0426401
$$551$$ −24.0000 −1.02243
$$552$$ −7.00000 −0.297940
$$553$$ 0 0
$$554$$ 22.0000 0.934690
$$555$$ 11.0000 0.466924
$$556$$ −20.0000 −0.848189
$$557$$ −33.0000 −1.39825 −0.699127 0.714997i $$-0.746428\pi$$
−0.699127 + 0.714997i $$0.746428\pi$$
$$558$$ −2.00000 −0.0846668
$$559$$ −8.00000 −0.338364
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 1.00000 0.0421825
$$563$$ 38.0000 1.60151 0.800755 0.598993i $$-0.204432\pi$$
0.800755 + 0.598993i $$0.204432\pi$$
$$564$$ 5.00000 0.210538
$$565$$ 6.00000 0.252422
$$566$$ −14.0000 −0.588464
$$567$$ 0 0
$$568$$ 6.00000 0.251754
$$569$$ −9.00000 −0.377300 −0.188650 0.982044i $$-0.560411\pi$$
−0.188650 + 0.982044i $$0.560411\pi$$
$$570$$ −3.00000 −0.125656
$$571$$ −32.0000 −1.33916 −0.669579 0.742741i $$-0.733526\pi$$
−0.669579 + 0.742741i $$0.733526\pi$$
$$572$$ 1.00000 0.0418121
$$573$$ −6.00000 −0.250654
$$574$$ 0 0
$$575$$ 7.00000 0.291920
$$576$$ 1.00000 0.0416667
$$577$$ 14.0000 0.582828 0.291414 0.956597i $$-0.405874\pi$$
0.291414 + 0.956597i $$0.405874\pi$$
$$578$$ 17.0000 0.707107
$$579$$ 22.0000 0.914289
$$580$$ −8.00000 −0.332182
$$581$$ 0 0
$$582$$ −16.0000 −0.663221
$$583$$ 11.0000 0.455573
$$584$$ −6.00000 −0.248282
$$585$$ −1.00000 −0.0413449
$$586$$ 27.0000 1.11536
$$587$$ 18.0000 0.742940 0.371470 0.928445i $$-0.378854\pi$$
0.371470 + 0.928445i $$0.378854\pi$$
$$588$$ 0 0
$$589$$ 6.00000 0.247226
$$590$$ 4.00000 0.164677
$$591$$ −1.00000 −0.0411345
$$592$$ 11.0000 0.452097
$$593$$ −16.0000 −0.657041 −0.328521 0.944497i $$-0.606550\pi$$
−0.328521 + 0.944497i $$0.606550\pi$$
$$594$$ 1.00000 0.0410305
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 24.0000 0.982255
$$598$$ 7.00000 0.286251
$$599$$ 2.00000 0.0817178 0.0408589 0.999165i $$-0.486991\pi$$
0.0408589 + 0.999165i $$0.486991\pi$$
$$600$$ −1.00000 −0.0408248
$$601$$ 26.0000 1.06056 0.530281 0.847822i $$-0.322086\pi$$
0.530281 + 0.847822i $$0.322086\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 6.00000 0.244137
$$605$$ −10.0000 −0.406558
$$606$$ 0 0
$$607$$ 37.0000 1.50178 0.750892 0.660425i $$-0.229624\pi$$
0.750892 + 0.660425i $$0.229624\pi$$
$$608$$ −3.00000 −0.121666
$$609$$ 0 0
$$610$$ 0 0
$$611$$ −5.00000 −0.202278
$$612$$ 0 0
$$613$$ −41.0000 −1.65597 −0.827987 0.560747i $$-0.810514\pi$$
−0.827987 + 0.560747i $$0.810514\pi$$
$$614$$ 20.0000 0.807134
$$615$$ 11.0000 0.443563
$$616$$ 0 0
$$617$$ 28.0000 1.12724 0.563619 0.826035i $$-0.309409\pi$$
0.563619 + 0.826035i $$0.309409\pi$$
$$618$$ −16.0000 −0.643614
$$619$$ −29.0000 −1.16561 −0.582804 0.812613i $$-0.698045\pi$$
−0.582804 + 0.812613i $$0.698045\pi$$
$$620$$ 2.00000 0.0803219
$$621$$ 7.00000 0.280900
$$622$$ 12.0000 0.481156
$$623$$ 0 0
$$624$$ −1.00000 −0.0400320
$$625$$ 1.00000 0.0400000
$$626$$ −12.0000 −0.479616
$$627$$ −3.00000 −0.119808
$$628$$ 7.00000 0.279330
$$629$$ 0 0
$$630$$ 0 0
$$631$$ −26.0000 −1.03504 −0.517522 0.855670i $$-0.673145\pi$$
−0.517522 + 0.855670i $$0.673145\pi$$
$$632$$ 8.00000 0.318223
$$633$$ 5.00000 0.198732
$$634$$ 18.0000 0.714871
$$635$$ −17.0000 −0.674624
$$636$$ −11.0000 −0.436178
$$637$$ 0 0
$$638$$ −8.00000 −0.316723
$$639$$ −6.00000 −0.237356
$$640$$ −1.00000 −0.0395285
$$641$$ −3.00000 −0.118493 −0.0592464 0.998243i $$-0.518870\pi$$
−0.0592464 + 0.998243i $$0.518870\pi$$
$$642$$ 10.0000 0.394669
$$643$$ 10.0000 0.394362 0.197181 0.980367i $$-0.436821\pi$$
0.197181 + 0.980367i $$0.436821\pi$$
$$644$$ 0 0
$$645$$ 8.00000 0.315000
$$646$$ 0 0
$$647$$ 17.0000 0.668339 0.334169 0.942513i $$-0.391544\pi$$
0.334169 + 0.942513i $$0.391544\pi$$
$$648$$ −1.00000 −0.0392837
$$649$$ 4.00000 0.157014
$$650$$ 1.00000 0.0392232
$$651$$ 0 0
$$652$$ 16.0000 0.626608
$$653$$ 7.00000 0.273931 0.136966 0.990576i $$-0.456265\pi$$
0.136966 + 0.990576i $$0.456265\pi$$
$$654$$ −6.00000 −0.234619
$$655$$ 5.00000 0.195366
$$656$$ 11.0000 0.429478
$$657$$ 6.00000 0.234082
$$658$$ 0 0
$$659$$ 36.0000 1.40236 0.701180 0.712984i $$-0.252657\pi$$
0.701180 + 0.712984i $$0.252657\pi$$
$$660$$ −1.00000 −0.0389249
$$661$$ 24.0000 0.933492 0.466746 0.884391i $$-0.345426\pi$$
0.466746 + 0.884391i $$0.345426\pi$$
$$662$$ 13.0000 0.505259
$$663$$ 0 0
$$664$$ 8.00000 0.310460
$$665$$ 0 0
$$666$$ −11.0000 −0.426241
$$667$$ −56.0000 −2.16833
$$668$$ 3.00000 0.116073
$$669$$ −12.0000 −0.463947
$$670$$ 0 0
$$671$$ 0 0
$$672$$ 0 0
$$673$$ 28.0000 1.07932 0.539660 0.841883i $$-0.318553\pi$$
0.539660 + 0.841883i $$0.318553\pi$$
$$674$$ 12.0000 0.462223
$$675$$ 1.00000 0.0384900
$$676$$ −12.0000 −0.461538
$$677$$ 13.0000 0.499631 0.249815 0.968294i $$-0.419630\pi$$
0.249815 + 0.968294i $$0.419630\pi$$
$$678$$ −6.00000 −0.230429
$$679$$ 0 0
$$680$$ 0 0
$$681$$ −8.00000 −0.306561
$$682$$ 2.00000 0.0765840
$$683$$ 4.00000 0.153056 0.0765279 0.997067i $$-0.475617\pi$$
0.0765279 + 0.997067i $$0.475617\pi$$
$$684$$ 3.00000 0.114708
$$685$$ −18.0000 −0.687745
$$686$$ 0 0
$$687$$ −14.0000 −0.534133
$$688$$ 8.00000 0.304997
$$689$$ 11.0000 0.419067
$$690$$ −7.00000 −0.266485
$$691$$ 12.0000 0.456502 0.228251 0.973602i $$-0.426699\pi$$
0.228251 + 0.973602i $$0.426699\pi$$
$$692$$ 15.0000 0.570214
$$693$$ 0 0
$$694$$ −14.0000 −0.531433
$$695$$ −20.0000 −0.758643
$$696$$ 8.00000 0.303239
$$697$$ 0 0
$$698$$ 12.0000 0.454207
$$699$$ 18.0000 0.680823
$$700$$ 0 0
$$701$$ −18.0000 −0.679851 −0.339925 0.940452i $$-0.610402\pi$$
−0.339925 + 0.940452i $$0.610402\pi$$
$$702$$ 1.00000 0.0377426
$$703$$ 33.0000 1.24462
$$704$$ −1.00000 −0.0376889
$$705$$ 5.00000 0.188311
$$706$$ 24.0000 0.903252
$$707$$ 0 0
$$708$$ −4.00000 −0.150329
$$709$$ 44.0000 1.65245 0.826227 0.563337i $$-0.190483\pi$$
0.826227 + 0.563337i $$0.190483\pi$$
$$710$$ 6.00000 0.225176
$$711$$ −8.00000 −0.300023
$$712$$ −10.0000 −0.374766
$$713$$ 14.0000 0.524304
$$714$$ 0 0
$$715$$ 1.00000 0.0373979
$$716$$ −19.0000 −0.710063
$$717$$ −18.0000 −0.672222
$$718$$ −4.00000 −0.149279
$$719$$ −2.00000 −0.0745874 −0.0372937 0.999304i $$-0.511874\pi$$
−0.0372937 + 0.999304i $$0.511874\pi$$
$$720$$ 1.00000 0.0372678
$$721$$ 0 0
$$722$$ 10.0000 0.372161
$$723$$ −7.00000 −0.260333
$$724$$ 24.0000 0.891953
$$725$$ −8.00000 −0.297113
$$726$$ 10.0000 0.371135
$$727$$ −11.0000 −0.407967 −0.203984 0.978974i $$-0.565389\pi$$
−0.203984 + 0.978974i $$0.565389\pi$$
$$728$$ 0 0
$$729$$ 1.00000 0.0370370
$$730$$ −6.00000 −0.222070
$$731$$ 0 0
$$732$$ 0 0
$$733$$ −11.0000 −0.406294 −0.203147 0.979148i $$-0.565117\pi$$
−0.203147 + 0.979148i $$0.565117\pi$$
$$734$$ 25.0000 0.922767
$$735$$ 0 0
$$736$$ −7.00000 −0.258023
$$737$$ 0 0
$$738$$ −11.0000 −0.404916
$$739$$ −19.0000 −0.698926 −0.349463 0.936950i $$-0.613636\pi$$
−0.349463 + 0.936950i $$0.613636\pi$$
$$740$$ 11.0000 0.404368
$$741$$ −3.00000 −0.110208
$$742$$ 0 0
$$743$$ 49.0000 1.79764 0.898818 0.438322i $$-0.144427\pi$$
0.898818 + 0.438322i $$0.144427\pi$$
$$744$$ −2.00000 −0.0733236
$$745$$ 0 0
$$746$$ −6.00000 −0.219676
$$747$$ −8.00000 −0.292705
$$748$$ 0 0
$$749$$ 0 0
$$750$$ −1.00000 −0.0365148
$$751$$ 26.0000 0.948753 0.474377 0.880322i $$-0.342673\pi$$
0.474377 + 0.880322i $$0.342673\pi$$
$$752$$ 5.00000 0.182331
$$753$$ −13.0000 −0.473746
$$754$$ −8.00000 −0.291343
$$755$$ 6.00000 0.218362
$$756$$ 0 0
$$757$$ 2.00000 0.0726912 0.0363456 0.999339i $$-0.488428\pi$$
0.0363456 + 0.999339i $$0.488428\pi$$
$$758$$ 19.0000 0.690111
$$759$$ −7.00000 −0.254084
$$760$$ −3.00000 −0.108821
$$761$$ −27.0000 −0.978749 −0.489375 0.872074i $$-0.662775\pi$$
−0.489375 + 0.872074i $$0.662775\pi$$
$$762$$ 17.0000 0.615845
$$763$$ 0 0
$$764$$ −6.00000 −0.217072
$$765$$ 0 0
$$766$$ 35.0000 1.26460
$$767$$ 4.00000 0.144432
$$768$$ 1.00000 0.0360844
$$769$$ 5.00000 0.180305 0.0901523 0.995928i $$-0.471265\pi$$
0.0901523 + 0.995928i $$0.471265\pi$$
$$770$$ 0 0
$$771$$ 20.0000 0.720282
$$772$$ 22.0000 0.791797
$$773$$ −33.0000 −1.18693 −0.593464 0.804861i $$-0.702240\pi$$
−0.593464 + 0.804861i $$0.702240\pi$$
$$774$$ −8.00000 −0.287554
$$775$$ 2.00000 0.0718421
$$776$$ −16.0000 −0.574367
$$777$$ 0 0
$$778$$ −10.0000 −0.358517
$$779$$ 33.0000 1.18235
$$780$$ −1.00000 −0.0358057
$$781$$ 6.00000 0.214697
$$782$$ 0 0
$$783$$ −8.00000 −0.285897
$$784$$ 0 0
$$785$$ 7.00000 0.249841
$$786$$ −5.00000 −0.178344
$$787$$ −22.0000 −0.784215 −0.392108 0.919919i $$-0.628254\pi$$
−0.392108 + 0.919919i $$0.628254\pi$$
$$788$$ −1.00000 −0.0356235
$$789$$ 24.0000 0.854423
$$790$$ 8.00000 0.284627
$$791$$ 0 0
$$792$$ 1.00000 0.0355335
$$793$$ 0 0
$$794$$ 14.0000 0.496841
$$795$$ −11.0000 −0.390130
$$796$$ 24.0000 0.850657
$$797$$ 18.0000 0.637593 0.318796 0.947823i $$-0.396721\pi$$
0.318796 + 0.947823i $$0.396721\pi$$
$$798$$ 0 0
$$799$$ 0 0
$$800$$ −1.00000 −0.0353553
$$801$$ 10.0000 0.353333
$$802$$ 5.00000 0.176556
$$803$$ −6.00000 −0.211735
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 2.00000 0.0704470
$$807$$ −20.0000 −0.704033
$$808$$ 0 0
$$809$$ −39.0000 −1.37117 −0.685583 0.727994i $$-0.740453\pi$$
−0.685583 + 0.727994i $$0.740453\pi$$
$$810$$ −1.00000 −0.0351364
$$811$$ −9.00000 −0.316033 −0.158016 0.987436i $$-0.550510\pi$$
−0.158016 + 0.987436i $$0.550510\pi$$
$$812$$ 0 0
$$813$$ −32.0000 −1.12229
$$814$$ 11.0000 0.385550
$$815$$ 16.0000 0.560456
$$816$$ 0 0
$$817$$ 24.0000 0.839654
$$818$$ 2.00000 0.0699284
$$819$$ 0 0
$$820$$ 11.0000 0.384137
$$821$$ 42.0000 1.46581 0.732905 0.680331i $$-0.238164\pi$$
0.732905 + 0.680331i $$0.238164\pi$$
$$822$$ 18.0000 0.627822
$$823$$ −24.0000 −0.836587 −0.418294 0.908312i $$-0.637372\pi$$
−0.418294 + 0.908312i $$0.637372\pi$$
$$824$$ −16.0000 −0.557386
$$825$$ −1.00000 −0.0348155
$$826$$ 0 0
$$827$$ −10.0000 −0.347734 −0.173867 0.984769i $$-0.555626\pi$$
−0.173867 + 0.984769i $$0.555626\pi$$
$$828$$ 7.00000 0.243267
$$829$$ 8.00000 0.277851 0.138926 0.990303i $$-0.455635\pi$$
0.138926 + 0.990303i $$0.455635\pi$$
$$830$$ 8.00000 0.277684
$$831$$ −22.0000 −0.763172
$$832$$ −1.00000 −0.0346688
$$833$$ 0 0
$$834$$ 20.0000 0.692543
$$835$$ 3.00000 0.103819
$$836$$ −3.00000 −0.103757
$$837$$ 2.00000 0.0691301
$$838$$ −5.00000 −0.172722
$$839$$ 40.0000 1.38095 0.690477 0.723355i $$-0.257401\pi$$
0.690477 + 0.723355i $$0.257401\pi$$
$$840$$ 0 0
$$841$$ 35.0000 1.20690
$$842$$ −22.0000 −0.758170
$$843$$ −1.00000 −0.0344418
$$844$$ 5.00000 0.172107
$$845$$ −12.0000 −0.412813
$$846$$ −5.00000 −0.171904
$$847$$ 0 0
$$848$$ −11.0000 −0.377742
$$849$$ 14.0000 0.480479
$$850$$ 0 0
$$851$$ 77.0000 2.63953
$$852$$ −6.00000 −0.205557
$$853$$ 41.0000 1.40381 0.701907 0.712269i $$-0.252332\pi$$
0.701907 + 0.712269i $$0.252332\pi$$
$$854$$ 0 0
$$855$$ 3.00000 0.102598
$$856$$ 10.0000 0.341793
$$857$$ 14.0000 0.478231 0.239115 0.970991i $$-0.423143\pi$$
0.239115 + 0.970991i $$0.423143\pi$$
$$858$$ −1.00000 −0.0341394
$$859$$ −12.0000 −0.409435 −0.204717 0.978821i $$-0.565628\pi$$
−0.204717 + 0.978821i $$0.565628\pi$$
$$860$$ 8.00000 0.272798
$$861$$ 0 0
$$862$$ 0 0
$$863$$ −53.0000 −1.80414 −0.902070 0.431589i $$-0.857953\pi$$
−0.902070 + 0.431589i $$0.857953\pi$$
$$864$$ −1.00000 −0.0340207
$$865$$ 15.0000 0.510015
$$866$$ −32.0000 −1.08740
$$867$$ −17.0000 −0.577350
$$868$$ 0 0
$$869$$ 8.00000 0.271381
$$870$$ 8.00000 0.271225
$$871$$ 0 0
$$872$$ −6.00000 −0.203186
$$873$$ 16.0000 0.541518
$$874$$ −21.0000 −0.710336
$$875$$ 0 0
$$876$$ 6.00000 0.202721
$$877$$ 17.0000 0.574049 0.287025 0.957923i $$-0.407334\pi$$
0.287025 + 0.957923i $$0.407334\pi$$
$$878$$ 32.0000 1.07995
$$879$$ −27.0000 −0.910687
$$880$$ −1.00000 −0.0337100
$$881$$ 53.0000 1.78562 0.892808 0.450438i $$-0.148732\pi$$
0.892808 + 0.450438i $$0.148732\pi$$
$$882$$ 0 0
$$883$$ −42.0000 −1.41341 −0.706706 0.707507i $$-0.749820\pi$$
−0.706706 + 0.707507i $$0.749820\pi$$
$$884$$ 0 0
$$885$$ −4.00000 −0.134459
$$886$$ −16.0000 −0.537531
$$887$$ −44.0000 −1.47738 −0.738688 0.674048i $$-0.764554\pi$$
−0.738688 + 0.674048i $$0.764554\pi$$
$$888$$ −11.0000 −0.369136
$$889$$ 0 0
$$890$$ −10.0000 −0.335201
$$891$$ −1.00000 −0.0335013
$$892$$ −12.0000 −0.401790
$$893$$ 15.0000 0.501956
$$894$$ 0 0
$$895$$ −19.0000 −0.635100
$$896$$ 0 0
$$897$$ −7.00000 −0.233723
$$898$$ −11.0000 −0.367075
$$899$$ −16.0000 −0.533630
$$900$$ 1.00000 0.0333333
$$901$$ 0 0
$$902$$ 11.0000 0.366260
$$903$$ 0 0
$$904$$ −6.00000 −0.199557
$$905$$ 24.0000 0.797787
$$906$$ −6.00000 −0.199337
$$907$$ −10.0000 −0.332045 −0.166022 0.986122i $$-0.553092\pi$$
−0.166022 + 0.986122i $$0.553092\pi$$
$$908$$ −8.00000 −0.265489
$$909$$ 0 0
$$910$$ 0 0
$$911$$ −2.00000 −0.0662630 −0.0331315 0.999451i $$-0.510548\pi$$
−0.0331315 + 0.999451i $$0.510548\pi$$
$$912$$ 3.00000 0.0993399
$$913$$ 8.00000 0.264761
$$914$$ 18.0000 0.595387
$$915$$ 0 0
$$916$$ −14.0000 −0.462573
$$917$$ 0 0
$$918$$ 0 0
$$919$$ −36.0000 −1.18753 −0.593765 0.804638i $$-0.702359\pi$$
−0.593765 + 0.804638i $$0.702359\pi$$
$$920$$ −7.00000 −0.230783
$$921$$ −20.0000 −0.659022
$$922$$ −12.0000 −0.395199
$$923$$ 6.00000 0.197492
$$924$$ 0 0
$$925$$ 11.0000 0.361678
$$926$$ 13.0000 0.427207
$$927$$ 16.0000 0.525509
$$928$$ 8.00000 0.262613
$$929$$ 21.0000 0.688988 0.344494 0.938789i $$-0.388051\pi$$
0.344494 + 0.938789i $$0.388051\pi$$
$$930$$ −2.00000 −0.0655826
$$931$$ 0 0
$$932$$ 18.0000 0.589610
$$933$$ −12.0000 −0.392862
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 1.00000 0.0326860
$$937$$ −12.0000 −0.392023 −0.196011 0.980602i $$-0.562799\pi$$
−0.196011 + 0.980602i $$0.562799\pi$$
$$938$$ 0 0
$$939$$ 12.0000 0.391605
$$940$$ 5.00000 0.163082
$$941$$ −54.0000 −1.76035 −0.880175 0.474650i $$-0.842575\pi$$
−0.880175 + 0.474650i $$0.842575\pi$$
$$942$$ −7.00000 −0.228072
$$943$$ 77.0000 2.50746
$$944$$ −4.00000 −0.130189
$$945$$ 0 0
$$946$$ 8.00000 0.260102
$$947$$ 22.0000 0.714904 0.357452 0.933932i $$-0.383646\pi$$
0.357452 + 0.933932i $$0.383646\pi$$
$$948$$ −8.00000 −0.259828
$$949$$ −6.00000 −0.194768
$$950$$ −3.00000 −0.0973329
$$951$$ −18.0000 −0.583690
$$952$$ 0 0
$$953$$ −20.0000 −0.647864 −0.323932 0.946080i $$-0.605005\pi$$
−0.323932 + 0.946080i $$0.605005\pi$$
$$954$$ 11.0000 0.356138
$$955$$ −6.00000 −0.194155
$$956$$ −18.0000 −0.582162
$$957$$ 8.00000 0.258603
$$958$$ 22.0000 0.710788
$$959$$ 0 0
$$960$$ 1.00000 0.0322749
$$961$$ −27.0000 −0.870968
$$962$$ 11.0000 0.354654
$$963$$ −10.0000 −0.322245
$$964$$ −7.00000 −0.225455
$$965$$ 22.0000 0.708205
$$966$$ 0 0
$$967$$ −20.0000 −0.643157 −0.321578 0.946883i $$-0.604213\pi$$
−0.321578 + 0.946883i $$0.604213\pi$$
$$968$$ 10.0000 0.321412
$$969$$ 0 0
$$970$$ −16.0000 −0.513729
$$971$$ 45.0000 1.44412 0.722059 0.691831i $$-0.243196\pi$$
0.722059 + 0.691831i $$0.243196\pi$$
$$972$$ 1.00000 0.0320750
$$973$$ 0 0
$$974$$ 16.0000 0.512673
$$975$$ −1.00000 −0.0320256
$$976$$ 0 0
$$977$$ 54.0000 1.72761 0.863807 0.503824i $$-0.168074\pi$$
0.863807 + 0.503824i $$0.168074\pi$$
$$978$$ −16.0000 −0.511624
$$979$$ −10.0000 −0.319601
$$980$$ 0 0
$$981$$ 6.00000 0.191565
$$982$$ −20.0000 −0.638226
$$983$$ −49.0000 −1.56286 −0.781429 0.623995i $$-0.785509\pi$$
−0.781429 + 0.623995i $$0.785509\pi$$
$$984$$ −11.0000 −0.350667
$$985$$ −1.00000 −0.0318626
$$986$$ 0 0
$$987$$ 0 0
$$988$$ −3.00000 −0.0954427
$$989$$ 56.0000 1.78070
$$990$$ 1.00000 0.0317821
$$991$$ 22.0000 0.698853 0.349427 0.936964i $$-0.386376\pi$$
0.349427 + 0.936964i $$0.386376\pi$$
$$992$$ −2.00000 −0.0635001
$$993$$ −13.0000 −0.412543
$$994$$ 0 0
$$995$$ 24.0000 0.760851
$$996$$ −8.00000 −0.253490
$$997$$ −14.0000 −0.443384 −0.221692 0.975117i $$-0.571158\pi$$
−0.221692 + 0.975117i $$0.571158\pi$$
$$998$$ 32.0000 1.01294
$$999$$ 11.0000 0.348025
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1470.2.a.h.1.1 1
3.2 odd 2 4410.2.a.ba.1.1 1
5.4 even 2 7350.2.a.bu.1.1 1
7.2 even 3 1470.2.i.m.361.1 2
7.3 odd 6 210.2.i.d.121.1 2
7.4 even 3 1470.2.i.m.961.1 2
7.5 odd 6 210.2.i.d.151.1 yes 2
7.6 odd 2 1470.2.a.a.1.1 1
21.5 even 6 630.2.k.c.361.1 2
21.17 even 6 630.2.k.c.541.1 2
21.20 even 2 4410.2.a.bj.1.1 1
28.3 even 6 1680.2.bg.g.961.1 2
28.19 even 6 1680.2.bg.g.1201.1 2
35.3 even 12 1050.2.o.i.499.1 4
35.12 even 12 1050.2.o.i.949.1 4
35.17 even 12 1050.2.o.i.499.2 4
35.19 odd 6 1050.2.i.b.151.1 2
35.24 odd 6 1050.2.i.b.751.1 2
35.33 even 12 1050.2.o.i.949.2 4
35.34 odd 2 7350.2.a.cp.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.i.d.121.1 2 7.3 odd 6
210.2.i.d.151.1 yes 2 7.5 odd 6
630.2.k.c.361.1 2 21.5 even 6
630.2.k.c.541.1 2 21.17 even 6
1050.2.i.b.151.1 2 35.19 odd 6
1050.2.i.b.751.1 2 35.24 odd 6
1050.2.o.i.499.1 4 35.3 even 12
1050.2.o.i.499.2 4 35.17 even 12
1050.2.o.i.949.1 4 35.12 even 12
1050.2.o.i.949.2 4 35.33 even 12
1470.2.a.a.1.1 1 7.6 odd 2
1470.2.a.h.1.1 1 1.1 even 1 trivial
1470.2.i.m.361.1 2 7.2 even 3
1470.2.i.m.961.1 2 7.4 even 3
1680.2.bg.g.961.1 2 28.3 even 6
1680.2.bg.g.1201.1 2 28.19 even 6
4410.2.a.ba.1.1 1 3.2 odd 2
4410.2.a.bj.1.1 1 21.20 even 2
7350.2.a.bu.1.1 1 5.4 even 2
7350.2.a.cp.1.1 1 35.34 odd 2