# Properties

 Label 1470.2.a.d.1.1 Level $1470$ Weight $2$ Character 1470.1 Self dual yes Analytic conductor $11.738$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1470.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$11.7380090971$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 30) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 1470.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{5} +1.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})$$ $$q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{5} +1.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} -1.00000 q^{10} -1.00000 q^{12} -2.00000 q^{13} -1.00000 q^{15} +1.00000 q^{16} -6.00000 q^{17} -1.00000 q^{18} +4.00000 q^{19} +1.00000 q^{20} +1.00000 q^{24} +1.00000 q^{25} +2.00000 q^{26} -1.00000 q^{27} -6.00000 q^{29} +1.00000 q^{30} -8.00000 q^{31} -1.00000 q^{32} +6.00000 q^{34} +1.00000 q^{36} +2.00000 q^{37} -4.00000 q^{38} +2.00000 q^{39} -1.00000 q^{40} +6.00000 q^{41} -4.00000 q^{43} +1.00000 q^{45} -1.00000 q^{48} -1.00000 q^{50} +6.00000 q^{51} -2.00000 q^{52} -6.00000 q^{53} +1.00000 q^{54} -4.00000 q^{57} +6.00000 q^{58} -1.00000 q^{60} +10.0000 q^{61} +8.00000 q^{62} +1.00000 q^{64} -2.00000 q^{65} -4.00000 q^{67} -6.00000 q^{68} -1.00000 q^{72} -2.00000 q^{73} -2.00000 q^{74} -1.00000 q^{75} +4.00000 q^{76} -2.00000 q^{78} +8.00000 q^{79} +1.00000 q^{80} +1.00000 q^{81} -6.00000 q^{82} -12.0000 q^{83} -6.00000 q^{85} +4.00000 q^{86} +6.00000 q^{87} -18.0000 q^{89} -1.00000 q^{90} +8.00000 q^{93} +4.00000 q^{95} +1.00000 q^{96} -2.00000 q^{97} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.00000 −0.707107
$$3$$ −1.00000 −0.577350
$$4$$ 1.00000 0.500000
$$5$$ 1.00000 0.447214
$$6$$ 1.00000 0.408248
$$7$$ 0 0
$$8$$ −1.00000 −0.353553
$$9$$ 1.00000 0.333333
$$10$$ −1.00000 −0.316228
$$11$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$12$$ −1.00000 −0.288675
$$13$$ −2.00000 −0.554700 −0.277350 0.960769i $$-0.589456\pi$$
−0.277350 + 0.960769i $$0.589456\pi$$
$$14$$ 0 0
$$15$$ −1.00000 −0.258199
$$16$$ 1.00000 0.250000
$$17$$ −6.00000 −1.45521 −0.727607 0.685994i $$-0.759367\pi$$
−0.727607 + 0.685994i $$0.759367\pi$$
$$18$$ −1.00000 −0.235702
$$19$$ 4.00000 0.917663 0.458831 0.888523i $$-0.348268\pi$$
0.458831 + 0.888523i $$0.348268\pi$$
$$20$$ 1.00000 0.223607
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$24$$ 1.00000 0.204124
$$25$$ 1.00000 0.200000
$$26$$ 2.00000 0.392232
$$27$$ −1.00000 −0.192450
$$28$$ 0 0
$$29$$ −6.00000 −1.11417 −0.557086 0.830455i $$-0.688081\pi$$
−0.557086 + 0.830455i $$0.688081\pi$$
$$30$$ 1.00000 0.182574
$$31$$ −8.00000 −1.43684 −0.718421 0.695608i $$-0.755135\pi$$
−0.718421 + 0.695608i $$0.755135\pi$$
$$32$$ −1.00000 −0.176777
$$33$$ 0 0
$$34$$ 6.00000 1.02899
$$35$$ 0 0
$$36$$ 1.00000 0.166667
$$37$$ 2.00000 0.328798 0.164399 0.986394i $$-0.447432\pi$$
0.164399 + 0.986394i $$0.447432\pi$$
$$38$$ −4.00000 −0.648886
$$39$$ 2.00000 0.320256
$$40$$ −1.00000 −0.158114
$$41$$ 6.00000 0.937043 0.468521 0.883452i $$-0.344787\pi$$
0.468521 + 0.883452i $$0.344787\pi$$
$$42$$ 0 0
$$43$$ −4.00000 −0.609994 −0.304997 0.952353i $$-0.598656\pi$$
−0.304997 + 0.952353i $$0.598656\pi$$
$$44$$ 0 0
$$45$$ 1.00000 0.149071
$$46$$ 0 0
$$47$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$48$$ −1.00000 −0.144338
$$49$$ 0 0
$$50$$ −1.00000 −0.141421
$$51$$ 6.00000 0.840168
$$52$$ −2.00000 −0.277350
$$53$$ −6.00000 −0.824163 −0.412082 0.911147i $$-0.635198\pi$$
−0.412082 + 0.911147i $$0.635198\pi$$
$$54$$ 1.00000 0.136083
$$55$$ 0 0
$$56$$ 0 0
$$57$$ −4.00000 −0.529813
$$58$$ 6.00000 0.787839
$$59$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$60$$ −1.00000 −0.129099
$$61$$ 10.0000 1.28037 0.640184 0.768221i $$-0.278858\pi$$
0.640184 + 0.768221i $$0.278858\pi$$
$$62$$ 8.00000 1.01600
$$63$$ 0 0
$$64$$ 1.00000 0.125000
$$65$$ −2.00000 −0.248069
$$66$$ 0 0
$$67$$ −4.00000 −0.488678 −0.244339 0.969690i $$-0.578571\pi$$
−0.244339 + 0.969690i $$0.578571\pi$$
$$68$$ −6.00000 −0.727607
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$72$$ −1.00000 −0.117851
$$73$$ −2.00000 −0.234082 −0.117041 0.993127i $$-0.537341\pi$$
−0.117041 + 0.993127i $$0.537341\pi$$
$$74$$ −2.00000 −0.232495
$$75$$ −1.00000 −0.115470
$$76$$ 4.00000 0.458831
$$77$$ 0 0
$$78$$ −2.00000 −0.226455
$$79$$ 8.00000 0.900070 0.450035 0.893011i $$-0.351411\pi$$
0.450035 + 0.893011i $$0.351411\pi$$
$$80$$ 1.00000 0.111803
$$81$$ 1.00000 0.111111
$$82$$ −6.00000 −0.662589
$$83$$ −12.0000 −1.31717 −0.658586 0.752506i $$-0.728845\pi$$
−0.658586 + 0.752506i $$0.728845\pi$$
$$84$$ 0 0
$$85$$ −6.00000 −0.650791
$$86$$ 4.00000 0.431331
$$87$$ 6.00000 0.643268
$$88$$ 0 0
$$89$$ −18.0000 −1.90800 −0.953998 0.299813i $$-0.903076\pi$$
−0.953998 + 0.299813i $$0.903076\pi$$
$$90$$ −1.00000 −0.105409
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 8.00000 0.829561
$$94$$ 0 0
$$95$$ 4.00000 0.410391
$$96$$ 1.00000 0.102062
$$97$$ −2.00000 −0.203069 −0.101535 0.994832i $$-0.532375\pi$$
−0.101535 + 0.994832i $$0.532375\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 1.00000 0.100000
$$101$$ −18.0000 −1.79107 −0.895533 0.444994i $$-0.853206\pi$$
−0.895533 + 0.444994i $$0.853206\pi$$
$$102$$ −6.00000 −0.594089
$$103$$ 4.00000 0.394132 0.197066 0.980390i $$-0.436859\pi$$
0.197066 + 0.980390i $$0.436859\pi$$
$$104$$ 2.00000 0.196116
$$105$$ 0 0
$$106$$ 6.00000 0.582772
$$107$$ −12.0000 −1.16008 −0.580042 0.814587i $$-0.696964\pi$$
−0.580042 + 0.814587i $$0.696964\pi$$
$$108$$ −1.00000 −0.0962250
$$109$$ −10.0000 −0.957826 −0.478913 0.877862i $$-0.658969\pi$$
−0.478913 + 0.877862i $$0.658969\pi$$
$$110$$ 0 0
$$111$$ −2.00000 −0.189832
$$112$$ 0 0
$$113$$ −18.0000 −1.69330 −0.846649 0.532152i $$-0.821383\pi$$
−0.846649 + 0.532152i $$0.821383\pi$$
$$114$$ 4.00000 0.374634
$$115$$ 0 0
$$116$$ −6.00000 −0.557086
$$117$$ −2.00000 −0.184900
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 1.00000 0.0912871
$$121$$ −11.0000 −1.00000
$$122$$ −10.0000 −0.905357
$$123$$ −6.00000 −0.541002
$$124$$ −8.00000 −0.718421
$$125$$ 1.00000 0.0894427
$$126$$ 0 0
$$127$$ 20.0000 1.77471 0.887357 0.461084i $$-0.152539\pi$$
0.887357 + 0.461084i $$0.152539\pi$$
$$128$$ −1.00000 −0.0883883
$$129$$ 4.00000 0.352180
$$130$$ 2.00000 0.175412
$$131$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 4.00000 0.345547
$$135$$ −1.00000 −0.0860663
$$136$$ 6.00000 0.514496
$$137$$ 6.00000 0.512615 0.256307 0.966595i $$-0.417494\pi$$
0.256307 + 0.966595i $$0.417494\pi$$
$$138$$ 0 0
$$139$$ 4.00000 0.339276 0.169638 0.985506i $$-0.445740\pi$$
0.169638 + 0.985506i $$0.445740\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 0 0
$$144$$ 1.00000 0.0833333
$$145$$ −6.00000 −0.498273
$$146$$ 2.00000 0.165521
$$147$$ 0 0
$$148$$ 2.00000 0.164399
$$149$$ −6.00000 −0.491539 −0.245770 0.969328i $$-0.579041\pi$$
−0.245770 + 0.969328i $$0.579041\pi$$
$$150$$ 1.00000 0.0816497
$$151$$ 8.00000 0.651031 0.325515 0.945537i $$-0.394462\pi$$
0.325515 + 0.945537i $$0.394462\pi$$
$$152$$ −4.00000 −0.324443
$$153$$ −6.00000 −0.485071
$$154$$ 0 0
$$155$$ −8.00000 −0.642575
$$156$$ 2.00000 0.160128
$$157$$ −2.00000 −0.159617 −0.0798087 0.996810i $$-0.525431\pi$$
−0.0798087 + 0.996810i $$0.525431\pi$$
$$158$$ −8.00000 −0.636446
$$159$$ 6.00000 0.475831
$$160$$ −1.00000 −0.0790569
$$161$$ 0 0
$$162$$ −1.00000 −0.0785674
$$163$$ −4.00000 −0.313304 −0.156652 0.987654i $$-0.550070\pi$$
−0.156652 + 0.987654i $$0.550070\pi$$
$$164$$ 6.00000 0.468521
$$165$$ 0 0
$$166$$ 12.0000 0.931381
$$167$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$168$$ 0 0
$$169$$ −9.00000 −0.692308
$$170$$ 6.00000 0.460179
$$171$$ 4.00000 0.305888
$$172$$ −4.00000 −0.304997
$$173$$ −18.0000 −1.36851 −0.684257 0.729241i $$-0.739873\pi$$
−0.684257 + 0.729241i $$0.739873\pi$$
$$174$$ −6.00000 −0.454859
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 18.0000 1.34916
$$179$$ 24.0000 1.79384 0.896922 0.442189i $$-0.145798\pi$$
0.896922 + 0.442189i $$0.145798\pi$$
$$180$$ 1.00000 0.0745356
$$181$$ −14.0000 −1.04061 −0.520306 0.853980i $$-0.674182\pi$$
−0.520306 + 0.853980i $$0.674182\pi$$
$$182$$ 0 0
$$183$$ −10.0000 −0.739221
$$184$$ 0 0
$$185$$ 2.00000 0.147043
$$186$$ −8.00000 −0.586588
$$187$$ 0 0
$$188$$ 0 0
$$189$$ 0 0
$$190$$ −4.00000 −0.290191
$$191$$ −24.0000 −1.73658 −0.868290 0.496058i $$-0.834780\pi$$
−0.868290 + 0.496058i $$0.834780\pi$$
$$192$$ −1.00000 −0.0721688
$$193$$ −22.0000 −1.58359 −0.791797 0.610784i $$-0.790854\pi$$
−0.791797 + 0.610784i $$0.790854\pi$$
$$194$$ 2.00000 0.143592
$$195$$ 2.00000 0.143223
$$196$$ 0 0
$$197$$ −6.00000 −0.427482 −0.213741 0.976890i $$-0.568565\pi$$
−0.213741 + 0.976890i $$0.568565\pi$$
$$198$$ 0 0
$$199$$ −8.00000 −0.567105 −0.283552 0.958957i $$-0.591513\pi$$
−0.283552 + 0.958957i $$0.591513\pi$$
$$200$$ −1.00000 −0.0707107
$$201$$ 4.00000 0.282138
$$202$$ 18.0000 1.26648
$$203$$ 0 0
$$204$$ 6.00000 0.420084
$$205$$ 6.00000 0.419058
$$206$$ −4.00000 −0.278693
$$207$$ 0 0
$$208$$ −2.00000 −0.138675
$$209$$ 0 0
$$210$$ 0 0
$$211$$ 20.0000 1.37686 0.688428 0.725304i $$-0.258301\pi$$
0.688428 + 0.725304i $$0.258301\pi$$
$$212$$ −6.00000 −0.412082
$$213$$ 0 0
$$214$$ 12.0000 0.820303
$$215$$ −4.00000 −0.272798
$$216$$ 1.00000 0.0680414
$$217$$ 0 0
$$218$$ 10.0000 0.677285
$$219$$ 2.00000 0.135147
$$220$$ 0 0
$$221$$ 12.0000 0.807207
$$222$$ 2.00000 0.134231
$$223$$ −20.0000 −1.33930 −0.669650 0.742677i $$-0.733556\pi$$
−0.669650 + 0.742677i $$0.733556\pi$$
$$224$$ 0 0
$$225$$ 1.00000 0.0666667
$$226$$ 18.0000 1.19734
$$227$$ 12.0000 0.796468 0.398234 0.917284i $$-0.369623\pi$$
0.398234 + 0.917284i $$0.369623\pi$$
$$228$$ −4.00000 −0.264906
$$229$$ 10.0000 0.660819 0.330409 0.943838i $$-0.392813\pi$$
0.330409 + 0.943838i $$0.392813\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 6.00000 0.393919
$$233$$ −18.0000 −1.17922 −0.589610 0.807688i $$-0.700718\pi$$
−0.589610 + 0.807688i $$0.700718\pi$$
$$234$$ 2.00000 0.130744
$$235$$ 0 0
$$236$$ 0 0
$$237$$ −8.00000 −0.519656
$$238$$ 0 0
$$239$$ 24.0000 1.55243 0.776215 0.630468i $$-0.217137\pi$$
0.776215 + 0.630468i $$0.217137\pi$$
$$240$$ −1.00000 −0.0645497
$$241$$ −2.00000 −0.128831 −0.0644157 0.997923i $$-0.520518\pi$$
−0.0644157 + 0.997923i $$0.520518\pi$$
$$242$$ 11.0000 0.707107
$$243$$ −1.00000 −0.0641500
$$244$$ 10.0000 0.640184
$$245$$ 0 0
$$246$$ 6.00000 0.382546
$$247$$ −8.00000 −0.509028
$$248$$ 8.00000 0.508001
$$249$$ 12.0000 0.760469
$$250$$ −1.00000 −0.0632456
$$251$$ 24.0000 1.51487 0.757433 0.652913i $$-0.226453\pi$$
0.757433 + 0.652913i $$0.226453\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ −20.0000 −1.25491
$$255$$ 6.00000 0.375735
$$256$$ 1.00000 0.0625000
$$257$$ 18.0000 1.12281 0.561405 0.827541i $$-0.310261\pi$$
0.561405 + 0.827541i $$0.310261\pi$$
$$258$$ −4.00000 −0.249029
$$259$$ 0 0
$$260$$ −2.00000 −0.124035
$$261$$ −6.00000 −0.371391
$$262$$ 0 0
$$263$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$264$$ 0 0
$$265$$ −6.00000 −0.368577
$$266$$ 0 0
$$267$$ 18.0000 1.10158
$$268$$ −4.00000 −0.244339
$$269$$ 6.00000 0.365826 0.182913 0.983129i $$-0.441447\pi$$
0.182913 + 0.983129i $$0.441447\pi$$
$$270$$ 1.00000 0.0608581
$$271$$ 16.0000 0.971931 0.485965 0.873978i $$-0.338468\pi$$
0.485965 + 0.873978i $$0.338468\pi$$
$$272$$ −6.00000 −0.363803
$$273$$ 0 0
$$274$$ −6.00000 −0.362473
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 2.00000 0.120168 0.0600842 0.998193i $$-0.480863\pi$$
0.0600842 + 0.998193i $$0.480863\pi$$
$$278$$ −4.00000 −0.239904
$$279$$ −8.00000 −0.478947
$$280$$ 0 0
$$281$$ 18.0000 1.07379 0.536895 0.843649i $$-0.319597\pi$$
0.536895 + 0.843649i $$0.319597\pi$$
$$282$$ 0 0
$$283$$ 28.0000 1.66443 0.832214 0.554455i $$-0.187073\pi$$
0.832214 + 0.554455i $$0.187073\pi$$
$$284$$ 0 0
$$285$$ −4.00000 −0.236940
$$286$$ 0 0
$$287$$ 0 0
$$288$$ −1.00000 −0.0589256
$$289$$ 19.0000 1.11765
$$290$$ 6.00000 0.352332
$$291$$ 2.00000 0.117242
$$292$$ −2.00000 −0.117041
$$293$$ 6.00000 0.350524 0.175262 0.984522i $$-0.443923\pi$$
0.175262 + 0.984522i $$0.443923\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ −2.00000 −0.116248
$$297$$ 0 0
$$298$$ 6.00000 0.347571
$$299$$ 0 0
$$300$$ −1.00000 −0.0577350
$$301$$ 0 0
$$302$$ −8.00000 −0.460348
$$303$$ 18.0000 1.03407
$$304$$ 4.00000 0.229416
$$305$$ 10.0000 0.572598
$$306$$ 6.00000 0.342997
$$307$$ −20.0000 −1.14146 −0.570730 0.821138i $$-0.693340\pi$$
−0.570730 + 0.821138i $$0.693340\pi$$
$$308$$ 0 0
$$309$$ −4.00000 −0.227552
$$310$$ 8.00000 0.454369
$$311$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$312$$ −2.00000 −0.113228
$$313$$ −2.00000 −0.113047 −0.0565233 0.998401i $$-0.518002\pi$$
−0.0565233 + 0.998401i $$0.518002\pi$$
$$314$$ 2.00000 0.112867
$$315$$ 0 0
$$316$$ 8.00000 0.450035
$$317$$ 18.0000 1.01098 0.505490 0.862832i $$-0.331312\pi$$
0.505490 + 0.862832i $$0.331312\pi$$
$$318$$ −6.00000 −0.336463
$$319$$ 0 0
$$320$$ 1.00000 0.0559017
$$321$$ 12.0000 0.669775
$$322$$ 0 0
$$323$$ −24.0000 −1.33540
$$324$$ 1.00000 0.0555556
$$325$$ −2.00000 −0.110940
$$326$$ 4.00000 0.221540
$$327$$ 10.0000 0.553001
$$328$$ −6.00000 −0.331295
$$329$$ 0 0
$$330$$ 0 0
$$331$$ −28.0000 −1.53902 −0.769510 0.638635i $$-0.779499\pi$$
−0.769510 + 0.638635i $$0.779499\pi$$
$$332$$ −12.0000 −0.658586
$$333$$ 2.00000 0.109599
$$334$$ 0 0
$$335$$ −4.00000 −0.218543
$$336$$ 0 0
$$337$$ 26.0000 1.41631 0.708155 0.706057i $$-0.249528\pi$$
0.708155 + 0.706057i $$0.249528\pi$$
$$338$$ 9.00000 0.489535
$$339$$ 18.0000 0.977626
$$340$$ −6.00000 −0.325396
$$341$$ 0 0
$$342$$ −4.00000 −0.216295
$$343$$ 0 0
$$344$$ 4.00000 0.215666
$$345$$ 0 0
$$346$$ 18.0000 0.967686
$$347$$ 12.0000 0.644194 0.322097 0.946707i $$-0.395612\pi$$
0.322097 + 0.946707i $$0.395612\pi$$
$$348$$ 6.00000 0.321634
$$349$$ 10.0000 0.535288 0.267644 0.963518i $$-0.413755\pi$$
0.267644 + 0.963518i $$0.413755\pi$$
$$350$$ 0 0
$$351$$ 2.00000 0.106752
$$352$$ 0 0
$$353$$ −6.00000 −0.319348 −0.159674 0.987170i $$-0.551044\pi$$
−0.159674 + 0.987170i $$0.551044\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ −18.0000 −0.953998
$$357$$ 0 0
$$358$$ −24.0000 −1.26844
$$359$$ −24.0000 −1.26667 −0.633336 0.773877i $$-0.718315\pi$$
−0.633336 + 0.773877i $$0.718315\pi$$
$$360$$ −1.00000 −0.0527046
$$361$$ −3.00000 −0.157895
$$362$$ 14.0000 0.735824
$$363$$ 11.0000 0.577350
$$364$$ 0 0
$$365$$ −2.00000 −0.104685
$$366$$ 10.0000 0.522708
$$367$$ 28.0000 1.46159 0.730794 0.682598i $$-0.239150\pi$$
0.730794 + 0.682598i $$0.239150\pi$$
$$368$$ 0 0
$$369$$ 6.00000 0.312348
$$370$$ −2.00000 −0.103975
$$371$$ 0 0
$$372$$ 8.00000 0.414781
$$373$$ 26.0000 1.34623 0.673114 0.739538i $$-0.264956\pi$$
0.673114 + 0.739538i $$0.264956\pi$$
$$374$$ 0 0
$$375$$ −1.00000 −0.0516398
$$376$$ 0 0
$$377$$ 12.0000 0.618031
$$378$$ 0 0
$$379$$ −4.00000 −0.205466 −0.102733 0.994709i $$-0.532759\pi$$
−0.102733 + 0.994709i $$0.532759\pi$$
$$380$$ 4.00000 0.205196
$$381$$ −20.0000 −1.02463
$$382$$ 24.0000 1.22795
$$383$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$384$$ 1.00000 0.0510310
$$385$$ 0 0
$$386$$ 22.0000 1.11977
$$387$$ −4.00000 −0.203331
$$388$$ −2.00000 −0.101535
$$389$$ −6.00000 −0.304212 −0.152106 0.988364i $$-0.548606\pi$$
−0.152106 + 0.988364i $$0.548606\pi$$
$$390$$ −2.00000 −0.101274
$$391$$ 0 0
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 6.00000 0.302276
$$395$$ 8.00000 0.402524
$$396$$ 0 0
$$397$$ 22.0000 1.10415 0.552074 0.833795i $$-0.313837\pi$$
0.552074 + 0.833795i $$0.313837\pi$$
$$398$$ 8.00000 0.401004
$$399$$ 0 0
$$400$$ 1.00000 0.0500000
$$401$$ −6.00000 −0.299626 −0.149813 0.988714i $$-0.547867\pi$$
−0.149813 + 0.988714i $$0.547867\pi$$
$$402$$ −4.00000 −0.199502
$$403$$ 16.0000 0.797017
$$404$$ −18.0000 −0.895533
$$405$$ 1.00000 0.0496904
$$406$$ 0 0
$$407$$ 0 0
$$408$$ −6.00000 −0.297044
$$409$$ −26.0000 −1.28562 −0.642809 0.766027i $$-0.722231\pi$$
−0.642809 + 0.766027i $$0.722231\pi$$
$$410$$ −6.00000 −0.296319
$$411$$ −6.00000 −0.295958
$$412$$ 4.00000 0.197066
$$413$$ 0 0
$$414$$ 0 0
$$415$$ −12.0000 −0.589057
$$416$$ 2.00000 0.0980581
$$417$$ −4.00000 −0.195881
$$418$$ 0 0
$$419$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$420$$ 0 0
$$421$$ −10.0000 −0.487370 −0.243685 0.969854i $$-0.578356\pi$$
−0.243685 + 0.969854i $$0.578356\pi$$
$$422$$ −20.0000 −0.973585
$$423$$ 0 0
$$424$$ 6.00000 0.291386
$$425$$ −6.00000 −0.291043
$$426$$ 0 0
$$427$$ 0 0
$$428$$ −12.0000 −0.580042
$$429$$ 0 0
$$430$$ 4.00000 0.192897
$$431$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$432$$ −1.00000 −0.0481125
$$433$$ −26.0000 −1.24948 −0.624740 0.780833i $$-0.714795\pi$$
−0.624740 + 0.780833i $$0.714795\pi$$
$$434$$ 0 0
$$435$$ 6.00000 0.287678
$$436$$ −10.0000 −0.478913
$$437$$ 0 0
$$438$$ −2.00000 −0.0955637
$$439$$ −8.00000 −0.381819 −0.190910 0.981608i $$-0.561144\pi$$
−0.190910 + 0.981608i $$0.561144\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ −12.0000 −0.570782
$$443$$ 12.0000 0.570137 0.285069 0.958507i $$-0.407984\pi$$
0.285069 + 0.958507i $$0.407984\pi$$
$$444$$ −2.00000 −0.0949158
$$445$$ −18.0000 −0.853282
$$446$$ 20.0000 0.947027
$$447$$ 6.00000 0.283790
$$448$$ 0 0
$$449$$ −6.00000 −0.283158 −0.141579 0.989927i $$-0.545218\pi$$
−0.141579 + 0.989927i $$0.545218\pi$$
$$450$$ −1.00000 −0.0471405
$$451$$ 0 0
$$452$$ −18.0000 −0.846649
$$453$$ −8.00000 −0.375873
$$454$$ −12.0000 −0.563188
$$455$$ 0 0
$$456$$ 4.00000 0.187317
$$457$$ 26.0000 1.21623 0.608114 0.793849i $$-0.291926\pi$$
0.608114 + 0.793849i $$0.291926\pi$$
$$458$$ −10.0000 −0.467269
$$459$$ 6.00000 0.280056
$$460$$ 0 0
$$461$$ 30.0000 1.39724 0.698620 0.715493i $$-0.253798\pi$$
0.698620 + 0.715493i $$0.253798\pi$$
$$462$$ 0 0
$$463$$ −4.00000 −0.185896 −0.0929479 0.995671i $$-0.529629\pi$$
−0.0929479 + 0.995671i $$0.529629\pi$$
$$464$$ −6.00000 −0.278543
$$465$$ 8.00000 0.370991
$$466$$ 18.0000 0.833834
$$467$$ 36.0000 1.66588 0.832941 0.553362i $$-0.186655\pi$$
0.832941 + 0.553362i $$0.186655\pi$$
$$468$$ −2.00000 −0.0924500
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 2.00000 0.0921551
$$472$$ 0 0
$$473$$ 0 0
$$474$$ 8.00000 0.367452
$$475$$ 4.00000 0.183533
$$476$$ 0 0
$$477$$ −6.00000 −0.274721
$$478$$ −24.0000 −1.09773
$$479$$ 24.0000 1.09659 0.548294 0.836286i $$-0.315277\pi$$
0.548294 + 0.836286i $$0.315277\pi$$
$$480$$ 1.00000 0.0456435
$$481$$ −4.00000 −0.182384
$$482$$ 2.00000 0.0910975
$$483$$ 0 0
$$484$$ −11.0000 −0.500000
$$485$$ −2.00000 −0.0908153
$$486$$ 1.00000 0.0453609
$$487$$ −28.0000 −1.26880 −0.634401 0.773004i $$-0.718753\pi$$
−0.634401 + 0.773004i $$0.718753\pi$$
$$488$$ −10.0000 −0.452679
$$489$$ 4.00000 0.180886
$$490$$ 0 0
$$491$$ 24.0000 1.08310 0.541552 0.840667i $$-0.317837\pi$$
0.541552 + 0.840667i $$0.317837\pi$$
$$492$$ −6.00000 −0.270501
$$493$$ 36.0000 1.62136
$$494$$ 8.00000 0.359937
$$495$$ 0 0
$$496$$ −8.00000 −0.359211
$$497$$ 0 0
$$498$$ −12.0000 −0.537733
$$499$$ −4.00000 −0.179065 −0.0895323 0.995984i $$-0.528537\pi$$
−0.0895323 + 0.995984i $$0.528537\pi$$
$$500$$ 1.00000 0.0447214
$$501$$ 0 0
$$502$$ −24.0000 −1.07117
$$503$$ −24.0000 −1.07011 −0.535054 0.844818i $$-0.679709\pi$$
−0.535054 + 0.844818i $$0.679709\pi$$
$$504$$ 0 0
$$505$$ −18.0000 −0.800989
$$506$$ 0 0
$$507$$ 9.00000 0.399704
$$508$$ 20.0000 0.887357
$$509$$ 6.00000 0.265945 0.132973 0.991120i $$-0.457548\pi$$
0.132973 + 0.991120i $$0.457548\pi$$
$$510$$ −6.00000 −0.265684
$$511$$ 0 0
$$512$$ −1.00000 −0.0441942
$$513$$ −4.00000 −0.176604
$$514$$ −18.0000 −0.793946
$$515$$ 4.00000 0.176261
$$516$$ 4.00000 0.176090
$$517$$ 0 0
$$518$$ 0 0
$$519$$ 18.0000 0.790112
$$520$$ 2.00000 0.0877058
$$521$$ −18.0000 −0.788594 −0.394297 0.918983i $$-0.629012\pi$$
−0.394297 + 0.918983i $$0.629012\pi$$
$$522$$ 6.00000 0.262613
$$523$$ −20.0000 −0.874539 −0.437269 0.899331i $$-0.644054\pi$$
−0.437269 + 0.899331i $$0.644054\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 48.0000 2.09091
$$528$$ 0 0
$$529$$ −23.0000 −1.00000
$$530$$ 6.00000 0.260623
$$531$$ 0 0
$$532$$ 0 0
$$533$$ −12.0000 −0.519778
$$534$$ −18.0000 −0.778936
$$535$$ −12.0000 −0.518805
$$536$$ 4.00000 0.172774
$$537$$ −24.0000 −1.03568
$$538$$ −6.00000 −0.258678
$$539$$ 0 0
$$540$$ −1.00000 −0.0430331
$$541$$ −10.0000 −0.429934 −0.214967 0.976621i $$-0.568964\pi$$
−0.214967 + 0.976621i $$0.568964\pi$$
$$542$$ −16.0000 −0.687259
$$543$$ 14.0000 0.600798
$$544$$ 6.00000 0.257248
$$545$$ −10.0000 −0.428353
$$546$$ 0 0
$$547$$ −28.0000 −1.19719 −0.598597 0.801050i $$-0.704275\pi$$
−0.598597 + 0.801050i $$0.704275\pi$$
$$548$$ 6.00000 0.256307
$$549$$ 10.0000 0.426790
$$550$$ 0 0
$$551$$ −24.0000 −1.02243
$$552$$ 0 0
$$553$$ 0 0
$$554$$ −2.00000 −0.0849719
$$555$$ −2.00000 −0.0848953
$$556$$ 4.00000 0.169638
$$557$$ 18.0000 0.762684 0.381342 0.924434i $$-0.375462\pi$$
0.381342 + 0.924434i $$0.375462\pi$$
$$558$$ 8.00000 0.338667
$$559$$ 8.00000 0.338364
$$560$$ 0 0
$$561$$ 0 0
$$562$$ −18.0000 −0.759284
$$563$$ 12.0000 0.505740 0.252870 0.967500i $$-0.418626\pi$$
0.252870 + 0.967500i $$0.418626\pi$$
$$564$$ 0 0
$$565$$ −18.0000 −0.757266
$$566$$ −28.0000 −1.17693
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 18.0000 0.754599 0.377300 0.926091i $$-0.376853\pi$$
0.377300 + 0.926091i $$0.376853\pi$$
$$570$$ 4.00000 0.167542
$$571$$ 20.0000 0.836974 0.418487 0.908223i $$-0.362561\pi$$
0.418487 + 0.908223i $$0.362561\pi$$
$$572$$ 0 0
$$573$$ 24.0000 1.00261
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 1.00000 0.0416667
$$577$$ −2.00000 −0.0832611 −0.0416305 0.999133i $$-0.513255\pi$$
−0.0416305 + 0.999133i $$0.513255\pi$$
$$578$$ −19.0000 −0.790296
$$579$$ 22.0000 0.914289
$$580$$ −6.00000 −0.249136
$$581$$ 0 0
$$582$$ −2.00000 −0.0829027
$$583$$ 0 0
$$584$$ 2.00000 0.0827606
$$585$$ −2.00000 −0.0826898
$$586$$ −6.00000 −0.247858
$$587$$ 12.0000 0.495293 0.247647 0.968850i $$-0.420343\pi$$
0.247647 + 0.968850i $$0.420343\pi$$
$$588$$ 0 0
$$589$$ −32.0000 −1.31854
$$590$$ 0 0
$$591$$ 6.00000 0.246807
$$592$$ 2.00000 0.0821995
$$593$$ −30.0000 −1.23195 −0.615976 0.787765i $$-0.711238\pi$$
−0.615976 + 0.787765i $$0.711238\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ −6.00000 −0.245770
$$597$$ 8.00000 0.327418
$$598$$ 0 0
$$599$$ −24.0000 −0.980613 −0.490307 0.871550i $$-0.663115\pi$$
−0.490307 + 0.871550i $$0.663115\pi$$
$$600$$ 1.00000 0.0408248
$$601$$ 22.0000 0.897399 0.448699 0.893683i $$-0.351887\pi$$
0.448699 + 0.893683i $$0.351887\pi$$
$$602$$ 0 0
$$603$$ −4.00000 −0.162893
$$604$$ 8.00000 0.325515
$$605$$ −11.0000 −0.447214
$$606$$ −18.0000 −0.731200
$$607$$ 4.00000 0.162355 0.0811775 0.996700i $$-0.474132\pi$$
0.0811775 + 0.996700i $$0.474132\pi$$
$$608$$ −4.00000 −0.162221
$$609$$ 0 0
$$610$$ −10.0000 −0.404888
$$611$$ 0 0
$$612$$ −6.00000 −0.242536
$$613$$ 2.00000 0.0807792 0.0403896 0.999184i $$-0.487140\pi$$
0.0403896 + 0.999184i $$0.487140\pi$$
$$614$$ 20.0000 0.807134
$$615$$ −6.00000 −0.241943
$$616$$ 0 0
$$617$$ 30.0000 1.20775 0.603877 0.797077i $$-0.293622\pi$$
0.603877 + 0.797077i $$0.293622\pi$$
$$618$$ 4.00000 0.160904
$$619$$ −44.0000 −1.76851 −0.884255 0.467005i $$-0.845333\pi$$
−0.884255 + 0.467005i $$0.845333\pi$$
$$620$$ −8.00000 −0.321288
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 2.00000 0.0800641
$$625$$ 1.00000 0.0400000
$$626$$ 2.00000 0.0799361
$$627$$ 0 0
$$628$$ −2.00000 −0.0798087
$$629$$ −12.0000 −0.478471
$$630$$ 0 0
$$631$$ 32.0000 1.27390 0.636950 0.770905i $$-0.280196\pi$$
0.636950 + 0.770905i $$0.280196\pi$$
$$632$$ −8.00000 −0.318223
$$633$$ −20.0000 −0.794929
$$634$$ −18.0000 −0.714871
$$635$$ 20.0000 0.793676
$$636$$ 6.00000 0.237915
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 0 0
$$640$$ −1.00000 −0.0395285
$$641$$ −30.0000 −1.18493 −0.592464 0.805597i $$-0.701845\pi$$
−0.592464 + 0.805597i $$0.701845\pi$$
$$642$$ −12.0000 −0.473602
$$643$$ 4.00000 0.157745 0.0788723 0.996885i $$-0.474868\pi$$
0.0788723 + 0.996885i $$0.474868\pi$$
$$644$$ 0 0
$$645$$ 4.00000 0.157500
$$646$$ 24.0000 0.944267
$$647$$ −24.0000 −0.943537 −0.471769 0.881722i $$-0.656384\pi$$
−0.471769 + 0.881722i $$0.656384\pi$$
$$648$$ −1.00000 −0.0392837
$$649$$ 0 0
$$650$$ 2.00000 0.0784465
$$651$$ 0 0
$$652$$ −4.00000 −0.156652
$$653$$ 18.0000 0.704394 0.352197 0.935926i $$-0.385435\pi$$
0.352197 + 0.935926i $$0.385435\pi$$
$$654$$ −10.0000 −0.391031
$$655$$ 0 0
$$656$$ 6.00000 0.234261
$$657$$ −2.00000 −0.0780274
$$658$$ 0 0
$$659$$ 48.0000 1.86981 0.934907 0.354892i $$-0.115482\pi$$
0.934907 + 0.354892i $$0.115482\pi$$
$$660$$ 0 0
$$661$$ −14.0000 −0.544537 −0.272268 0.962221i $$-0.587774\pi$$
−0.272268 + 0.962221i $$0.587774\pi$$
$$662$$ 28.0000 1.08825
$$663$$ −12.0000 −0.466041
$$664$$ 12.0000 0.465690
$$665$$ 0 0
$$666$$ −2.00000 −0.0774984
$$667$$ 0 0
$$668$$ 0 0
$$669$$ 20.0000 0.773245
$$670$$ 4.00000 0.154533
$$671$$ 0 0
$$672$$ 0 0
$$673$$ 26.0000 1.00223 0.501113 0.865382i $$-0.332924\pi$$
0.501113 + 0.865382i $$0.332924\pi$$
$$674$$ −26.0000 −1.00148
$$675$$ −1.00000 −0.0384900
$$676$$ −9.00000 −0.346154
$$677$$ 6.00000 0.230599 0.115299 0.993331i $$-0.463217\pi$$
0.115299 + 0.993331i $$0.463217\pi$$
$$678$$ −18.0000 −0.691286
$$679$$ 0 0
$$680$$ 6.00000 0.230089
$$681$$ −12.0000 −0.459841
$$682$$ 0 0
$$683$$ −12.0000 −0.459167 −0.229584 0.973289i $$-0.573736\pi$$
−0.229584 + 0.973289i $$0.573736\pi$$
$$684$$ 4.00000 0.152944
$$685$$ 6.00000 0.229248
$$686$$ 0 0
$$687$$ −10.0000 −0.381524
$$688$$ −4.00000 −0.152499
$$689$$ 12.0000 0.457164
$$690$$ 0 0
$$691$$ −44.0000 −1.67384 −0.836919 0.547326i $$-0.815646\pi$$
−0.836919 + 0.547326i $$0.815646\pi$$
$$692$$ −18.0000 −0.684257
$$693$$ 0 0
$$694$$ −12.0000 −0.455514
$$695$$ 4.00000 0.151729
$$696$$ −6.00000 −0.227429
$$697$$ −36.0000 −1.36360
$$698$$ −10.0000 −0.378506
$$699$$ 18.0000 0.680823
$$700$$ 0 0
$$701$$ −6.00000 −0.226617 −0.113308 0.993560i $$-0.536145\pi$$
−0.113308 + 0.993560i $$0.536145\pi$$
$$702$$ −2.00000 −0.0754851
$$703$$ 8.00000 0.301726
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 6.00000 0.225813
$$707$$ 0 0
$$708$$ 0 0
$$709$$ 38.0000 1.42712 0.713560 0.700594i $$-0.247082\pi$$
0.713560 + 0.700594i $$0.247082\pi$$
$$710$$ 0 0
$$711$$ 8.00000 0.300023
$$712$$ 18.0000 0.674579
$$713$$ 0 0
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 24.0000 0.896922
$$717$$ −24.0000 −0.896296
$$718$$ 24.0000 0.895672
$$719$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$720$$ 1.00000 0.0372678
$$721$$ 0 0
$$722$$ 3.00000 0.111648
$$723$$ 2.00000 0.0743808
$$724$$ −14.0000 −0.520306
$$725$$ −6.00000 −0.222834
$$726$$ −11.0000 −0.408248
$$727$$ 28.0000 1.03846 0.519231 0.854634i $$-0.326218\pi$$
0.519231 + 0.854634i $$0.326218\pi$$
$$728$$ 0 0
$$729$$ 1.00000 0.0370370
$$730$$ 2.00000 0.0740233
$$731$$ 24.0000 0.887672
$$732$$ −10.0000 −0.369611
$$733$$ 22.0000 0.812589 0.406294 0.913742i $$-0.366821\pi$$
0.406294 + 0.913742i $$0.366821\pi$$
$$734$$ −28.0000 −1.03350
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 0 0
$$738$$ −6.00000 −0.220863
$$739$$ −52.0000 −1.91285 −0.956425 0.291977i $$-0.905687\pi$$
−0.956425 + 0.291977i $$0.905687\pi$$
$$740$$ 2.00000 0.0735215
$$741$$ 8.00000 0.293887
$$742$$ 0 0
$$743$$ −24.0000 −0.880475 −0.440237 0.897881i $$-0.645106\pi$$
−0.440237 + 0.897881i $$0.645106\pi$$
$$744$$ −8.00000 −0.293294
$$745$$ −6.00000 −0.219823
$$746$$ −26.0000 −0.951928
$$747$$ −12.0000 −0.439057
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 1.00000 0.0365148
$$751$$ −40.0000 −1.45962 −0.729810 0.683650i $$-0.760392\pi$$
−0.729810 + 0.683650i $$0.760392\pi$$
$$752$$ 0 0
$$753$$ −24.0000 −0.874609
$$754$$ −12.0000 −0.437014
$$755$$ 8.00000 0.291150
$$756$$ 0 0
$$757$$ 2.00000 0.0726912 0.0363456 0.999339i $$-0.488428\pi$$
0.0363456 + 0.999339i $$0.488428\pi$$
$$758$$ 4.00000 0.145287
$$759$$ 0 0
$$760$$ −4.00000 −0.145095
$$761$$ −18.0000 −0.652499 −0.326250 0.945284i $$-0.605785\pi$$
−0.326250 + 0.945284i $$0.605785\pi$$
$$762$$ 20.0000 0.724524
$$763$$ 0 0
$$764$$ −24.0000 −0.868290
$$765$$ −6.00000 −0.216930
$$766$$ 0 0
$$767$$ 0 0
$$768$$ −1.00000 −0.0360844
$$769$$ −2.00000 −0.0721218 −0.0360609 0.999350i $$-0.511481\pi$$
−0.0360609 + 0.999350i $$0.511481\pi$$
$$770$$ 0 0
$$771$$ −18.0000 −0.648254
$$772$$ −22.0000 −0.791797
$$773$$ −42.0000 −1.51064 −0.755318 0.655359i $$-0.772517\pi$$
−0.755318 + 0.655359i $$0.772517\pi$$
$$774$$ 4.00000 0.143777
$$775$$ −8.00000 −0.287368
$$776$$ 2.00000 0.0717958
$$777$$ 0 0
$$778$$ 6.00000 0.215110
$$779$$ 24.0000 0.859889
$$780$$ 2.00000 0.0716115
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 6.00000 0.214423
$$784$$ 0 0
$$785$$ −2.00000 −0.0713831
$$786$$ 0 0
$$787$$ 4.00000 0.142585 0.0712923 0.997455i $$-0.477288\pi$$
0.0712923 + 0.997455i $$0.477288\pi$$
$$788$$ −6.00000 −0.213741
$$789$$ 0 0
$$790$$ −8.00000 −0.284627
$$791$$ 0 0
$$792$$ 0 0
$$793$$ −20.0000 −0.710221
$$794$$ −22.0000 −0.780751
$$795$$ 6.00000 0.212798
$$796$$ −8.00000 −0.283552
$$797$$ 30.0000 1.06265 0.531327 0.847167i $$-0.321693\pi$$
0.531327 + 0.847167i $$0.321693\pi$$
$$798$$ 0 0
$$799$$ 0 0
$$800$$ −1.00000 −0.0353553
$$801$$ −18.0000 −0.635999
$$802$$ 6.00000 0.211867
$$803$$ 0 0
$$804$$ 4.00000 0.141069
$$805$$ 0 0
$$806$$ −16.0000 −0.563576
$$807$$ −6.00000 −0.211210
$$808$$ 18.0000 0.633238
$$809$$ −54.0000 −1.89854 −0.949269 0.314464i $$-0.898175\pi$$
−0.949269 + 0.314464i $$0.898175\pi$$
$$810$$ −1.00000 −0.0351364
$$811$$ 4.00000 0.140459 0.0702295 0.997531i $$-0.477627\pi$$
0.0702295 + 0.997531i $$0.477627\pi$$
$$812$$ 0 0
$$813$$ −16.0000 −0.561144
$$814$$ 0 0
$$815$$ −4.00000 −0.140114
$$816$$ 6.00000 0.210042
$$817$$ −16.0000 −0.559769
$$818$$ 26.0000 0.909069
$$819$$ 0 0
$$820$$ 6.00000 0.209529
$$821$$ 18.0000 0.628204 0.314102 0.949389i $$-0.398297\pi$$
0.314102 + 0.949389i $$0.398297\pi$$
$$822$$ 6.00000 0.209274
$$823$$ 20.0000 0.697156 0.348578 0.937280i $$-0.386665\pi$$
0.348578 + 0.937280i $$0.386665\pi$$
$$824$$ −4.00000 −0.139347
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 12.0000 0.417281 0.208640 0.977992i $$-0.433096\pi$$
0.208640 + 0.977992i $$0.433096\pi$$
$$828$$ 0 0
$$829$$ −38.0000 −1.31979 −0.659897 0.751356i $$-0.729400\pi$$
−0.659897 + 0.751356i $$0.729400\pi$$
$$830$$ 12.0000 0.416526
$$831$$ −2.00000 −0.0693792
$$832$$ −2.00000 −0.0693375
$$833$$ 0 0
$$834$$ 4.00000 0.138509
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 8.00000 0.276520
$$838$$ 0 0
$$839$$ −24.0000 −0.828572 −0.414286 0.910147i $$-0.635969\pi$$
−0.414286 + 0.910147i $$0.635969\pi$$
$$840$$ 0 0
$$841$$ 7.00000 0.241379
$$842$$ 10.0000 0.344623
$$843$$ −18.0000 −0.619953
$$844$$ 20.0000 0.688428
$$845$$ −9.00000 −0.309609
$$846$$ 0 0
$$847$$ 0 0
$$848$$ −6.00000 −0.206041
$$849$$ −28.0000 −0.960958
$$850$$ 6.00000 0.205798
$$851$$ 0 0
$$852$$ 0 0
$$853$$ 46.0000 1.57501 0.787505 0.616308i $$-0.211372\pi$$
0.787505 + 0.616308i $$0.211372\pi$$
$$854$$ 0 0
$$855$$ 4.00000 0.136797
$$856$$ 12.0000 0.410152
$$857$$ 18.0000 0.614868 0.307434 0.951569i $$-0.400530\pi$$
0.307434 + 0.951569i $$0.400530\pi$$
$$858$$ 0 0
$$859$$ 4.00000 0.136478 0.0682391 0.997669i $$-0.478262\pi$$
0.0682391 + 0.997669i $$0.478262\pi$$
$$860$$ −4.00000 −0.136399
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 24.0000 0.816970 0.408485 0.912765i $$-0.366057\pi$$
0.408485 + 0.912765i $$0.366057\pi$$
$$864$$ 1.00000 0.0340207
$$865$$ −18.0000 −0.612018
$$866$$ 26.0000 0.883516
$$867$$ −19.0000 −0.645274
$$868$$ 0 0
$$869$$ 0 0
$$870$$ −6.00000 −0.203419
$$871$$ 8.00000 0.271070
$$872$$ 10.0000 0.338643
$$873$$ −2.00000 −0.0676897
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 2.00000 0.0675737
$$877$$ 2.00000 0.0675352 0.0337676 0.999430i $$-0.489249\pi$$
0.0337676 + 0.999430i $$0.489249\pi$$
$$878$$ 8.00000 0.269987
$$879$$ −6.00000 −0.202375
$$880$$ 0 0
$$881$$ 54.0000 1.81931 0.909653 0.415369i $$-0.136347\pi$$
0.909653 + 0.415369i $$0.136347\pi$$
$$882$$ 0 0
$$883$$ −4.00000 −0.134611 −0.0673054 0.997732i $$-0.521440\pi$$
−0.0673054 + 0.997732i $$0.521440\pi$$
$$884$$ 12.0000 0.403604
$$885$$ 0 0
$$886$$ −12.0000 −0.403148
$$887$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$888$$ 2.00000 0.0671156
$$889$$ 0 0
$$890$$ 18.0000 0.603361
$$891$$ 0 0
$$892$$ −20.0000 −0.669650
$$893$$ 0 0
$$894$$ −6.00000 −0.200670
$$895$$ 24.0000 0.802232
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 6.00000 0.200223
$$899$$ 48.0000 1.60089
$$900$$ 1.00000 0.0333333
$$901$$ 36.0000 1.19933
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 18.0000 0.598671
$$905$$ −14.0000 −0.465376
$$906$$ 8.00000 0.265782
$$907$$ 44.0000 1.46100 0.730498 0.682915i $$-0.239288\pi$$
0.730498 + 0.682915i $$0.239288\pi$$
$$908$$ 12.0000 0.398234
$$909$$ −18.0000 −0.597022
$$910$$ 0 0
$$911$$ −48.0000 −1.59031 −0.795155 0.606406i $$-0.792611\pi$$
−0.795155 + 0.606406i $$0.792611\pi$$
$$912$$ −4.00000 −0.132453
$$913$$ 0 0
$$914$$ −26.0000 −0.860004
$$915$$ −10.0000 −0.330590
$$916$$ 10.0000 0.330409
$$917$$ 0 0
$$918$$ −6.00000 −0.198030
$$919$$ −16.0000 −0.527791 −0.263896 0.964551i $$-0.585007\pi$$
−0.263896 + 0.964551i $$0.585007\pi$$
$$920$$ 0 0
$$921$$ 20.0000 0.659022
$$922$$ −30.0000 −0.987997
$$923$$ 0 0
$$924$$ 0 0
$$925$$ 2.00000 0.0657596
$$926$$ 4.00000 0.131448
$$927$$ 4.00000 0.131377
$$928$$ 6.00000 0.196960
$$929$$ 6.00000 0.196854 0.0984268 0.995144i $$-0.468619\pi$$
0.0984268 + 0.995144i $$0.468619\pi$$
$$930$$ −8.00000 −0.262330
$$931$$ 0 0
$$932$$ −18.0000 −0.589610
$$933$$ 0 0
$$934$$ −36.0000 −1.17796
$$935$$ 0 0
$$936$$ 2.00000 0.0653720
$$937$$ −26.0000 −0.849383 −0.424691 0.905338i $$-0.639617\pi$$
−0.424691 + 0.905338i $$0.639617\pi$$
$$938$$ 0 0
$$939$$ 2.00000 0.0652675
$$940$$ 0 0
$$941$$ −18.0000 −0.586783 −0.293392 0.955992i $$-0.594784\pi$$
−0.293392 + 0.955992i $$0.594784\pi$$
$$942$$ −2.00000 −0.0651635
$$943$$ 0 0
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 36.0000 1.16984 0.584921 0.811090i $$-0.301125\pi$$
0.584921 + 0.811090i $$0.301125\pi$$
$$948$$ −8.00000 −0.259828
$$949$$ 4.00000 0.129845
$$950$$ −4.00000 −0.129777
$$951$$ −18.0000 −0.583690
$$952$$ 0 0
$$953$$ 6.00000 0.194359 0.0971795 0.995267i $$-0.469018\pi$$
0.0971795 + 0.995267i $$0.469018\pi$$
$$954$$ 6.00000 0.194257
$$955$$ −24.0000 −0.776622
$$956$$ 24.0000 0.776215
$$957$$ 0 0
$$958$$ −24.0000 −0.775405
$$959$$ 0 0
$$960$$ −1.00000 −0.0322749
$$961$$ 33.0000 1.06452
$$962$$ 4.00000 0.128965
$$963$$ −12.0000 −0.386695
$$964$$ −2.00000 −0.0644157
$$965$$ −22.0000 −0.708205
$$966$$ 0 0
$$967$$ −4.00000 −0.128631 −0.0643157 0.997930i $$-0.520486\pi$$
−0.0643157 + 0.997930i $$0.520486\pi$$
$$968$$ 11.0000 0.353553
$$969$$ 24.0000 0.770991
$$970$$ 2.00000 0.0642161
$$971$$ −24.0000 −0.770197 −0.385098 0.922876i $$-0.625832\pi$$
−0.385098 + 0.922876i $$0.625832\pi$$
$$972$$ −1.00000 −0.0320750
$$973$$ 0 0
$$974$$ 28.0000 0.897178
$$975$$ 2.00000 0.0640513
$$976$$ 10.0000 0.320092
$$977$$ −42.0000 −1.34370 −0.671850 0.740688i $$-0.734500\pi$$
−0.671850 + 0.740688i $$0.734500\pi$$
$$978$$ −4.00000 −0.127906
$$979$$ 0 0
$$980$$ 0 0
$$981$$ −10.0000 −0.319275
$$982$$ −24.0000 −0.765871
$$983$$ 24.0000 0.765481 0.382741 0.923856i $$-0.374980\pi$$
0.382741 + 0.923856i $$0.374980\pi$$
$$984$$ 6.00000 0.191273
$$985$$ −6.00000 −0.191176
$$986$$ −36.0000 −1.14647
$$987$$ 0 0
$$988$$ −8.00000 −0.254514
$$989$$ 0 0
$$990$$ 0 0
$$991$$ −16.0000 −0.508257 −0.254128 0.967170i $$-0.581789\pi$$
−0.254128 + 0.967170i $$0.581789\pi$$
$$992$$ 8.00000 0.254000
$$993$$ 28.0000 0.888553
$$994$$ 0 0
$$995$$ −8.00000 −0.253617
$$996$$ 12.0000 0.380235
$$997$$ −26.0000 −0.823428 −0.411714 0.911313i $$-0.635070\pi$$
−0.411714 + 0.911313i $$0.635070\pi$$
$$998$$ 4.00000 0.126618
$$999$$ −2.00000 −0.0632772
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1470.2.a.d.1.1 1
3.2 odd 2 4410.2.a.z.1.1 1
5.4 even 2 7350.2.a.ct.1.1 1
7.2 even 3 1470.2.i.q.361.1 2
7.3 odd 6 1470.2.i.o.961.1 2
7.4 even 3 1470.2.i.q.961.1 2
7.5 odd 6 1470.2.i.o.361.1 2
7.6 odd 2 30.2.a.a.1.1 1
21.20 even 2 90.2.a.c.1.1 1
28.27 even 2 240.2.a.b.1.1 1
35.13 even 4 150.2.c.a.49.2 2
35.27 even 4 150.2.c.a.49.1 2
35.34 odd 2 150.2.a.b.1.1 1
56.13 odd 2 960.2.a.e.1.1 1
56.27 even 2 960.2.a.p.1.1 1
63.13 odd 6 810.2.e.l.541.1 2
63.20 even 6 810.2.e.b.271.1 2
63.34 odd 6 810.2.e.l.271.1 2
63.41 even 6 810.2.e.b.541.1 2
77.76 even 2 3630.2.a.w.1.1 1
84.83 odd 2 720.2.a.j.1.1 1
91.34 even 4 5070.2.b.k.1351.1 2
91.83 even 4 5070.2.b.k.1351.2 2
91.90 odd 2 5070.2.a.w.1.1 1
105.62 odd 4 450.2.c.b.199.2 2
105.83 odd 4 450.2.c.b.199.1 2
105.104 even 2 450.2.a.d.1.1 1
112.13 odd 4 3840.2.k.y.1921.2 2
112.27 even 4 3840.2.k.f.1921.2 2
112.69 odd 4 3840.2.k.y.1921.1 2
112.83 even 4 3840.2.k.f.1921.1 2
119.118 odd 2 8670.2.a.g.1.1 1
140.27 odd 4 1200.2.f.e.49.2 2
140.83 odd 4 1200.2.f.e.49.1 2
140.139 even 2 1200.2.a.k.1.1 1
168.83 odd 2 2880.2.a.q.1.1 1
168.125 even 2 2880.2.a.a.1.1 1
280.13 even 4 4800.2.f.p.3649.1 2
280.27 odd 4 4800.2.f.w.3649.1 2
280.69 odd 2 4800.2.a.cq.1.1 1
280.83 odd 4 4800.2.f.w.3649.2 2
280.139 even 2 4800.2.a.d.1.1 1
280.237 even 4 4800.2.f.p.3649.2 2
420.83 even 4 3600.2.f.i.2449.1 2
420.167 even 4 3600.2.f.i.2449.2 2
420.419 odd 2 3600.2.a.f.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
30.2.a.a.1.1 1 7.6 odd 2
90.2.a.c.1.1 1 21.20 even 2
150.2.a.b.1.1 1 35.34 odd 2
150.2.c.a.49.1 2 35.27 even 4
150.2.c.a.49.2 2 35.13 even 4
240.2.a.b.1.1 1 28.27 even 2
450.2.a.d.1.1 1 105.104 even 2
450.2.c.b.199.1 2 105.83 odd 4
450.2.c.b.199.2 2 105.62 odd 4
720.2.a.j.1.1 1 84.83 odd 2
810.2.e.b.271.1 2 63.20 even 6
810.2.e.b.541.1 2 63.41 even 6
810.2.e.l.271.1 2 63.34 odd 6
810.2.e.l.541.1 2 63.13 odd 6
960.2.a.e.1.1 1 56.13 odd 2
960.2.a.p.1.1 1 56.27 even 2
1200.2.a.k.1.1 1 140.139 even 2
1200.2.f.e.49.1 2 140.83 odd 4
1200.2.f.e.49.2 2 140.27 odd 4
1470.2.a.d.1.1 1 1.1 even 1 trivial
1470.2.i.o.361.1 2 7.5 odd 6
1470.2.i.o.961.1 2 7.3 odd 6
1470.2.i.q.361.1 2 7.2 even 3
1470.2.i.q.961.1 2 7.4 even 3
2880.2.a.a.1.1 1 168.125 even 2
2880.2.a.q.1.1 1 168.83 odd 2
3600.2.a.f.1.1 1 420.419 odd 2
3600.2.f.i.2449.1 2 420.83 even 4
3600.2.f.i.2449.2 2 420.167 even 4
3630.2.a.w.1.1 1 77.76 even 2
3840.2.k.f.1921.1 2 112.83 even 4
3840.2.k.f.1921.2 2 112.27 even 4
3840.2.k.y.1921.1 2 112.69 odd 4
3840.2.k.y.1921.2 2 112.13 odd 4
4410.2.a.z.1.1 1 3.2 odd 2
4800.2.a.d.1.1 1 280.139 even 2
4800.2.a.cq.1.1 1 280.69 odd 2
4800.2.f.p.3649.1 2 280.13 even 4
4800.2.f.p.3649.2 2 280.237 even 4
4800.2.f.w.3649.1 2 280.27 odd 4
4800.2.f.w.3649.2 2 280.83 odd 4
5070.2.a.w.1.1 1 91.90 odd 2
5070.2.b.k.1351.1 2 91.34 even 4
5070.2.b.k.1351.2 2 91.83 even 4
7350.2.a.ct.1.1 1 5.4 even 2
8670.2.a.g.1.1 1 119.118 odd 2