Properties

Label 147.6.e.o.79.2
Level $147$
Weight $6$
Character 147.79
Analytic conductor $23.576$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,6,Mod(67,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.67");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 147.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.5764215125\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 98x^{6} + 83x^{5} + 9122x^{4} - 91x^{3} + 28567x^{2} + 2058x + 86436 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.2
Root \(-0.874091 + 1.51397i\) of defining polynomial
Character \(\chi\) \(=\) 147.79
Dual form 147.6.e.o.67.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37409 + 2.37999i) q^{2} +(4.50000 + 7.79423i) q^{3} +(12.2237 + 21.1722i) q^{4} +(29.1836 - 50.5475i) q^{5} -24.7336 q^{6} -155.128 q^{8} +(-40.5000 + 70.1481i) q^{9} +O(q^{10})\) \(q+(-1.37409 + 2.37999i) q^{2} +(4.50000 + 7.79423i) q^{3} +(12.2237 + 21.1722i) q^{4} +(29.1836 - 50.5475i) q^{5} -24.7336 q^{6} -155.128 q^{8} +(-40.5000 + 70.1481i) q^{9} +(80.2019 + 138.914i) q^{10} +(-8.71205 - 15.0897i) q^{11} +(-110.014 + 190.549i) q^{12} -889.933 q^{13} +525.305 q^{15} +(-178.000 + 308.305i) q^{16} +(513.318 + 889.092i) q^{17} +(-111.301 - 192.780i) q^{18} +(-869.702 + 1506.37i) q^{19} +1426.93 q^{20} +47.8846 q^{22} +(-1968.11 + 3408.87i) q^{23} +(-698.076 - 1209.10i) q^{24} +(-140.869 - 243.993i) q^{25} +(1222.85 - 2118.04i) q^{26} -729.000 q^{27} +5633.53 q^{29} +(-721.817 + 1250.22i) q^{30} +(-1548.27 - 2681.68i) q^{31} +(-2971.22 - 5146.31i) q^{32} +(78.4084 - 135.807i) q^{33} -2821.38 q^{34} -1980.25 q^{36} +(-2513.43 + 4353.39i) q^{37} +(-2390.10 - 4139.77i) q^{38} +(-4004.70 - 6936.34i) q^{39} +(-4527.20 + 7841.34i) q^{40} -18367.0 q^{41} -1630.91 q^{43} +(212.988 - 368.906i) q^{44} +(2363.87 + 4094.35i) q^{45} +(-5408.72 - 9368.19i) q^{46} +(-4802.62 + 8318.38i) q^{47} -3204.00 q^{48} +774.269 q^{50} +(-4619.86 + 8001.83i) q^{51} +(-10878.3 - 18841.8i) q^{52} +(11628.3 + 20140.7i) q^{53} +(1001.71 - 1735.02i) q^{54} -1017.00 q^{55} -15654.6 q^{57} +(-7740.98 + 13407.8i) q^{58} +(-1801.62 - 3120.50i) q^{59} +(6421.20 + 11121.8i) q^{60} +(11438.3 - 19811.7i) q^{61} +8509.83 q^{62} +4938.92 q^{64} +(-25971.5 + 44983.9i) q^{65} +(215.481 + 373.223i) q^{66} +(-23506.4 - 40714.2i) q^{67} +(-12549.3 + 21736.1i) q^{68} -35426.0 q^{69} -1599.63 q^{71} +(6282.68 - 10881.9i) q^{72} +(2965.67 + 5136.70i) q^{73} +(-6907.36 - 11963.9i) q^{74} +(1267.82 - 2195.93i) q^{75} -42524.1 q^{76} +22011.3 q^{78} +(44234.4 - 76616.3i) q^{79} +(10389.4 + 17994.9i) q^{80} +(-3280.50 - 5681.99i) q^{81} +(25237.9 - 43713.3i) q^{82} +95823.9 q^{83} +59921.9 q^{85} +(2241.02 - 3881.56i) q^{86} +(25350.9 + 43909.0i) q^{87} +(1351.48 + 2340.84i) q^{88} +(-23253.9 + 40277.0i) q^{89} -12992.7 q^{90} -96230.8 q^{92} +(13934.4 - 24135.1i) q^{93} +(-13198.5 - 22860.4i) q^{94} +(50762.1 + 87922.5i) q^{95} +(26741.0 - 46316.8i) q^{96} +75981.8 q^{97} +1411.35 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 3 q^{2} + 36 q^{3} - 69 q^{4} - 54 q^{6} + 246 q^{8} - 324 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 3 q^{2} + 36 q^{3} - 69 q^{4} - 54 q^{6} + 246 q^{8} - 324 q^{9} + 283 q^{10} - 402 q^{11} + 621 q^{12} - 924 q^{13} - 3273 q^{16} + 276 q^{17} - 243 q^{18} + 510 q^{19} - 9438 q^{20} + 2750 q^{22} - 6900 q^{23} + 1107 q^{24} - 2814 q^{25} - 15138 q^{26} - 5832 q^{27} + 1080 q^{29} - 2547 q^{30} - 6410 q^{31} - 15519 q^{32} + 3618 q^{33} - 42288 q^{34} + 11178 q^{36} - 15250 q^{37} - 41250 q^{38} - 4158 q^{39} - 8547 q^{40} - 8616 q^{41} + 58396 q^{43} - 70743 q^{44} - 61800 q^{46} - 15060 q^{47} - 58914 q^{48} - 14604 q^{50} - 2484 q^{51} - 47476 q^{52} - 13692 q^{53} + 2187 q^{54} - 146248 q^{55} + 9180 q^{57} - 52309 q^{58} + 34830 q^{59} - 42471 q^{60} - 5364 q^{61} - 32058 q^{62} - 146974 q^{64} - 66864 q^{65} + 12375 q^{66} + 5994 q^{67} - 58272 q^{68} - 124200 q^{69} + 178536 q^{71} - 9963 q^{72} + 59638 q^{73} + 185442 q^{74} + 25326 q^{75} - 42616 q^{76} - 272484 q^{78} + 44062 q^{79} - 33381 q^{80} - 26244 q^{81} + 57596 q^{82} + 416892 q^{83} + 72648 q^{85} + 136968 q^{86} + 4860 q^{87} - 87597 q^{88} - 77520 q^{89} - 45846 q^{90} + 316512 q^{92} + 57690 q^{93} - 73722 q^{94} + 221376 q^{95} + 139671 q^{96} + 377260 q^{97} + 65124 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.37409 + 2.37999i −0.242907 + 0.420728i −0.961541 0.274661i \(-0.911434\pi\)
0.718634 + 0.695389i \(0.244768\pi\)
\(3\) 4.50000 + 7.79423i 0.288675 + 0.500000i
\(4\) 12.2237 + 21.1722i 0.381992 + 0.661630i
\(5\) 29.1836 50.5475i 0.522053 0.904222i −0.477618 0.878568i \(-0.658500\pi\)
0.999671 0.0256544i \(-0.00816693\pi\)
\(6\) −24.7336 −0.280485
\(7\) 0 0
\(8\) −155.128 −0.856969
\(9\) −40.5000 + 70.1481i −0.166667 + 0.288675i
\(10\) 80.2019 + 138.914i 0.253621 + 0.439284i
\(11\) −8.71205 15.0897i −0.0217089 0.0376010i 0.854967 0.518683i \(-0.173577\pi\)
−0.876676 + 0.481082i \(0.840244\pi\)
\(12\) −110.014 + 190.549i −0.220543 + 0.381992i
\(13\) −889.933 −1.46049 −0.730246 0.683185i \(-0.760594\pi\)
−0.730246 + 0.683185i \(0.760594\pi\)
\(14\) 0 0
\(15\) 525.305 0.602815
\(16\) −178.000 + 308.305i −0.173828 + 0.301079i
\(17\) 513.318 + 889.092i 0.430788 + 0.746147i 0.996941 0.0781529i \(-0.0249022\pi\)
−0.566153 + 0.824300i \(0.691569\pi\)
\(18\) −111.301 192.780i −0.0809691 0.140243i
\(19\) −869.702 + 1506.37i −0.552696 + 0.957297i 0.445383 + 0.895340i \(0.353068\pi\)
−0.998079 + 0.0619572i \(0.980266\pi\)
\(20\) 1426.93 0.797680
\(21\) 0 0
\(22\) 47.8846 0.0210930
\(23\) −1968.11 + 3408.87i −0.775764 + 1.34366i 0.158599 + 0.987343i \(0.449302\pi\)
−0.934364 + 0.356320i \(0.884031\pi\)
\(24\) −698.076 1209.10i −0.247386 0.428485i
\(25\) −140.869 243.993i −0.0450782 0.0780777i
\(26\) 1222.85 2118.04i 0.354764 0.614469i
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) 5633.53 1.24390 0.621950 0.783057i \(-0.286341\pi\)
0.621950 + 0.783057i \(0.286341\pi\)
\(30\) −721.817 + 1250.22i −0.146428 + 0.253621i
\(31\) −1548.27 2681.68i −0.289362 0.501190i 0.684296 0.729205i \(-0.260110\pi\)
−0.973658 + 0.228015i \(0.926776\pi\)
\(32\) −2971.22 5146.31i −0.512933 0.888426i
\(33\) 78.4084 135.807i 0.0125337 0.0217089i
\(34\) −2821.38 −0.418566
\(35\) 0 0
\(36\) −1980.25 −0.254661
\(37\) −2513.43 + 4353.39i −0.301830 + 0.522785i −0.976551 0.215288i \(-0.930931\pi\)
0.674720 + 0.738073i \(0.264264\pi\)
\(38\) −2390.10 4139.77i −0.268508 0.465069i
\(39\) −4004.70 6936.34i −0.421608 0.730246i
\(40\) −4527.20 + 7841.34i −0.447383 + 0.774890i
\(41\) −18367.0 −1.70639 −0.853195 0.521592i \(-0.825338\pi\)
−0.853195 + 0.521592i \(0.825338\pi\)
\(42\) 0 0
\(43\) −1630.91 −0.134511 −0.0672557 0.997736i \(-0.521424\pi\)
−0.0672557 + 0.997736i \(0.521424\pi\)
\(44\) 212.988 368.906i 0.0165853 0.0287266i
\(45\) 2363.87 + 4094.35i 0.174018 + 0.301407i
\(46\) −5408.72 9368.19i −0.376878 0.652771i
\(47\) −4802.62 + 8318.38i −0.317127 + 0.549280i −0.979887 0.199551i \(-0.936051\pi\)
0.662760 + 0.748832i \(0.269385\pi\)
\(48\) −3204.00 −0.200720
\(49\) 0 0
\(50\) 774.269 0.0437992
\(51\) −4619.86 + 8001.83i −0.248716 + 0.430788i
\(52\) −10878.3 18841.8i −0.557896 0.966305i
\(53\) 11628.3 + 20140.7i 0.568624 + 0.984886i 0.996702 + 0.0811440i \(0.0258574\pi\)
−0.428078 + 0.903742i \(0.640809\pi\)
\(54\) 1001.71 1735.02i 0.0467475 0.0809691i
\(55\) −1017.00 −0.0453328
\(56\) 0 0
\(57\) −15654.6 −0.638198
\(58\) −7740.98 + 13407.8i −0.302152 + 0.523343i
\(59\) −1801.62 3120.50i −0.0673803 0.116706i 0.830367 0.557217i \(-0.188131\pi\)
−0.897747 + 0.440511i \(0.854797\pi\)
\(60\) 6421.20 + 11121.8i 0.230270 + 0.398840i
\(61\) 11438.3 19811.7i 0.393584 0.681707i −0.599336 0.800498i \(-0.704569\pi\)
0.992919 + 0.118791i \(0.0379019\pi\)
\(62\) 8509.83 0.281152
\(63\) 0 0
\(64\) 4938.92 0.150724
\(65\) −25971.5 + 44983.9i −0.762454 + 1.32061i
\(66\) 215.481 + 373.223i 0.00608903 + 0.0105465i
\(67\) −23506.4 40714.2i −0.639733 1.10805i −0.985491 0.169726i \(-0.945712\pi\)
0.345758 0.938324i \(-0.387622\pi\)
\(68\) −12549.3 + 21736.1i −0.329116 + 0.570045i
\(69\) −35426.0 −0.895776
\(70\) 0 0
\(71\) −1599.63 −0.0376595 −0.0188298 0.999823i \(-0.505994\pi\)
−0.0188298 + 0.999823i \(0.505994\pi\)
\(72\) 6282.68 10881.9i 0.142828 0.247386i
\(73\) 2965.67 + 5136.70i 0.0651353 + 0.112818i 0.896754 0.442529i \(-0.145919\pi\)
−0.831619 + 0.555347i \(0.812585\pi\)
\(74\) −6907.36 11963.9i −0.146633 0.253976i
\(75\) 1267.82 2195.93i 0.0260259 0.0450782i
\(76\) −42524.1 −0.844502
\(77\) 0 0
\(78\) 22011.3 0.409646
\(79\) 44234.4 76616.3i 0.797431 1.38119i −0.123854 0.992300i \(-0.539525\pi\)
0.921284 0.388890i \(-0.127141\pi\)
\(80\) 10389.4 + 17994.9i 0.181495 + 0.314359i
\(81\) −3280.50 5681.99i −0.0555556 0.0962250i
\(82\) 25237.9 43713.3i 0.414495 0.717926i
\(83\) 95823.9 1.52679 0.763394 0.645933i \(-0.223531\pi\)
0.763394 + 0.645933i \(0.223531\pi\)
\(84\) 0 0
\(85\) 59921.9 0.899577
\(86\) 2241.02 3881.56i 0.0326738 0.0565927i
\(87\) 25350.9 + 43909.0i 0.359083 + 0.621950i
\(88\) 1351.48 + 2340.84i 0.0186039 + 0.0322229i
\(89\) −23253.9 + 40277.0i −0.311187 + 0.538992i −0.978620 0.205679i \(-0.934060\pi\)
0.667433 + 0.744670i \(0.267393\pi\)
\(90\) −12992.7 −0.169081
\(91\) 0 0
\(92\) −96230.8 −1.18534
\(93\) 13934.4 24135.1i 0.167063 0.289362i
\(94\) −13198.5 22860.4i −0.154065 0.266848i
\(95\) 50762.1 + 87922.5i 0.577073 + 0.999519i
\(96\) 26741.0 46316.8i 0.296142 0.512933i
\(97\) 75981.8 0.819937 0.409968 0.912100i \(-0.365540\pi\)
0.409968 + 0.912100i \(0.365540\pi\)
\(98\) 0 0
\(99\) 1411.35 0.0144726
\(100\) 3443.90 5965.01i 0.0344390 0.0596501i
\(101\) −23078.7 39973.5i −0.225117 0.389914i 0.731238 0.682123i \(-0.238943\pi\)
−0.956355 + 0.292209i \(0.905610\pi\)
\(102\) −12696.2 21990.5i −0.120830 0.209283i
\(103\) −40986.8 + 70991.2i −0.380672 + 0.659343i −0.991158 0.132683i \(-0.957641\pi\)
0.610487 + 0.792027i \(0.290974\pi\)
\(104\) 138054. 1.25160
\(105\) 0 0
\(106\) −63913.2 −0.552491
\(107\) 1426.84 2471.35i 0.0120480 0.0208677i −0.859939 0.510398i \(-0.829498\pi\)
0.871987 + 0.489530i \(0.162832\pi\)
\(108\) −8911.11 15434.5i −0.0735144 0.127331i
\(109\) 83139.2 + 144001.i 0.670254 + 1.16091i 0.977832 + 0.209391i \(0.0671483\pi\)
−0.307578 + 0.951523i \(0.599518\pi\)
\(110\) 1397.45 2420.45i 0.0110117 0.0190728i
\(111\) −45241.7 −0.348523
\(112\) 0 0
\(113\) 260304. 1.91772 0.958858 0.283886i \(-0.0916237\pi\)
0.958858 + 0.283886i \(0.0916237\pi\)
\(114\) 21510.9 37257.9i 0.155023 0.268508i
\(115\) 114873. + 198966.i 0.809980 + 1.40293i
\(116\) 68862.8 + 119274.i 0.475160 + 0.823001i
\(117\) 36042.3 62427.1i 0.243415 0.421608i
\(118\) 9902.35 0.0654687
\(119\) 0 0
\(120\) −81489.6 −0.516593
\(121\) 80373.7 139211.i 0.499057 0.864393i
\(122\) 31434.5 + 54446.2i 0.191209 + 0.331183i
\(123\) −82651.5 143157.i −0.492592 0.853195i
\(124\) 37851.2 65560.3i 0.221068 0.382901i
\(125\) 165953. 0.949973
\(126\) 0 0
\(127\) −233743. −1.28596 −0.642982 0.765882i \(-0.722303\pi\)
−0.642982 + 0.765882i \(0.722303\pi\)
\(128\) 88292.6 152927.i 0.476321 0.825012i
\(129\) −7339.10 12711.7i −0.0388301 0.0672557i
\(130\) −71374.4 123624.i −0.370411 0.641571i
\(131\) −78644.9 + 136217.i −0.400398 + 0.693510i −0.993774 0.111415i \(-0.964462\pi\)
0.593376 + 0.804926i \(0.297795\pi\)
\(132\) 3833.78 0.0191510
\(133\) 0 0
\(134\) 129200. 0.621583
\(135\) −21274.9 + 36849.2i −0.100469 + 0.174018i
\(136\) −79629.9 137923.i −0.369172 0.639425i
\(137\) 85773.8 + 148564.i 0.390439 + 0.676260i 0.992507 0.122185i \(-0.0389900\pi\)
−0.602069 + 0.798444i \(0.705657\pi\)
\(138\) 48678.5 84313.7i 0.217590 0.376878i
\(139\) −210625. −0.924642 −0.462321 0.886713i \(-0.652983\pi\)
−0.462321 + 0.886713i \(0.652983\pi\)
\(140\) 0 0
\(141\) −86447.1 −0.366187
\(142\) 2198.04 3807.12i 0.00914777 0.0158444i
\(143\) 7753.14 + 13428.8i 0.0317057 + 0.0549159i
\(144\) −14418.0 24972.7i −0.0579427 0.100360i
\(145\) 164407. 284761.i 0.649381 1.12476i
\(146\) −16300.4 −0.0632873
\(147\) 0 0
\(148\) −122894. −0.461187
\(149\) −119706. + 207338.i −0.441725 + 0.765090i −0.997818 0.0660304i \(-0.978967\pi\)
0.556093 + 0.831120i \(0.312300\pi\)
\(150\) 3484.21 + 6034.83i 0.0126438 + 0.0218996i
\(151\) −108520. 187962.i −0.387317 0.670852i 0.604771 0.796400i \(-0.293265\pi\)
−0.992088 + 0.125547i \(0.959931\pi\)
\(152\) 134915. 233680.i 0.473643 0.820374i
\(153\) −83157.5 −0.287192
\(154\) 0 0
\(155\) −180736. −0.604249
\(156\) 97904.9 169576.i 0.322102 0.557896i
\(157\) 83452.2 + 144543.i 0.270202 + 0.468004i 0.968913 0.247400i \(-0.0795762\pi\)
−0.698711 + 0.715404i \(0.746243\pi\)
\(158\) 121564. + 210556.i 0.387403 + 0.671002i
\(159\) −104654. + 181267.i −0.328295 + 0.568624i
\(160\) −346844. −1.07111
\(161\) 0 0
\(162\) 18030.8 0.0539794
\(163\) −253086. + 438358.i −0.746104 + 1.29229i 0.203574 + 0.979060i \(0.434744\pi\)
−0.949677 + 0.313230i \(0.898589\pi\)
\(164\) −224514. 388869.i −0.651828 1.12900i
\(165\) −4576.49 7926.71i −0.0130865 0.0226664i
\(166\) −131671. + 228061.i −0.370868 + 0.642362i
\(167\) 565560. 1.56923 0.784616 0.619982i \(-0.212860\pi\)
0.784616 + 0.619982i \(0.212860\pi\)
\(168\) 0 0
\(169\) 420688. 1.13304
\(170\) −82338.1 + 142614.i −0.218514 + 0.378477i
\(171\) −70445.8 122016.i −0.184232 0.319099i
\(172\) −19935.9 34529.9i −0.0513823 0.0889968i
\(173\) −329718. + 571088.i −0.837581 + 1.45073i 0.0543304 + 0.998523i \(0.482698\pi\)
−0.891911 + 0.452210i \(0.850636\pi\)
\(174\) −139338. −0.348895
\(175\) 0 0
\(176\) 6202.98 0.0150945
\(177\) 16214.6 28084.5i 0.0389020 0.0673803i
\(178\) −63906.0 110688.i −0.151179 0.261850i
\(179\) −82645.0 143145.i −0.192790 0.333922i 0.753384 0.657581i \(-0.228420\pi\)
−0.946174 + 0.323659i \(0.895087\pi\)
\(180\) −57790.8 + 100097.i −0.132947 + 0.230270i
\(181\) −148492. −0.336904 −0.168452 0.985710i \(-0.553877\pi\)
−0.168452 + 0.985710i \(0.553877\pi\)
\(182\) 0 0
\(183\) 205889. 0.454471
\(184\) 305309. 528811.i 0.664806 1.15148i
\(185\) 146702. + 254095.i 0.315142 + 0.545843i
\(186\) 38294.2 + 66327.6i 0.0811617 + 0.140576i
\(187\) 8944.10 15491.6i 0.0187039 0.0323961i
\(188\) −234824. −0.484560
\(189\) 0 0
\(190\) −279007. −0.560701
\(191\) −192955. + 334208.i −0.382713 + 0.662879i −0.991449 0.130494i \(-0.958344\pi\)
0.608736 + 0.793373i \(0.291677\pi\)
\(192\) 22225.1 + 38495.1i 0.0435102 + 0.0753619i
\(193\) −248148. 429805.i −0.479531 0.830573i 0.520193 0.854049i \(-0.325860\pi\)
−0.999724 + 0.0234760i \(0.992527\pi\)
\(194\) −104406. + 180836.i −0.199169 + 0.344970i
\(195\) −467487. −0.880406
\(196\) 0 0
\(197\) 441439. 0.810411 0.405206 0.914226i \(-0.367200\pi\)
0.405206 + 0.914226i \(0.367200\pi\)
\(198\) −1939.33 + 3359.01i −0.00351551 + 0.00608903i
\(199\) −37919.4 65678.3i −0.0678779 0.117568i 0.830089 0.557631i \(-0.188290\pi\)
−0.897967 + 0.440063i \(0.854956\pi\)
\(200\) 21852.8 + 37850.1i 0.0386306 + 0.0669102i
\(201\) 211557. 366428.i 0.369350 0.639733i
\(202\) 126849. 0.218730
\(203\) 0 0
\(204\) −225888. −0.380030
\(205\) −536016. + 928406.i −0.890826 + 1.54296i
\(206\) −112639. 195097.i −0.184936 0.320318i
\(207\) −159417. 276118.i −0.258588 0.447888i
\(208\) 158408. 274371.i 0.253875 0.439724i
\(209\) 30307.5 0.0479938
\(210\) 0 0
\(211\) 778704. 1.20411 0.602055 0.798454i \(-0.294349\pi\)
0.602055 + 0.798454i \(0.294349\pi\)
\(212\) −284282. + 492391.i −0.434420 + 0.752437i
\(213\) −7198.35 12467.9i −0.0108714 0.0188298i
\(214\) 3921.21 + 6791.73i 0.00585309 + 0.0101379i
\(215\) −47595.9 + 82438.6i −0.0702221 + 0.121628i
\(216\) 113088. 0.164924
\(217\) 0 0
\(218\) −456963. −0.651238
\(219\) −26691.1 + 46230.3i −0.0376059 + 0.0651353i
\(220\) −12431.5 21532.0i −0.0173168 0.0299936i
\(221\) −456818. 791233.i −0.629163 1.08974i
\(222\) 62166.3 107675.i 0.0846588 0.146633i
\(223\) −738085. −0.993903 −0.496951 0.867778i \(-0.665547\pi\)
−0.496951 + 0.867778i \(0.665547\pi\)
\(224\) 0 0
\(225\) 22820.8 0.0300521
\(226\) −357681. + 619522.i −0.465827 + 0.806836i
\(227\) −272058. 471218.i −0.350426 0.606956i 0.635898 0.771773i \(-0.280630\pi\)
−0.986324 + 0.164817i \(0.947297\pi\)
\(228\) −191358. 331442.i −0.243787 0.422251i
\(229\) −116781. + 202271.i −0.147158 + 0.254885i −0.930176 0.367114i \(-0.880346\pi\)
0.783018 + 0.621999i \(0.213679\pi\)
\(230\) −631385. −0.787000
\(231\) 0 0
\(232\) −873917. −1.06598
\(233\) 309050. 535290.i 0.372940 0.645951i −0.617077 0.786903i \(-0.711683\pi\)
0.990016 + 0.140952i \(0.0450164\pi\)
\(234\) 99050.8 + 171561.i 0.118255 + 0.204823i
\(235\) 280316. + 485521.i 0.331114 + 0.573506i
\(236\) 44045.1 76288.3i 0.0514775 0.0891617i
\(237\) 796220. 0.920794
\(238\) 0 0
\(239\) 937500. 1.06164 0.530819 0.847485i \(-0.321884\pi\)
0.530819 + 0.847485i \(0.321884\pi\)
\(240\) −93504.4 + 161954.i −0.104786 + 0.181495i
\(241\) 466018. + 807167.i 0.516845 + 0.895202i 0.999809 + 0.0195613i \(0.00622694\pi\)
−0.482964 + 0.875640i \(0.660440\pi\)
\(242\) 220882. + 382578.i 0.242449 + 0.419935i
\(243\) 29524.5 51137.9i 0.0320750 0.0555556i
\(244\) 559276. 0.601383
\(245\) 0 0
\(246\) 454282. 0.478617
\(247\) 773976. 1.34057e6i 0.807208 1.39812i
\(248\) 240179. + 416003.i 0.247974 + 0.429504i
\(249\) 431208. + 746874.i 0.440746 + 0.763394i
\(250\) −228035. + 394968.i −0.230755 + 0.399680i
\(251\) −214975. −0.215379 −0.107690 0.994185i \(-0.534345\pi\)
−0.107690 + 0.994185i \(0.534345\pi\)
\(252\) 0 0
\(253\) 68585.1 0.0673641
\(254\) 321184. 556306.i 0.312370 0.541040i
\(255\) 269649. + 467045.i 0.259685 + 0.449788i
\(256\) 321667. + 557143.i 0.306765 + 0.531333i
\(257\) 39593.5 68578.0i 0.0373931 0.0647667i −0.846723 0.532034i \(-0.821428\pi\)
0.884116 + 0.467267i \(0.154761\pi\)
\(258\) 40338.4 0.0377285
\(259\) 0 0
\(260\) −1.26988e6 −1.16501
\(261\) −228158. + 395181.i −0.207317 + 0.359083i
\(262\) −216130. 374349.i −0.194519 0.336917i
\(263\) 216414. + 374840.i 0.192928 + 0.334162i 0.946219 0.323526i \(-0.104868\pi\)
−0.753291 + 0.657687i \(0.771535\pi\)
\(264\) −12163.3 + 21067.5i −0.0107410 + 0.0186039i
\(265\) 1.35742e6 1.18741
\(266\) 0 0
\(267\) −418571. −0.359328
\(268\) 574672. 995361.i 0.488746 0.846533i
\(269\) −2345.93 4063.27i −0.00197667 0.00342369i 0.865035 0.501711i \(-0.167296\pi\)
−0.867012 + 0.498287i \(0.833963\pi\)
\(270\) −58467.2 101268.i −0.0488093 0.0845403i
\(271\) 52632.1 91161.5i 0.0435339 0.0754029i −0.843437 0.537227i \(-0.819472\pi\)
0.886971 + 0.461825i \(0.152805\pi\)
\(272\) −365482. −0.299533
\(273\) 0 0
\(274\) −471444. −0.379362
\(275\) −2454.52 + 4251.35i −0.00195720 + 0.00338997i
\(276\) −433038. 750045.i −0.342179 0.592672i
\(277\) 381558. + 660879.i 0.298787 + 0.517514i 0.975859 0.218403i \(-0.0700847\pi\)
−0.677072 + 0.735917i \(0.736751\pi\)
\(278\) 289418. 501287.i 0.224602 0.389023i
\(279\) 250819. 0.192908
\(280\) 0 0
\(281\) −729540. −0.551167 −0.275584 0.961277i \(-0.588871\pi\)
−0.275584 + 0.961277i \(0.588871\pi\)
\(282\) 118786. 205744.i 0.0889494 0.154065i
\(283\) −595214. 1.03094e6i −0.441781 0.765188i 0.556040 0.831155i \(-0.312320\pi\)
−0.997822 + 0.0659675i \(0.978987\pi\)
\(284\) −19553.5 33867.7i −0.0143856 0.0249167i
\(285\) −456859. + 791303.i −0.333173 + 0.577073i
\(286\) −42614.1 −0.0308062
\(287\) 0 0
\(288\) 481338. 0.341955
\(289\) 182938. 316859.i 0.128843 0.223162i
\(290\) 451820. + 782575.i 0.315479 + 0.546425i
\(291\) 341918. + 592220.i 0.236695 + 0.409968i
\(292\) −72503.3 + 125579.i −0.0497623 + 0.0861909i
\(293\) 1.02503e6 0.697537 0.348769 0.937209i \(-0.386600\pi\)
0.348769 + 0.937209i \(0.386600\pi\)
\(294\) 0 0
\(295\) −210311. −0.140704
\(296\) 389903. 675332.i 0.258659 0.448011i
\(297\) 6351.08 + 11000.4i 0.00417789 + 0.00723631i
\(298\) −328975. 569801.i −0.214596 0.371692i
\(299\) 1.75149e6 3.03366e6i 1.13300 1.96241i
\(300\) 61990.2 0.0397667
\(301\) 0 0
\(302\) 596464. 0.376328
\(303\) 207708. 359762.i 0.129971 0.225117i
\(304\) −309614. 536267.i −0.192148 0.332811i
\(305\) −667623. 1.15636e6i −0.410943 0.711774i
\(306\) 114266. 197914.i 0.0697611 0.120830i
\(307\) 709845. 0.429850 0.214925 0.976631i \(-0.431049\pi\)
0.214925 + 0.976631i \(0.431049\pi\)
\(308\) 0 0
\(309\) −737762. −0.439562
\(310\) 248348. 430151.i 0.146776 0.254224i
\(311\) 783816. + 1.35761e6i 0.459529 + 0.795928i 0.998936 0.0461175i \(-0.0146849\pi\)
−0.539407 + 0.842045i \(0.681352\pi\)
\(312\) 621241. + 1.07602e6i 0.361305 + 0.625798i
\(313\) 186476. 322986.i 0.107588 0.186347i −0.807205 0.590271i \(-0.799021\pi\)
0.914792 + 0.403924i \(0.132354\pi\)
\(314\) −458684. −0.262536
\(315\) 0 0
\(316\) 2.16284e6 1.21845
\(317\) 1.51408e6 2.62246e6i 0.846253 1.46575i −0.0382747 0.999267i \(-0.512186\pi\)
0.884528 0.466487i \(-0.154480\pi\)
\(318\) −287609. 498154.i −0.159491 0.276246i
\(319\) −49079.6 85008.3i −0.0270037 0.0467719i
\(320\) 144136. 249650.i 0.0786858 0.136288i
\(321\) 25683.1 0.0139118
\(322\) 0 0
\(323\) −1.78573e6 −0.952380
\(324\) 80200.0 138911.i 0.0424436 0.0735144i
\(325\) 125364. + 217137.i 0.0658363 + 0.114032i
\(326\) −695526. 1.20469e6i −0.362468 0.627813i
\(327\) −748253. + 1.29601e6i −0.386971 + 0.670254i
\(328\) 2.84923e6 1.46232
\(329\) 0 0
\(330\) 25154.0 0.0127152
\(331\) −533448. + 923959.i −0.267622 + 0.463535i −0.968247 0.249995i \(-0.919571\pi\)
0.700625 + 0.713529i \(0.252905\pi\)
\(332\) 1.17133e6 + 2.02880e6i 0.583221 + 1.01017i
\(333\) −203588. 352624.i −0.100610 0.174262i
\(334\) −777130. + 1.34603e6i −0.381178 + 0.660219i
\(335\) −2.74401e6 −1.33590
\(336\) 0 0
\(337\) 1.55734e6 0.746981 0.373490 0.927634i \(-0.378161\pi\)
0.373490 + 0.927634i \(0.378161\pi\)
\(338\) −578064. + 1.00124e6i −0.275222 + 0.476699i
\(339\) 1.17137e6 + 2.02887e6i 0.553597 + 0.958858i
\(340\) 732470. + 1.26868e6i 0.343631 + 0.595187i
\(341\) −26977.1 + 46725.8i −0.0125635 + 0.0217606i
\(342\) 387196. 0.179005
\(343\) 0 0
\(344\) 253000. 0.115272
\(345\) −1.03386e6 + 1.79070e6i −0.467642 + 0.809980i
\(346\) −906124. 1.56945e6i −0.406909 0.704787i
\(347\) 1.11748e6 + 1.93553e6i 0.498214 + 0.862932i 0.999998 0.00206105i \(-0.000656052\pi\)
−0.501784 + 0.864993i \(0.667323\pi\)
\(348\) −619765. + 1.07347e6i −0.274334 + 0.475160i
\(349\) 1.72982e6 0.760218 0.380109 0.924942i \(-0.375886\pi\)
0.380109 + 0.924942i \(0.375886\pi\)
\(350\) 0 0
\(351\) 648761. 0.281072
\(352\) −51770.9 + 89669.8i −0.0222705 + 0.0385736i
\(353\) −1.18287e6 2.04879e6i −0.505242 0.875105i −0.999982 0.00606386i \(-0.998070\pi\)
0.494739 0.869041i \(-0.335264\pi\)
\(354\) 44560.6 + 77181.2i 0.0188992 + 0.0327343i
\(355\) −46683.1 + 80857.6i −0.0196603 + 0.0340526i
\(356\) −1.13700e6 −0.475484
\(357\) 0 0
\(358\) 454247. 0.187320
\(359\) −25514.3 + 44192.1i −0.0104484 + 0.0180971i −0.871202 0.490924i \(-0.836659\pi\)
0.860754 + 0.509021i \(0.169993\pi\)
\(360\) −366703. 635148.i −0.149128 0.258297i
\(361\) −274712. 475815.i −0.110945 0.192163i
\(362\) 204041. 353410.i 0.0818364 0.141745i
\(363\) 1.44673e6 0.576262
\(364\) 0 0
\(365\) 346197. 0.136016
\(366\) −282911. + 490016.i −0.110394 + 0.191209i
\(367\) 1.88411e6 + 3.26338e6i 0.730200 + 1.26474i 0.956797 + 0.290755i \(0.0939065\pi\)
−0.226597 + 0.973989i \(0.572760\pi\)
\(368\) −700648. 1.21356e6i −0.269699 0.467133i
\(369\) 743863. 1.28841e6i 0.284398 0.492592i
\(370\) −806328. −0.306201
\(371\) 0 0
\(372\) 681322. 0.255267
\(373\) −2.31720e6 + 4.01351e6i −0.862366 + 1.49366i 0.00727258 + 0.999974i \(0.497685\pi\)
−0.869639 + 0.493689i \(0.835648\pi\)
\(374\) 24580.0 + 42573.8i 0.00908663 + 0.0157385i
\(375\) 746790. + 1.29348e6i 0.274234 + 0.474986i
\(376\) 745020. 1.29041e6i 0.271768 0.470716i
\(377\) −5.01346e6 −1.81670
\(378\) 0 0
\(379\) −4.17169e6 −1.49181 −0.745905 0.666052i \(-0.767983\pi\)
−0.745905 + 0.666052i \(0.767983\pi\)
\(380\) −1.24101e6 + 2.14949e6i −0.440875 + 0.763617i
\(381\) −1.05184e6 1.82184e6i −0.371226 0.642982i
\(382\) −530276. 918465.i −0.185928 0.322036i
\(383\) −2.08586e6 + 3.61281e6i −0.726588 + 1.25849i 0.231730 + 0.972780i \(0.425562\pi\)
−0.958317 + 0.285706i \(0.907772\pi\)
\(384\) 1.58927e6 0.550008
\(385\) 0 0
\(386\) 1.36391e6 0.465927
\(387\) 66051.9 114405.i 0.0224186 0.0388301i
\(388\) 928783. + 1.60870e6i 0.313209 + 0.542495i
\(389\) −1.37697e6 2.38498e6i −0.461371 0.799119i 0.537658 0.843163i \(-0.319309\pi\)
−0.999030 + 0.0440442i \(0.985976\pi\)
\(390\) 642369. 1.11262e6i 0.213857 0.370411i
\(391\) −4.04106e6 −1.33676
\(392\) 0 0
\(393\) −1.41561e6 −0.462340
\(394\) −606578. + 1.05062e6i −0.196855 + 0.340962i
\(395\) −2.58184e6 4.47189e6i −0.832602 1.44211i
\(396\) 17252.0 + 29881.4i 0.00552843 + 0.00957552i
\(397\) −1.26602e6 + 2.19281e6i −0.403148 + 0.698274i −0.994104 0.108430i \(-0.965418\pi\)
0.590956 + 0.806704i \(0.298751\pi\)
\(398\) 208419. 0.0659522
\(399\) 0 0
\(400\) 100299. 0.0313434
\(401\) 1.07873e6 1.86842e6i 0.335007 0.580249i −0.648479 0.761232i \(-0.724595\pi\)
0.983486 + 0.180983i \(0.0579280\pi\)
\(402\) 581398. + 1.00701e6i 0.179436 + 0.310791i
\(403\) 1.37785e6 + 2.38651e6i 0.422611 + 0.731983i
\(404\) 564217. 977252.i 0.171986 0.297888i
\(405\) −382948. −0.116012
\(406\) 0 0
\(407\) 87588.5 0.0262096
\(408\) 716669. 1.24131e6i 0.213142 0.369172i
\(409\) −2.16402e6 3.74819e6i −0.639665 1.10793i −0.985506 0.169640i \(-0.945740\pi\)
0.345841 0.938293i \(-0.387594\pi\)
\(410\) −1.47307e6 2.55143e6i −0.432776 0.749590i
\(411\) −771964. + 1.33708e6i −0.225420 + 0.390439i
\(412\) −2.00405e6 −0.581655
\(413\) 0 0
\(414\) 876213. 0.251252
\(415\) 2.79649e6 4.84366e6i 0.797064 1.38056i
\(416\) 2.64419e6 + 4.57987e6i 0.749134 + 1.29754i
\(417\) −947814. 1.64166e6i −0.266921 0.462321i
\(418\) −41645.3 + 72131.8i −0.0116580 + 0.0201923i
\(419\) 1.51129e6 0.420544 0.210272 0.977643i \(-0.432565\pi\)
0.210272 + 0.977643i \(0.432565\pi\)
\(420\) 0 0
\(421\) 1.11586e6 0.306835 0.153418 0.988161i \(-0.450972\pi\)
0.153418 + 0.988161i \(0.450972\pi\)
\(422\) −1.07001e6 + 1.85331e6i −0.292487 + 0.506603i
\(423\) −389012. 673788.i −0.105709 0.183093i
\(424\) −1.80387e6 3.12439e6i −0.487293 0.844016i
\(425\) 144621. 250492.i 0.0388383 0.0672699i
\(426\) 39564.8 0.0105629
\(427\) 0 0
\(428\) 69765.2 0.0184090
\(429\) −69778.3 + 120860.i −0.0183053 + 0.0317057i
\(430\) −130802. 226556.i −0.0341149 0.0590887i
\(431\) −3.10672e6 5.38100e6i −0.805581 1.39531i −0.915898 0.401411i \(-0.868520\pi\)
0.110317 0.993896i \(-0.464813\pi\)
\(432\) 129762. 224754.i 0.0334533 0.0579427i
\(433\) −3.24118e6 −0.830775 −0.415388 0.909644i \(-0.636354\pi\)
−0.415388 + 0.909644i \(0.636354\pi\)
\(434\) 0 0
\(435\) 2.95932e6 0.749841
\(436\) −2.03255e6 + 3.52047e6i −0.512064 + 0.886920i
\(437\) −3.42334e6 5.92939e6i −0.857524 1.48527i
\(438\) −73351.9 127049.i −0.0182695 0.0316437i
\(439\) 1.15248e6 1.99616e6i 0.285413 0.494349i −0.687297 0.726377i \(-0.741203\pi\)
0.972709 + 0.232028i \(0.0745360\pi\)
\(440\) 157765. 0.0388488
\(441\) 0 0
\(442\) 2.51084e6 0.611313
\(443\) −766328. + 1.32732e6i −0.185526 + 0.321341i −0.943754 0.330649i \(-0.892732\pi\)
0.758228 + 0.651990i \(0.226066\pi\)
\(444\) −553024. 957865.i −0.133133 0.230593i
\(445\) 1.35727e6 + 2.35086e6i 0.324912 + 0.562764i
\(446\) 1.01420e6 1.75664e6i 0.241426 0.418162i
\(447\) −2.15472e6 −0.510060
\(448\) 0 0
\(449\) −3.55718e6 −0.832702 −0.416351 0.909204i \(-0.636691\pi\)
−0.416351 + 0.909204i \(0.636691\pi\)
\(450\) −31357.9 + 54313.4i −0.00729987 + 0.0126438i
\(451\) 160014. + 277153.i 0.0370439 + 0.0641620i
\(452\) 3.18189e6 + 5.51119e6i 0.732553 + 1.26882i
\(453\) 976678. 1.69166e6i 0.223617 0.387317i
\(454\) 1.49533e6 0.340484
\(455\) 0 0
\(456\) 2.42847e6 0.546916
\(457\) −1.25941e6 + 2.18137e6i −0.282083 + 0.488583i −0.971898 0.235403i \(-0.924359\pi\)
0.689814 + 0.723986i \(0.257692\pi\)
\(458\) −320936. 555877.i −0.0714915 0.123827i
\(459\) −374209. 648148.i −0.0829053 0.143596i
\(460\) −2.80836e6 + 4.86423e6i −0.618812 + 1.07181i
\(461\) 6.63271e6 1.45358 0.726789 0.686861i \(-0.241012\pi\)
0.726789 + 0.686861i \(0.241012\pi\)
\(462\) 0 0
\(463\) −4.40432e6 −0.954830 −0.477415 0.878678i \(-0.658426\pi\)
−0.477415 + 0.878678i \(0.658426\pi\)
\(464\) −1.00277e6 + 1.73685e6i −0.216225 + 0.374512i
\(465\) −813313. 1.40870e6i −0.174432 0.302124i
\(466\) 849325. + 1.47107e6i 0.181180 + 0.313812i
\(467\) 122922. 212908.i 0.0260819 0.0451751i −0.852690 0.522417i \(-0.825030\pi\)
0.878772 + 0.477242i \(0.158364\pi\)
\(468\) 1.76229e6 0.371931
\(469\) 0 0
\(470\) −1.54072e6 −0.321720
\(471\) −751070. + 1.30089e6i −0.156001 + 0.270202i
\(472\) 279482. + 484076.i 0.0577428 + 0.100014i
\(473\) 14208.6 + 24610.0i 0.00292010 + 0.00505776i
\(474\) −1.09408e6 + 1.89500e6i −0.223667 + 0.387403i
\(475\) 490057. 0.0996581
\(476\) 0 0
\(477\) −1.88378e6 −0.379083
\(478\) −1.28821e6 + 2.23125e6i −0.257880 + 0.446661i
\(479\) −20175.6 34945.1i −0.00401779 0.00695901i 0.864010 0.503475i \(-0.167946\pi\)
−0.868027 + 0.496516i \(0.834612\pi\)
\(480\) −1.56080e6 2.70339e6i −0.309203 0.535556i
\(481\) 2.23678e6 3.87422e6i 0.440820 0.763523i
\(482\) −2.56140e6 −0.502181
\(483\) 0 0
\(484\) 3.92987e6 0.762544
\(485\) 2.21743e6 3.84069e6i 0.428050 0.741405i
\(486\) 81138.7 + 140536.i 0.0155825 + 0.0269897i
\(487\) 1.65484e6 + 2.86627e6i 0.316180 + 0.547639i 0.979688 0.200530i \(-0.0642664\pi\)
−0.663508 + 0.748169i \(0.730933\pi\)
\(488\) −1.77440e6 + 3.07335e6i −0.337289 + 0.584202i
\(489\) −4.55555e6 −0.861526
\(490\) 0 0
\(491\) −1.97959e6 −0.370570 −0.185285 0.982685i \(-0.559321\pi\)
−0.185285 + 0.982685i \(0.559321\pi\)
\(492\) 2.02062e6 3.49982e6i 0.376333 0.651828i
\(493\) 2.89179e6 + 5.00872e6i 0.535857 + 0.928132i
\(494\) 2.12703e6 + 3.68412e6i 0.392153 + 0.679229i
\(495\) 41188.4 71340.4i 0.00755547 0.0130865i
\(496\) 1.10237e6 0.201197
\(497\) 0 0
\(498\) −2.37007e6 −0.428241
\(499\) 1.58498e6 2.74526e6i 0.284952 0.493551i −0.687646 0.726046i \(-0.741356\pi\)
0.972597 + 0.232495i \(0.0746891\pi\)
\(500\) 2.02857e6 + 3.51359e6i 0.362882 + 0.628530i
\(501\) 2.54502e6 + 4.40810e6i 0.452998 + 0.784616i
\(502\) 295396. 511640.i 0.0523172 0.0906161i
\(503\) 4.01273e6 0.707164 0.353582 0.935403i \(-0.384963\pi\)
0.353582 + 0.935403i \(0.384963\pi\)
\(504\) 0 0
\(505\) −2.69408e6 −0.470092
\(506\) −94242.1 + 163232.i −0.0163632 + 0.0283419i
\(507\) 1.89310e6 + 3.27894e6i 0.327079 + 0.566518i
\(508\) −2.85721e6 4.94884e6i −0.491228 0.850832i
\(509\) 2.05629e6 3.56159e6i 0.351795 0.609326i −0.634769 0.772702i \(-0.718905\pi\)
0.986564 + 0.163375i \(0.0522382\pi\)
\(510\) −1.48209e6 −0.252318
\(511\) 0 0
\(512\) 3.88273e6 0.654580
\(513\) 634012. 1.09814e6i 0.106366 0.184232i
\(514\) 108810. + 188465.i 0.0181661 + 0.0314646i
\(515\) 2.39229e6 + 4.14356e6i 0.397462 + 0.688424i
\(516\) 179423. 310769.i 0.0296656 0.0513823i
\(517\) 167363. 0.0275380
\(518\) 0 0
\(519\) −5.93492e6 −0.967155
\(520\) 4.02890e6 6.97827e6i 0.653399 1.13172i
\(521\) 4.27758e6 + 7.40898e6i 0.690404 + 1.19582i 0.971705 + 0.236196i \(0.0759007\pi\)
−0.281301 + 0.959620i \(0.590766\pi\)
\(522\) −627019. 1.08603e6i −0.100717 0.174448i
\(523\) −896820. + 1.55334e6i −0.143368 + 0.248320i −0.928763 0.370675i \(-0.879126\pi\)
0.785395 + 0.618995i \(0.212460\pi\)
\(524\) −3.84534e6 −0.611796
\(525\) 0 0
\(526\) −1.18949e6 −0.187455
\(527\) 1.58950e6 2.75310e6i 0.249307 0.431813i
\(528\) 27913.4 + 48347.5i 0.00435741 + 0.00754725i
\(529\) −4.52875e6 7.84402e6i −0.703621 1.21871i
\(530\) −1.86522e6 + 3.23065e6i −0.288430 + 0.499575i
\(531\) 291862. 0.0449202
\(532\) 0 0
\(533\) 1.63454e7 2.49217
\(534\) 575154. 996196.i 0.0872833 0.151179i
\(535\) −83280.6 144246.i −0.0125794 0.0217881i
\(536\) 3.64650e6 + 6.31592e6i 0.548231 + 0.949565i
\(537\) 743805. 1.28831e6i 0.111307 0.192790i
\(538\) 12894.1 0.00192059
\(539\) 0 0
\(540\) −1.04023e6 −0.153514
\(541\) 178780. 309657.i 0.0262619 0.0454870i −0.852596 0.522571i \(-0.824973\pi\)
0.878858 + 0.477084i \(0.158306\pi\)
\(542\) 144643. + 250528.i 0.0211494 + 0.0366318i
\(543\) −668213. 1.15738e6i −0.0972558 0.168452i
\(544\) 3.05036e6 5.28338e6i 0.441931 0.765447i
\(545\) 9.70522e6 1.39963
\(546\) 0 0
\(547\) −3.79404e6 −0.542167 −0.271084 0.962556i \(-0.587382\pi\)
−0.271084 + 0.962556i \(0.587382\pi\)
\(548\) −2.09695e6 + 3.63203e6i −0.298289 + 0.516652i
\(549\) 926502. + 1.60475e6i 0.131195 + 0.227236i
\(550\) −6745.47 11683.5i −0.000950835 0.00164689i
\(551\) −4.89949e6 + 8.48616e6i −0.687498 + 1.19078i
\(552\) 5.49556e6 0.767652
\(553\) 0 0
\(554\) −2.09718e6 −0.290310
\(555\) −1.32032e6 + 2.28686e6i −0.181948 + 0.315142i
\(556\) −2.57463e6 4.45939e6i −0.353206 0.611771i
\(557\) 2.44799e6 + 4.24005e6i 0.334328 + 0.579072i 0.983355 0.181692i \(-0.0581575\pi\)
−0.649028 + 0.760765i \(0.724824\pi\)
\(558\) −344648. + 596948.i −0.0468587 + 0.0811617i
\(559\) 1.45140e6 0.196453
\(560\) 0 0
\(561\) 160994. 0.0215974
\(562\) 1.00245e6 1.73630e6i 0.133882 0.231891i
\(563\) −2.16583e6 3.75133e6i −0.287974 0.498786i 0.685352 0.728212i \(-0.259648\pi\)
−0.973326 + 0.229426i \(0.926315\pi\)
\(564\) −1.05671e6 1.83027e6i −0.139880 0.242280i
\(565\) 7.59661e6 1.31577e7i 1.00115 1.73404i
\(566\) 3.27151e6 0.429248
\(567\) 0 0
\(568\) 248148. 0.0322730
\(569\) 1.09848e6 1.90262e6i 0.142236 0.246361i −0.786102 0.618097i \(-0.787904\pi\)
0.928338 + 0.371736i \(0.121237\pi\)
\(570\) −1.25553e6 2.17464e6i −0.161860 0.280350i
\(571\) 3.73846e6 + 6.47520e6i 0.479846 + 0.831118i 0.999733 0.0231172i \(-0.00735908\pi\)
−0.519886 + 0.854235i \(0.674026\pi\)
\(572\) −189545. + 328301.i −0.0242227 + 0.0419549i
\(573\) −3.47320e6 −0.441919
\(574\) 0 0
\(575\) 1.10899e6 0.139880
\(576\) −200026. + 346456.i −0.0251206 + 0.0435102i
\(577\) −683110. 1.18318e6i −0.0854183 0.147949i 0.820151 0.572147i \(-0.193889\pi\)
−0.905569 + 0.424198i \(0.860556\pi\)
\(578\) 502748. + 870785.i 0.0625937 + 0.108415i
\(579\) 2.23333e6 3.86824e6i 0.276858 0.479531i
\(580\) 8.03867e6 0.992234
\(581\) 0 0
\(582\) −1.87931e6 −0.229980
\(583\) 202612. 350934.i 0.0246884 0.0427616i
\(584\) −460059. 796845.i −0.0558189 0.0966812i
\(585\) −2.10369e6 3.64370e6i −0.254151 0.440203i
\(586\) −1.40848e6 + 2.43956e6i −0.169437 + 0.293473i
\(587\) 9.27217e6 1.11067 0.555336 0.831626i \(-0.312590\pi\)
0.555336 + 0.831626i \(0.312590\pi\)
\(588\) 0 0
\(589\) 5.38612e6 0.639717
\(590\) 288987. 500540.i 0.0341781 0.0591982i
\(591\) 1.98648e6 + 3.44068e6i 0.233946 + 0.405206i
\(592\) −894782. 1.54981e6i −0.104933 0.181750i
\(593\) 4.60523e6 7.97649e6i 0.537792 0.931483i −0.461231 0.887280i \(-0.652592\pi\)
0.999023 0.0442028i \(-0.0140748\pi\)
\(594\) −34907.9 −0.00405936
\(595\) 0 0
\(596\) −5.85305e6 −0.674942
\(597\) 341275. 591105.i 0.0391894 0.0678779i
\(598\) 4.81340e6 + 8.33706e6i 0.550426 + 0.953367i
\(599\) 6.84581e6 + 1.18573e7i 0.779575 + 1.35026i 0.932187 + 0.361977i \(0.117898\pi\)
−0.152612 + 0.988286i \(0.548769\pi\)
\(600\) −196675. + 340651.i −0.0223034 + 0.0386306i
\(601\) −1.61113e6 −0.181946 −0.0909732 0.995853i \(-0.528998\pi\)
−0.0909732 + 0.995853i \(0.528998\pi\)
\(602\) 0 0
\(603\) 3.80803e6 0.426489
\(604\) 2.65304e6 4.59519e6i 0.295904 0.512521i
\(605\) −4.69119e6 8.12539e6i −0.521069 0.902517i
\(606\) 570820. + 988690.i 0.0631419 + 0.109365i
\(607\) −7.03281e6 + 1.21812e7i −0.774742 + 1.34189i 0.160198 + 0.987085i \(0.448787\pi\)
−0.934940 + 0.354807i \(0.884547\pi\)
\(608\) 1.03363e7 1.13398
\(609\) 0 0
\(610\) 3.66950e6 0.399284
\(611\) 4.27401e6 7.40280e6i 0.463161 0.802219i
\(612\) −1.01650e6 1.76062e6i −0.109705 0.190015i
\(613\) −6.79842e6 1.17752e7i −0.730729 1.26566i −0.956572 0.291497i \(-0.905847\pi\)
0.225842 0.974164i \(-0.427487\pi\)
\(614\) −975391. + 1.68943e6i −0.104414 + 0.180850i
\(615\) −9.64828e6 −1.02864
\(616\) 0 0
\(617\) −5.74287e6 −0.607318 −0.303659 0.952781i \(-0.598208\pi\)
−0.303659 + 0.952781i \(0.598208\pi\)
\(618\) 1.01375e6 1.75587e6i 0.106773 0.184936i
\(619\) −3.01299e6 5.21865e6i −0.316061 0.547434i 0.663602 0.748086i \(-0.269027\pi\)
−0.979662 + 0.200653i \(0.935694\pi\)
\(620\) −2.20927e6 3.82657e6i −0.230818 0.399789i
\(621\) 1.43475e6 2.48506e6i 0.149296 0.258588i
\(622\) −4.30814e6 −0.446492
\(623\) 0 0
\(624\) 2.85135e6 0.293149
\(625\) 5.28334e6 9.15101e6i 0.541014 0.937064i
\(626\) 512470. + 887625.i 0.0522676 + 0.0905302i
\(627\) 136384. + 236224.i 0.0138546 + 0.0239969i
\(628\) −2.04020e6 + 3.53373e6i −0.206430 + 0.357547i
\(629\) −5.16075e6 −0.520099
\(630\) 0 0
\(631\) −6.90670e6 −0.690554 −0.345277 0.938501i \(-0.612215\pi\)
−0.345277 + 0.938501i \(0.612215\pi\)
\(632\) −6.86200e6 + 1.18853e7i −0.683373 + 1.18364i
\(633\) 3.50417e6 + 6.06940e6i 0.347597 + 0.602055i
\(634\) 4.16096e6 + 7.20700e6i 0.411122 + 0.712084i
\(635\) −6.82146e6 + 1.18151e7i −0.671341 + 1.16280i
\(636\) −5.11708e6 −0.501625
\(637\) 0 0
\(638\) 269759. 0.0262376
\(639\) 64785.2 112211.i 0.00627659 0.0108714i
\(640\) −5.15340e6 8.92595e6i −0.497329 0.861400i
\(641\) −8.24828e6 1.42864e7i −0.792900 1.37334i −0.924164 0.381995i \(-0.875237\pi\)
0.131265 0.991347i \(-0.458096\pi\)
\(642\) −35290.9 + 61125.6i −0.00337928 + 0.00585309i
\(643\) −1.70171e7 −1.62315 −0.811576 0.584247i \(-0.801390\pi\)
−0.811576 + 0.584247i \(0.801390\pi\)
\(644\) 0 0
\(645\) −856727. −0.0810855
\(646\) 2.45376e6 4.25003e6i 0.231340 0.400692i
\(647\) 1.74287e6 + 3.01873e6i 0.163683 + 0.283507i 0.936187 0.351503i \(-0.114329\pi\)
−0.772504 + 0.635010i \(0.780996\pi\)
\(648\) 508897. + 881436.i 0.0476094 + 0.0824619i
\(649\) −31391.6 + 54371.8i −0.00292551 + 0.00506713i
\(650\) −689047. −0.0639684
\(651\) 0 0
\(652\) −1.23746e7 −1.14002
\(653\) −7.72245e6 + 1.33757e7i −0.708716 + 1.22753i 0.256618 + 0.966513i \(0.417392\pi\)
−0.965334 + 0.261019i \(0.915941\pi\)
\(654\) −2.05633e6 3.56168e6i −0.187996 0.325619i
\(655\) 4.59029e6 + 7.95061e6i 0.418058 + 0.724098i
\(656\) 3.26933e6 5.66264e6i 0.296619 0.513759i
\(657\) −480439. −0.0434235
\(658\) 0 0
\(659\) −3.11193e6 −0.279136 −0.139568 0.990212i \(-0.544571\pi\)
−0.139568 + 0.990212i \(0.544571\pi\)
\(660\) 111884. 193788.i 0.00999785 0.0173168i
\(661\) 4.08610e6 + 7.07733e6i 0.363752 + 0.630037i 0.988575 0.150729i \(-0.0481622\pi\)
−0.624823 + 0.780766i \(0.714829\pi\)
\(662\) −1.46601e6 2.53921e6i −0.130015 0.225192i
\(663\) 4.11137e6 7.12110e6i 0.363247 0.629163i
\(664\) −1.48650e7 −1.30841
\(665\) 0 0
\(666\) 1.11899e6 0.0977556
\(667\) −1.10874e7 + 1.92039e7i −0.964973 + 1.67138i
\(668\) 6.91326e6 + 1.19741e7i 0.599434 + 1.03825i
\(669\) −3.32138e6 5.75280e6i −0.286915 0.496951i
\(670\) 3.77051e6 6.53072e6i 0.324499 0.562049i
\(671\) −398604. −0.0341771
\(672\) 0 0
\(673\) 1.60182e7 1.36325 0.681627 0.731700i \(-0.261273\pi\)
0.681627 + 0.731700i \(0.261273\pi\)
\(674\) −2.13993e6 + 3.70647e6i −0.181447 + 0.314276i
\(675\) 102694. + 177871.i 0.00867530 + 0.0150261i
\(676\) 5.14239e6 + 8.90687e6i 0.432811 + 0.749650i
\(677\) 512185. 887131.i 0.0429492 0.0743902i −0.843752 0.536734i \(-0.819658\pi\)
0.886701 + 0.462344i \(0.152991\pi\)
\(678\) −6.43826e6 −0.537891
\(679\) 0 0
\(680\) −9.29556e6 −0.770910
\(681\) 2.44852e6 4.24096e6i 0.202319 0.350426i
\(682\) −74138.1 128411.i −0.00610352 0.0105716i
\(683\) 2.69688e6 + 4.67114e6i 0.221213 + 0.383152i 0.955177 0.296037i \(-0.0956651\pi\)
−0.733964 + 0.679189i \(0.762332\pi\)
\(684\) 1.72222e6 2.98298e6i 0.140750 0.243787i
\(685\) 1.00128e7 0.815319
\(686\) 0 0
\(687\) −2.10206e6 −0.169924
\(688\) 290302. 502819.i 0.0233819 0.0404986i
\(689\) −1.03484e7 1.79239e7i −0.830470 1.43842i
\(690\) −2.84123e6 4.92116e6i −0.227187 0.393500i
\(691\) −452826. + 784318.i −0.0360775 + 0.0624881i −0.883500 0.468430i \(-0.844820\pi\)
0.847423 + 0.530919i \(0.178153\pi\)
\(692\) −1.61215e7 −1.27980
\(693\) 0 0
\(694\) −6.14207e6 −0.484079
\(695\) −6.14682e6 + 1.06466e7i −0.482712 + 0.836082i
\(696\) −3.93263e6 6.81151e6i −0.307723 0.532992i
\(697\) −9.42810e6 1.63300e7i −0.735093 1.27322i
\(698\) −2.37693e6 + 4.11697e6i −0.184662 + 0.319845i
\(699\) 5.56290e6 0.430634
\(700\) 0 0
\(701\) 1.12573e7 0.865246 0.432623 0.901575i \(-0.357588\pi\)
0.432623 + 0.901575i \(0.357588\pi\)
\(702\) −891457. + 1.54405e6i −0.0682743 + 0.118255i
\(703\) −4.37187e6 7.57230e6i −0.333640 0.577882i
\(704\) −43028.1 74526.9i −0.00327205 0.00566736i
\(705\) −2.52284e6 + 4.36969e6i −0.191169 + 0.331114i
\(706\) 6.50147e6 0.490908
\(707\) 0 0
\(708\) 792812. 0.0594411
\(709\) −2.17755e6 + 3.77162e6i −0.162687 + 0.281781i −0.935831 0.352448i \(-0.885349\pi\)
0.773145 + 0.634230i \(0.218683\pi\)
\(710\) −128294. 222211.i −0.00955123 0.0165432i
\(711\) 3.58299e6 + 6.20592e6i 0.265810 + 0.460397i
\(712\) 3.60733e6 6.24809e6i 0.266678 0.461899i
\(713\) 1.21886e7 0.897907
\(714\) 0 0
\(715\) 905060. 0.0662082
\(716\) 2.02046e6 3.49955e6i 0.147288 0.255111i
\(717\) 4.21875e6 + 7.30709e6i 0.306469 + 0.530819i
\(718\) −70118.0 121448.i −0.00507597 0.00879183i
\(719\) −7.07221e6 + 1.22494e7i −0.510191 + 0.883676i 0.489739 + 0.871869i \(0.337092\pi\)
−0.999930 + 0.0118076i \(0.996241\pi\)
\(720\) −1.68308e6 −0.120997
\(721\) 0 0
\(722\) 1.50992e6 0.107798
\(723\) −4.19416e6 + 7.26450e6i −0.298401 + 0.516845i
\(724\) −1.81513e6 3.14389e6i −0.128695 0.222906i
\(725\) −793591. 1.37454e6i −0.0560727 0.0971208i
\(726\) −1.98793e6 + 3.44320e6i −0.139978 + 0.242449i
\(727\) 6.26406e6 0.439561 0.219781 0.975549i \(-0.429466\pi\)
0.219781 + 0.975549i \(0.429466\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) −475705. + 823946.i −0.0330393 + 0.0572258i
\(731\) −837176. 1.45003e6i −0.0579460 0.100365i
\(732\) 2.51674e6 + 4.35912e6i 0.173604 + 0.300692i
\(733\) −1.02089e7 + 1.76823e7i −0.701806 + 1.21556i 0.266025 + 0.963966i \(0.414290\pi\)
−0.967832 + 0.251598i \(0.919044\pi\)
\(734\) −1.03558e7 −0.709484
\(735\) 0 0
\(736\) 2.33908e7 1.59166
\(737\) −409577. + 709409.i −0.0277758 + 0.0481092i
\(738\) 2.04427e6 + 3.54078e6i 0.138165 + 0.239309i
\(739\) −7.42256e6 1.28563e7i −0.499969 0.865971i 0.500031 0.866007i \(-0.333322\pi\)
−1.00000 3.61537e-5i \(0.999988\pi\)
\(740\) −3.58650e6 + 6.21200e6i −0.240764 + 0.417015i
\(741\) 1.39316e7 0.932083
\(742\) 0 0
\(743\) 2.36601e7 1.57234 0.786168 0.618013i \(-0.212062\pi\)
0.786168 + 0.618013i \(0.212062\pi\)
\(744\) −2.16161e6 + 3.74403e6i −0.143168 + 0.247974i
\(745\) 6.98694e6 + 1.21017e7i 0.461207 + 0.798834i
\(746\) −6.36809e6 1.10299e7i −0.418950 0.725643i
\(747\) −3.88087e6 + 6.72186e6i −0.254465 + 0.440746i
\(748\) 437322. 0.0285790
\(749\) 0 0
\(750\) −4.10463e6 −0.266453
\(751\) −1.03287e7 + 1.78898e7i −0.668258 + 1.15746i 0.310133 + 0.950693i \(0.399627\pi\)
−0.978391 + 0.206764i \(0.933707\pi\)
\(752\) −1.70973e6 2.96134e6i −0.110251 0.190961i
\(753\) −967389. 1.67557e6i −0.0621747 0.107690i
\(754\) 6.88895e6 1.19320e7i 0.441291 0.764338i
\(755\) −1.26680e7 −0.808799
\(756\) 0 0
\(757\) −1.26697e7 −0.803573 −0.401787 0.915733i \(-0.631611\pi\)
−0.401787 + 0.915733i \(0.631611\pi\)
\(758\) 5.73228e6 9.92860e6i 0.362372 0.627646i
\(759\) 308633. + 534568.i 0.0194463 + 0.0336820i
\(760\) −7.87462e6 1.36392e7i −0.494534 0.856557i
\(761\) 8.13761e6 1.40948e7i 0.509372 0.882259i −0.490569 0.871402i \(-0.663211\pi\)
0.999941 0.0108563i \(-0.00345572\pi\)
\(762\) 5.78130e6 0.360694
\(763\) 0 0
\(764\) −9.43455e6 −0.584774
\(765\) −2.42684e6 + 4.20341e6i −0.149929 + 0.259685i
\(766\) −5.73232e6 9.92867e6i −0.352987 0.611391i
\(767\) 1.60332e6 + 2.77703e6i 0.0984084 + 0.170448i
\(768\) −2.89500e6 + 5.01429e6i −0.177111 + 0.306765i
\(769\) −1.60471e7 −0.978547