Properties

Label 147.6.e.f.67.1
Level $147$
Weight $6$
Character 147.67
Analytic conductor $23.576$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,6,Mod(67,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.67");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 147.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.5764215125\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 147.67
Dual form 147.6.e.f.79.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(4.50000 - 7.79423i) q^{3} +(15.5000 - 26.8468i) q^{4} +(17.0000 + 29.4449i) q^{5} -9.00000 q^{6} -63.0000 q^{8} +(-40.5000 - 70.1481i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(4.50000 - 7.79423i) q^{3} +(15.5000 - 26.8468i) q^{4} +(17.0000 + 29.4449i) q^{5} -9.00000 q^{6} -63.0000 q^{8} +(-40.5000 - 70.1481i) q^{9} +(17.0000 - 29.4449i) q^{10} +(170.000 - 294.449i) q^{11} +(-139.500 - 241.621i) q^{12} +454.000 q^{13} +306.000 q^{15} +(-464.500 - 804.538i) q^{16} +(399.000 - 691.088i) q^{17} +(-40.5000 + 70.1481i) q^{18} +(-446.000 - 772.495i) q^{19} +1054.00 q^{20} -340.000 q^{22} +(1596.00 + 2764.35i) q^{23} +(-283.500 + 491.036i) q^{24} +(984.500 - 1705.20i) q^{25} +(-227.000 - 393.176i) q^{26} -729.000 q^{27} -8242.00 q^{29} +(-153.000 - 265.004i) q^{30} +(1248.00 - 2161.60i) q^{31} +(-1472.50 + 2550.44i) q^{32} +(-1530.00 - 2650.04i) q^{33} -798.000 q^{34} -2511.00 q^{36} +(-4899.00 - 8485.32i) q^{37} +(-446.000 + 772.495i) q^{38} +(2043.00 - 3538.58i) q^{39} +(-1071.00 - 1855.03i) q^{40} +19834.0 q^{41} -17236.0 q^{43} +(-5270.00 - 9127.91i) q^{44} +(1377.00 - 2385.03i) q^{45} +(1596.00 - 2764.35i) q^{46} +(-4464.00 - 7731.87i) q^{47} -8361.00 q^{48} -1969.00 q^{50} +(-3591.00 - 6219.79i) q^{51} +(7037.00 - 12188.4i) q^{52} +(-75.0000 + 129.904i) q^{53} +(364.500 + 631.333i) q^{54} +11560.0 q^{55} -8028.00 q^{57} +(4121.00 + 7137.78i) q^{58} +(21198.0 - 36716.0i) q^{59} +(4743.00 - 8215.12i) q^{60} +(-7379.00 - 12780.8i) q^{61} -2496.00 q^{62} -26783.0 q^{64} +(7718.00 + 13368.0i) q^{65} +(-1530.00 + 2650.04i) q^{66} +(838.000 - 1451.46i) q^{67} +(-12369.0 - 21423.7i) q^{68} +28728.0 q^{69} +14568.0 q^{71} +(2551.50 + 4419.33i) q^{72} +(-39189.0 + 67877.3i) q^{73} +(-4899.00 + 8485.32i) q^{74} +(-8860.50 - 15346.8i) q^{75} -27652.0 q^{76} -4086.00 q^{78} +(1136.00 + 1967.61i) q^{79} +(15793.0 - 27354.3i) q^{80} +(-3280.50 + 5681.99i) q^{81} +(-9917.00 - 17176.7i) q^{82} -37764.0 q^{83} +27132.0 q^{85} +(8618.00 + 14926.8i) q^{86} +(-37089.0 + 64240.0i) q^{87} +(-10710.0 + 18550.3i) q^{88} +(58643.0 + 101573. i) q^{89} -2754.00 q^{90} +98952.0 q^{92} +(-11232.0 - 19454.4i) q^{93} +(-4464.00 + 7731.87i) q^{94} +(15164.0 - 26264.8i) q^{95} +(13252.5 + 22954.0i) q^{96} +10002.0 q^{97} -27540.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 9 q^{3} + 31 q^{4} + 34 q^{5} - 18 q^{6} - 126 q^{8} - 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} + 9 q^{3} + 31 q^{4} + 34 q^{5} - 18 q^{6} - 126 q^{8} - 81 q^{9} + 34 q^{10} + 340 q^{11} - 279 q^{12} + 908 q^{13} + 612 q^{15} - 929 q^{16} + 798 q^{17} - 81 q^{18} - 892 q^{19} + 2108 q^{20} - 680 q^{22} + 3192 q^{23} - 567 q^{24} + 1969 q^{25} - 454 q^{26} - 1458 q^{27} - 16484 q^{29} - 306 q^{30} + 2496 q^{31} - 2945 q^{32} - 3060 q^{33} - 1596 q^{34} - 5022 q^{36} - 9798 q^{37} - 892 q^{38} + 4086 q^{39} - 2142 q^{40} + 39668 q^{41} - 34472 q^{43} - 10540 q^{44} + 2754 q^{45} + 3192 q^{46} - 8928 q^{47} - 16722 q^{48} - 3938 q^{50} - 7182 q^{51} + 14074 q^{52} - 150 q^{53} + 729 q^{54} + 23120 q^{55} - 16056 q^{57} + 8242 q^{58} + 42396 q^{59} + 9486 q^{60} - 14758 q^{61} - 4992 q^{62} - 53566 q^{64} + 15436 q^{65} - 3060 q^{66} + 1676 q^{67} - 24738 q^{68} + 57456 q^{69} + 29136 q^{71} + 5103 q^{72} - 78378 q^{73} - 9798 q^{74} - 17721 q^{75} - 55304 q^{76} - 8172 q^{78} + 2272 q^{79} + 31586 q^{80} - 6561 q^{81} - 19834 q^{82} - 75528 q^{83} + 54264 q^{85} + 17236 q^{86} - 74178 q^{87} - 21420 q^{88} + 117286 q^{89} - 5508 q^{90} + 197904 q^{92} - 22464 q^{93} - 8928 q^{94} + 30328 q^{95} + 26505 q^{96} + 20004 q^{97} - 55080 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.0883883 0.153093i 0.818442 0.574590i \(-0.194838\pi\)
−0.906830 + 0.421496i \(0.861505\pi\)
\(3\) 4.50000 7.79423i 0.288675 0.500000i
\(4\) 15.5000 26.8468i 0.484375 0.838962i
\(5\) 17.0000 + 29.4449i 0.304105 + 0.526726i 0.977062 0.212956i \(-0.0683092\pi\)
−0.672956 + 0.739682i \(0.734976\pi\)
\(6\) −9.00000 −0.102062
\(7\) 0 0
\(8\) −63.0000 −0.348029
\(9\) −40.5000 70.1481i −0.166667 0.288675i
\(10\) 17.0000 29.4449i 0.0537587 0.0931128i
\(11\) 170.000 294.449i 0.423611 0.733716i −0.572679 0.819780i \(-0.694096\pi\)
0.996290 + 0.0860642i \(0.0274290\pi\)
\(12\) −139.500 241.621i −0.279654 0.484375i
\(13\) 454.000 0.745071 0.372535 0.928018i \(-0.378489\pi\)
0.372535 + 0.928018i \(0.378489\pi\)
\(14\) 0 0
\(15\) 306.000 0.351150
\(16\) −464.500 804.538i −0.453613 0.785681i
\(17\) 399.000 691.088i 0.334850 0.579978i −0.648606 0.761124i \(-0.724648\pi\)
0.983456 + 0.181147i \(0.0579809\pi\)
\(18\) −40.5000 + 70.1481i −0.0294628 + 0.0510310i
\(19\) −446.000 772.495i −0.283433 0.490921i 0.688795 0.724956i \(-0.258140\pi\)
−0.972228 + 0.234036i \(0.924807\pi\)
\(20\) 1054.00 0.589204
\(21\) 0 0
\(22\) −340.000 −0.149769
\(23\) 1596.00 + 2764.35i 0.629091 + 1.08962i 0.987735 + 0.156143i \(0.0499060\pi\)
−0.358644 + 0.933475i \(0.616761\pi\)
\(24\) −283.500 + 491.036i −0.100467 + 0.174015i
\(25\) 984.500 1705.20i 0.315040 0.545665i
\(26\) −227.000 393.176i −0.0658556 0.114065i
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) −8242.00 −1.81986 −0.909929 0.414764i \(-0.863864\pi\)
−0.909929 + 0.414764i \(0.863864\pi\)
\(30\) −153.000 265.004i −0.0310376 0.0537587i
\(31\) 1248.00 2161.60i 0.233244 0.403990i −0.725517 0.688204i \(-0.758399\pi\)
0.958761 + 0.284214i \(0.0917326\pi\)
\(32\) −1472.50 + 2550.44i −0.254203 + 0.440292i
\(33\) −1530.00 2650.04i −0.244572 0.423611i
\(34\) −798.000 −0.118387
\(35\) 0 0
\(36\) −2511.00 −0.322917
\(37\) −4899.00 8485.32i −0.588306 1.01898i −0.994454 0.105168i \(-0.966462\pi\)
0.406149 0.913807i \(-0.366872\pi\)
\(38\) −446.000 + 772.495i −0.0501044 + 0.0867834i
\(39\) 2043.00 3538.58i 0.215083 0.372535i
\(40\) −1071.00 1855.03i −0.105837 0.183316i
\(41\) 19834.0 1.84268 0.921342 0.388754i \(-0.127094\pi\)
0.921342 + 0.388754i \(0.127094\pi\)
\(42\) 0 0
\(43\) −17236.0 −1.42156 −0.710780 0.703414i \(-0.751658\pi\)
−0.710780 + 0.703414i \(0.751658\pi\)
\(44\) −5270.00 9127.91i −0.410373 0.710787i
\(45\) 1377.00 2385.03i 0.101368 0.175575i
\(46\) 1596.00 2764.35i 0.111209 0.192619i
\(47\) −4464.00 7731.87i −0.294767 0.510552i 0.680163 0.733061i \(-0.261909\pi\)
−0.974931 + 0.222508i \(0.928576\pi\)
\(48\) −8361.00 −0.523788
\(49\) 0 0
\(50\) −1969.00 −0.111383
\(51\) −3591.00 6219.79i −0.193326 0.334850i
\(52\) 7037.00 12188.4i 0.360894 0.625086i
\(53\) −75.0000 + 129.904i −0.00366751 + 0.00635232i −0.867853 0.496820i \(-0.834501\pi\)
0.864186 + 0.503173i \(0.167834\pi\)
\(54\) 364.500 + 631.333i 0.0170103 + 0.0294628i
\(55\) 11560.0 0.515289
\(56\) 0 0
\(57\) −8028.00 −0.327281
\(58\) 4121.00 + 7137.78i 0.160854 + 0.278608i
\(59\) 21198.0 36716.0i 0.792802 1.37317i −0.131423 0.991326i \(-0.541955\pi\)
0.924225 0.381847i \(-0.124712\pi\)
\(60\) 4743.00 8215.12i 0.170089 0.294602i
\(61\) −7379.00 12780.8i −0.253906 0.439778i 0.710692 0.703503i \(-0.248382\pi\)
−0.964598 + 0.263725i \(0.915049\pi\)
\(62\) −2496.00 −0.0824642
\(63\) 0 0
\(64\) −26783.0 −0.817352
\(65\) 7718.00 + 13368.0i 0.226580 + 0.392448i
\(66\) −1530.00 + 2650.04i −0.0432346 + 0.0748845i
\(67\) 838.000 1451.46i 0.0228064 0.0395019i −0.854397 0.519621i \(-0.826073\pi\)
0.877203 + 0.480119i \(0.159407\pi\)
\(68\) −12369.0 21423.7i −0.324386 0.561853i
\(69\) 28728.0 0.726411
\(70\) 0 0
\(71\) 14568.0 0.342968 0.171484 0.985187i \(-0.445144\pi\)
0.171484 + 0.985187i \(0.445144\pi\)
\(72\) 2551.50 + 4419.33i 0.0580049 + 0.100467i
\(73\) −39189.0 + 67877.3i −0.860710 + 1.49079i 0.0105340 + 0.999945i \(0.496647\pi\)
−0.871244 + 0.490850i \(0.836686\pi\)
\(74\) −4899.00 + 8485.32i −0.103999 + 0.180131i
\(75\) −8860.50 15346.8i −0.181888 0.315040i
\(76\) −27652.0 −0.549152
\(77\) 0 0
\(78\) −4086.00 −0.0760435
\(79\) 1136.00 + 1967.61i 0.0204791 + 0.0354708i 0.876083 0.482160i \(-0.160148\pi\)
−0.855604 + 0.517631i \(0.826814\pi\)
\(80\) 15793.0 27354.3i 0.275892 0.477860i
\(81\) −3280.50 + 5681.99i −0.0555556 + 0.0962250i
\(82\) −9917.00 17176.7i −0.162872 0.282102i
\(83\) −37764.0 −0.601704 −0.300852 0.953671i \(-0.597271\pi\)
−0.300852 + 0.953671i \(0.597271\pi\)
\(84\) 0 0
\(85\) 27132.0 0.407319
\(86\) 8618.00 + 14926.8i 0.125649 + 0.217631i
\(87\) −37089.0 + 64240.0i −0.525348 + 0.909929i
\(88\) −10710.0 + 18550.3i −0.147429 + 0.255354i
\(89\) 58643.0 + 101573.i 0.784768 + 1.35926i 0.929138 + 0.369734i \(0.120551\pi\)
−0.144370 + 0.989524i \(0.546116\pi\)
\(90\) −2754.00 −0.0358391
\(91\) 0 0
\(92\) 98952.0 1.21886
\(93\) −11232.0 19454.4i −0.134663 0.233244i
\(94\) −4464.00 + 7731.87i −0.0521080 + 0.0902537i
\(95\) 15164.0 26264.8i 0.172387 0.298583i
\(96\) 13252.5 + 22954.0i 0.146764 + 0.254203i
\(97\) 10002.0 0.107934 0.0539669 0.998543i \(-0.482813\pi\)
0.0539669 + 0.998543i \(0.482813\pi\)
\(98\) 0 0
\(99\) −27540.0 −0.282407
\(100\) −30519.5 52861.3i −0.305195 0.528613i
\(101\) 54385.0 94197.6i 0.530488 0.918832i −0.468879 0.883262i \(-0.655342\pi\)
0.999367 0.0355701i \(-0.0113247\pi\)
\(102\) −3591.00 + 6219.79i −0.0341755 + 0.0591937i
\(103\) 99596.0 + 172505.i 0.925015 + 1.60217i 0.791537 + 0.611121i \(0.209281\pi\)
0.133478 + 0.991052i \(0.457385\pi\)
\(104\) −28602.0 −0.259306
\(105\) 0 0
\(106\) 150.000 0.00129666
\(107\) 39986.0 + 69257.8i 0.337636 + 0.584802i 0.983988 0.178237i \(-0.0570394\pi\)
−0.646352 + 0.763040i \(0.723706\pi\)
\(108\) −11299.5 + 19571.3i −0.0932180 + 0.161458i
\(109\) 23049.0 39922.0i 0.185817 0.321845i −0.758034 0.652215i \(-0.773840\pi\)
0.943852 + 0.330370i \(0.107173\pi\)
\(110\) −5780.00 10011.3i −0.0455456 0.0788872i
\(111\) −88182.0 −0.679317
\(112\) 0 0
\(113\) 262706. 1.93541 0.967707 0.252078i \(-0.0811138\pi\)
0.967707 + 0.252078i \(0.0811138\pi\)
\(114\) 4014.00 + 6952.45i 0.0289278 + 0.0501044i
\(115\) −54264.0 + 93988.0i −0.382620 + 0.662717i
\(116\) −127751. + 221271.i −0.881494 + 1.52679i
\(117\) −18387.0 31847.2i −0.124178 0.215083i
\(118\) −42396.0 −0.280298
\(119\) 0 0
\(120\) −19278.0 −0.122211
\(121\) 22725.5 + 39361.7i 0.141107 + 0.244405i
\(122\) −7379.00 + 12780.8i −0.0448847 + 0.0777425i
\(123\) 89253.0 154591.i 0.531937 0.921342i
\(124\) −38688.0 67009.6i −0.225955 0.391366i
\(125\) 173196. 0.991432
\(126\) 0 0
\(127\) 196608. 1.08166 0.540831 0.841131i \(-0.318110\pi\)
0.540831 + 0.841131i \(0.318110\pi\)
\(128\) 60511.5 + 104809.i 0.326447 + 0.565423i
\(129\) −77562.0 + 134341.i −0.410369 + 0.710780i
\(130\) 7718.00 13368.0i 0.0400540 0.0693756i
\(131\) 38570.0 + 66805.2i 0.196368 + 0.340120i 0.947348 0.320205i \(-0.103752\pi\)
−0.750980 + 0.660325i \(0.770419\pi\)
\(132\) −94860.0 −0.473858
\(133\) 0 0
\(134\) −1676.00 −0.00806329
\(135\) −12393.0 21465.3i −0.0585251 0.101368i
\(136\) −25137.0 + 43538.6i −0.116538 + 0.201849i
\(137\) −104085. + 180281.i −0.473791 + 0.820630i −0.999550 0.0300037i \(-0.990448\pi\)
0.525759 + 0.850634i \(0.323781\pi\)
\(138\) −14364.0 24879.2i −0.0642063 0.111209i
\(139\) −275580. −1.20979 −0.604896 0.796304i \(-0.706785\pi\)
−0.604896 + 0.796304i \(0.706785\pi\)
\(140\) 0 0
\(141\) −80352.0 −0.340368
\(142\) −7284.00 12616.3i −0.0303144 0.0525061i
\(143\) 77180.0 133680.i 0.315620 0.546670i
\(144\) −37624.5 + 65167.5i −0.151204 + 0.261894i
\(145\) −140114. 242685.i −0.553429 0.958566i
\(146\) 78378.0 0.304307
\(147\) 0 0
\(148\) −303738. −1.13984
\(149\) 148053. + 256435.i 0.546326 + 0.946264i 0.998522 + 0.0543454i \(0.0173072\pi\)
−0.452197 + 0.891918i \(0.649359\pi\)
\(150\) −8860.50 + 15346.8i −0.0321536 + 0.0556917i
\(151\) 213236. 369336.i 0.761059 1.31819i −0.181247 0.983438i \(-0.558013\pi\)
0.942305 0.334755i \(-0.108653\pi\)
\(152\) 28098.0 + 48667.2i 0.0986430 + 0.170855i
\(153\) −64638.0 −0.223233
\(154\) 0 0
\(155\) 84864.0 0.283723
\(156\) −63333.0 109696.i −0.208362 0.360894i
\(157\) −89243.0 + 154573.i −0.288952 + 0.500479i −0.973560 0.228432i \(-0.926640\pi\)
0.684608 + 0.728911i \(0.259973\pi\)
\(158\) 1136.00 1967.61i 0.00362023 0.00627041i
\(159\) 675.000 + 1169.13i 0.00211744 + 0.00366751i
\(160\) −100130. −0.309218
\(161\) 0 0
\(162\) 6561.00 0.0196419
\(163\) −126386. 218907.i −0.372589 0.645343i 0.617374 0.786670i \(-0.288197\pi\)
−0.989963 + 0.141327i \(0.954863\pi\)
\(164\) 307427. 532479.i 0.892550 1.54594i
\(165\) 52020.0 90101.3i 0.148751 0.257645i
\(166\) 18882.0 + 32704.6i 0.0531836 + 0.0921167i
\(167\) 508088. 1.40977 0.704884 0.709322i \(-0.250999\pi\)
0.704884 + 0.709322i \(0.250999\pi\)
\(168\) 0 0
\(169\) −165177. −0.444870
\(170\) −13566.0 23497.0i −0.0360022 0.0623577i
\(171\) −36126.0 + 62572.1i −0.0944778 + 0.163640i
\(172\) −267158. + 462731.i −0.688568 + 1.19264i
\(173\) 110917. + 192114.i 0.281762 + 0.488027i 0.971819 0.235729i \(-0.0757477\pi\)
−0.690057 + 0.723755i \(0.742414\pi\)
\(174\) 74178.0 0.185739
\(175\) 0 0
\(176\) −315860. −0.768622
\(177\) −190782. 330444.i −0.457725 0.792802i
\(178\) 58643.0 101573.i 0.138729 0.240285i
\(179\) 56782.0 98349.3i 0.132458 0.229424i −0.792166 0.610306i \(-0.791046\pi\)
0.924624 + 0.380882i \(0.124380\pi\)
\(180\) −42687.0 73936.1i −0.0982007 0.170089i
\(181\) 663118. 1.50451 0.752254 0.658873i \(-0.228967\pi\)
0.752254 + 0.658873i \(0.228967\pi\)
\(182\) 0 0
\(183\) −132822. −0.293185
\(184\) −100548. 174154.i −0.218942 0.379218i
\(185\) 166566. 288501.i 0.357814 0.619752i
\(186\) −11232.0 + 19454.4i −0.0238054 + 0.0412321i
\(187\) −135660. 234970.i −0.283692 0.491370i
\(188\) −276768. −0.571112
\(189\) 0 0
\(190\) −30328.0 −0.0609480
\(191\) −252832. 437918.i −0.501474 0.868579i −0.999999 0.00170313i \(-0.999458\pi\)
0.498524 0.866876i \(-0.333875\pi\)
\(192\) −120524. + 208753.i −0.235949 + 0.408676i
\(193\) 216191. 374454.i 0.417777 0.723611i −0.577939 0.816080i \(-0.696143\pi\)
0.995716 + 0.0924695i \(0.0294761\pi\)
\(194\) −5001.00 8661.99i −0.00954009 0.0165239i
\(195\) 138924. 0.261632
\(196\) 0 0
\(197\) −131962. −0.242261 −0.121130 0.992637i \(-0.538652\pi\)
−0.121130 + 0.992637i \(0.538652\pi\)
\(198\) 13770.0 + 23850.3i 0.0249615 + 0.0432346i
\(199\) −149268. + 258540.i −0.267199 + 0.462801i −0.968137 0.250420i \(-0.919431\pi\)
0.700939 + 0.713221i \(0.252765\pi\)
\(200\) −62023.5 + 107428.i −0.109643 + 0.189907i
\(201\) −7542.00 13063.1i −0.0131673 0.0228064i
\(202\) −108770. −0.187556
\(203\) 0 0
\(204\) −222642. −0.374569
\(205\) 337178. + 584009.i 0.560370 + 0.970589i
\(206\) 99596.0 172505.i 0.163521 0.283227i
\(207\) 129276. 223913.i 0.209697 0.363206i
\(208\) −210883. 365260.i −0.337974 0.585388i
\(209\) −303280. −0.480262
\(210\) 0 0
\(211\) −1.17062e6 −1.81013 −0.905065 0.425273i \(-0.860178\pi\)
−0.905065 + 0.425273i \(0.860178\pi\)
\(212\) 2325.00 + 4027.02i 0.00355290 + 0.00615381i
\(213\) 65556.0 113546.i 0.0990064 0.171484i
\(214\) 39986.0 69257.8i 0.0596861 0.103379i
\(215\) −293012. 507512.i −0.432304 0.748772i
\(216\) 45927.0 0.0669782
\(217\) 0 0
\(218\) −46098.0 −0.0656963
\(219\) 352701. + 610896.i 0.496931 + 0.860710i
\(220\) 179180. 310349.i 0.249593 0.432308i
\(221\) 181146. 313754.i 0.249487 0.432124i
\(222\) 44091.0 + 76367.9i 0.0600437 + 0.103999i
\(223\) 399376. 0.537799 0.268899 0.963168i \(-0.413340\pi\)
0.268899 + 0.963168i \(0.413340\pi\)
\(224\) 0 0
\(225\) −159489. −0.210027
\(226\) −131353. 227510.i −0.171068 0.296299i
\(227\) −353958. + 613073.i −0.455918 + 0.789674i −0.998740 0.0501739i \(-0.984022\pi\)
0.542822 + 0.839848i \(0.317356\pi\)
\(228\) −124434. + 215526.i −0.158527 + 0.274576i
\(229\) 367889. + 637202.i 0.463584 + 0.802950i 0.999136 0.0415514i \(-0.0132300\pi\)
−0.535553 + 0.844502i \(0.679897\pi\)
\(230\) 108528. 0.135276
\(231\) 0 0
\(232\) 519246. 0.633364
\(233\) 104379. + 180790.i 0.125957 + 0.218164i 0.922107 0.386936i \(-0.126466\pi\)
−0.796149 + 0.605100i \(0.793133\pi\)
\(234\) −18387.0 + 31847.2i −0.0219519 + 0.0380217i
\(235\) 151776. 262884.i 0.179281 0.310523i
\(236\) −657138. 1.13820e6i −0.768027 1.33026i
\(237\) 20448.0 0.0236472
\(238\) 0 0
\(239\) 713376. 0.807837 0.403919 0.914795i \(-0.367648\pi\)
0.403919 + 0.914795i \(0.367648\pi\)
\(240\) −142137. 246189.i −0.159287 0.275892i
\(241\) 252623. 437556.i 0.280176 0.485278i −0.691252 0.722614i \(-0.742941\pi\)
0.971428 + 0.237335i \(0.0762740\pi\)
\(242\) 22725.5 39361.7i 0.0249445 0.0432052i
\(243\) 29524.5 + 51137.9i 0.0320750 + 0.0555556i
\(244\) −457498. −0.491943
\(245\) 0 0
\(246\) −178506. −0.188068
\(247\) −202484. 350713.i −0.211178 0.365771i
\(248\) −78624.0 + 136181.i −0.0811757 + 0.140600i
\(249\) −169938. + 294341.i −0.173697 + 0.300852i
\(250\) −86598.0 149992.i −0.0876310 0.151781i
\(251\) 317108. 0.317704 0.158852 0.987302i \(-0.449221\pi\)
0.158852 + 0.987302i \(0.449221\pi\)
\(252\) 0 0
\(253\) 1.08528e6 1.06596
\(254\) −98304.0 170268.i −0.0956064 0.165595i
\(255\) 122094. 211473.i 0.117583 0.203659i
\(256\) −368016. + 637423.i −0.350968 + 0.607894i
\(257\) 721423. + 1.24954e6i 0.681329 + 1.18010i 0.974575 + 0.224060i \(0.0719312\pi\)
−0.293246 + 0.956037i \(0.594735\pi\)
\(258\) 155124. 0.145087
\(259\) 0 0
\(260\) 478516. 0.438999
\(261\) 333801. + 578160.i 0.303310 + 0.525348i
\(262\) 38570.0 66805.2i 0.0347133 0.0601253i
\(263\) −135748. + 235122.i −0.121016 + 0.209606i −0.920169 0.391522i \(-0.871949\pi\)
0.799152 + 0.601128i \(0.205282\pi\)
\(264\) 96390.0 + 166952.i 0.0851181 + 0.147429i
\(265\) −5100.00 −0.00446124
\(266\) 0 0
\(267\) 1.05557e6 0.906172
\(268\) −25978.0 44995.2i −0.0220937 0.0382674i
\(269\) −425307. + 736653.i −0.358362 + 0.620701i −0.987687 0.156441i \(-0.949998\pi\)
0.629325 + 0.777142i \(0.283331\pi\)
\(270\) −12393.0 + 21465.3i −0.0103459 + 0.0179196i
\(271\) 270064. + 467765.i 0.223380 + 0.386905i 0.955832 0.293913i \(-0.0949577\pi\)
−0.732452 + 0.680818i \(0.761624\pi\)
\(272\) −741342. −0.607570
\(273\) 0 0
\(274\) 208170. 0.167510
\(275\) −334730. 579769.i −0.266909 0.462300i
\(276\) 445284. 771255.i 0.351856 0.609432i
\(277\) −256787. + 444768.i −0.201082 + 0.348285i −0.948877 0.315645i \(-0.897779\pi\)
0.747795 + 0.663929i \(0.231112\pi\)
\(278\) 137790. + 238659.i 0.106932 + 0.185211i
\(279\) −202176. −0.155496
\(280\) 0 0
\(281\) −1.35642e6 −1.02478 −0.512388 0.858754i \(-0.671239\pi\)
−0.512388 + 0.858754i \(0.671239\pi\)
\(282\) 40176.0 + 69586.9i 0.0300846 + 0.0521080i
\(283\) −143378. + 248338.i −0.106418 + 0.184322i −0.914317 0.405000i \(-0.867272\pi\)
0.807898 + 0.589322i \(0.200605\pi\)
\(284\) 225804. 391104.i 0.166125 0.287737i
\(285\) −136476. 236383.i −0.0995277 0.172387i
\(286\) −154360. −0.111589
\(287\) 0 0
\(288\) 238545. 0.169469
\(289\) 391526. + 678144.i 0.275751 + 0.477614i
\(290\) −140114. + 242685.i −0.0978333 + 0.169452i
\(291\) 45009.0 77957.9i 0.0311578 0.0539669i
\(292\) 1.21486e6 + 2.10420e6i 0.833813 + 1.44421i
\(293\) −1.70727e6 −1.16180 −0.580901 0.813974i \(-0.697300\pi\)
−0.580901 + 0.813974i \(0.697300\pi\)
\(294\) 0 0
\(295\) 1.44146e6 0.964381
\(296\) 308637. + 534575.i 0.204748 + 0.354633i
\(297\) −123930. + 214653.i −0.0815240 + 0.141204i
\(298\) 148053. 256435.i 0.0965776 0.167277i
\(299\) 724584. + 1.25502e6i 0.468717 + 0.811842i
\(300\) −549351. −0.352409
\(301\) 0 0
\(302\) −426472. −0.269075
\(303\) −489465. 847778.i −0.306277 0.530488i
\(304\) −414334. + 717648.i −0.257138 + 0.445376i
\(305\) 250886. 434547.i 0.154428 0.267478i
\(306\) 32319.0 + 55978.2i 0.0197312 + 0.0341755i
\(307\) −546788. −0.331111 −0.165555 0.986201i \(-0.552942\pi\)
−0.165555 + 0.986201i \(0.552942\pi\)
\(308\) 0 0
\(309\) 1.79273e6 1.06812
\(310\) −42432.0 73494.4i −0.0250778 0.0434360i
\(311\) −1.61713e6 + 2.80095e6i −0.948079 + 1.64212i −0.198613 + 0.980078i \(0.563644\pi\)
−0.749466 + 0.662043i \(0.769690\pi\)
\(312\) −128709. + 222931.i −0.0748553 + 0.129653i
\(313\) −906565. 1.57022e6i −0.523044 0.905939i −0.999640 0.0268164i \(-0.991463\pi\)
0.476597 0.879122i \(-0.341870\pi\)
\(314\) 178486. 0.102160
\(315\) 0 0
\(316\) 70432.0 0.0396782
\(317\) 638289. + 1.10555e6i 0.356754 + 0.617917i 0.987417 0.158141i \(-0.0505500\pi\)
−0.630662 + 0.776057i \(0.717217\pi\)
\(318\) 675.000 1169.13i 0.000374314 0.000648331i
\(319\) −1.40114e6 + 2.42685e6i −0.770912 + 1.33526i
\(320\) −455311. 788622.i −0.248561 0.430520i
\(321\) 719748. 0.389868
\(322\) 0 0
\(323\) −711816. −0.379631
\(324\) 101696. + 176142.i 0.0538194 + 0.0932180i
\(325\) 446963. 774163.i 0.234727 0.406559i
\(326\) −126386. + 218907.i −0.0658650 + 0.114082i
\(327\) −207441. 359298.i −0.107282 0.185817i
\(328\) −1.24954e6 −0.641307
\(329\) 0 0
\(330\) −104040. −0.0525915
\(331\) 868106. + 1.50360e6i 0.435515 + 0.754334i 0.997337 0.0729241i \(-0.0232331\pi\)
−0.561823 + 0.827258i \(0.689900\pi\)
\(332\) −585342. + 1.01384e6i −0.291450 + 0.504807i
\(333\) −396819. + 687311.i −0.196102 + 0.339659i
\(334\) −254044. 440017.i −0.124607 0.215826i
\(335\) 56984.0 0.0277422
\(336\) 0 0
\(337\) 2.07215e6 0.993907 0.496953 0.867777i \(-0.334452\pi\)
0.496953 + 0.867777i \(0.334452\pi\)
\(338\) 82588.5 + 143047.i 0.0393213 + 0.0681065i
\(339\) 1.18218e6 2.04759e6i 0.558706 0.967707i
\(340\) 420546. 728407.i 0.197295 0.341725i
\(341\) −424320. 734944.i −0.197609 0.342269i
\(342\) 72252.0 0.0334029
\(343\) 0 0
\(344\) 1.08587e6 0.494744
\(345\) 488376. + 845892.i 0.220906 + 0.382620i
\(346\) 110917. 192114.i 0.0498090 0.0862717i
\(347\) 825730. 1.43021e6i 0.368141 0.637639i −0.621134 0.783705i \(-0.713328\pi\)
0.989275 + 0.146065i \(0.0466610\pi\)
\(348\) 1.14976e6 + 1.99144e6i 0.508931 + 0.881494i
\(349\) 1.26645e6 0.556578 0.278289 0.960497i \(-0.410233\pi\)
0.278289 + 0.960497i \(0.410233\pi\)
\(350\) 0 0
\(351\) −330966. −0.143389
\(352\) 500650. + 867151.i 0.215366 + 0.373025i
\(353\) −286609. + 496421.i −0.122420 + 0.212038i −0.920722 0.390220i \(-0.872399\pi\)
0.798301 + 0.602258i \(0.205732\pi\)
\(354\) −190782. + 330444.i −0.0809150 + 0.140149i
\(355\) 247656. + 428953.i 0.104298 + 0.180650i
\(356\) 3.63587e6 1.52049
\(357\) 0 0
\(358\) −113564. −0.0468310
\(359\) −2.23161e6 3.86527e6i −0.913866 1.58286i −0.808553 0.588423i \(-0.799749\pi\)
−0.105313 0.994439i \(-0.533584\pi\)
\(360\) −86751.0 + 150257.i −0.0352792 + 0.0611053i
\(361\) 840218. 1.45530e6i 0.339331 0.587739i
\(362\) −331559. 574277.i −0.132981 0.230330i
\(363\) 409059. 0.162937
\(364\) 0 0
\(365\) −2.66485e6 −1.04699
\(366\) 66411.0 + 115027.i 0.0259142 + 0.0448847i
\(367\) 2.25398e6 3.90401e6i 0.873546 1.51303i 0.0152419 0.999884i \(-0.495148\pi\)
0.858304 0.513142i \(-0.171519\pi\)
\(368\) 1.48268e6 2.56808e6i 0.570728 0.988530i
\(369\) −803277. 1.39132e6i −0.307114 0.531937i
\(370\) −333132. −0.126506
\(371\) 0 0
\(372\) −696384. −0.260910
\(373\) −832675. 1.44224e6i −0.309887 0.536740i 0.668450 0.743757i \(-0.266958\pi\)
−0.978337 + 0.207017i \(0.933625\pi\)
\(374\) −135660. + 234970.i −0.0501502 + 0.0868627i
\(375\) 779382. 1.34993e6i 0.286202 0.495716i
\(376\) 281232. + 487108.i 0.102588 + 0.177687i
\(377\) −3.74187e6 −1.35592
\(378\) 0 0
\(379\) −2.53232e6 −0.905568 −0.452784 0.891620i \(-0.649569\pi\)
−0.452784 + 0.891620i \(0.649569\pi\)
\(380\) −470084. 814209.i −0.167000 0.289252i
\(381\) 884736. 1.53241e6i 0.312249 0.540831i
\(382\) −252832. + 437918.i −0.0886490 + 0.153544i
\(383\) −398184. 689675.i −0.138703 0.240241i 0.788303 0.615288i \(-0.210960\pi\)
−0.927006 + 0.375046i \(0.877627\pi\)
\(384\) 1.08921e6 0.376949
\(385\) 0 0
\(386\) −432382. −0.147706
\(387\) 698058. + 1.20907e6i 0.236927 + 0.410369i
\(388\) 155031. 268522.i 0.0522804 0.0905524i
\(389\) −973995. + 1.68701e6i −0.326349 + 0.565254i −0.981785 0.189998i \(-0.939152\pi\)
0.655435 + 0.755251i \(0.272485\pi\)
\(390\) −69462.0 120312.i −0.0231252 0.0400540i
\(391\) 2.54722e6 0.842605
\(392\) 0 0
\(393\) 694260. 0.226747
\(394\) 65981.0 + 114282.i 0.0214130 + 0.0370885i
\(395\) −38624.0 + 66898.7i −0.0124556 + 0.0215737i
\(396\) −426870. + 739361.i −0.136791 + 0.236929i
\(397\) −540579. 936310.i −0.172140 0.298156i 0.767028 0.641614i \(-0.221735\pi\)
−0.939168 + 0.343458i \(0.888402\pi\)
\(398\) 298536. 0.0944689
\(399\) 0 0
\(400\) −1.82920e6 −0.571625
\(401\) −1.38385e6 2.39690e6i −0.429762 0.744369i 0.567090 0.823656i \(-0.308069\pi\)
−0.996852 + 0.0792866i \(0.974736\pi\)
\(402\) −7542.00 + 13063.1i −0.00232767 + 0.00403164i
\(403\) 566592. 981366.i 0.173783 0.301001i
\(404\) −1.68593e6 2.92013e6i −0.513910 0.890119i
\(405\) −223074. −0.0675789
\(406\) 0 0
\(407\) −3.33132e6 −0.996851
\(408\) 226233. + 391847.i 0.0672830 + 0.116538i
\(409\) −1.18175e6 + 2.04685e6i −0.349315 + 0.605031i −0.986128 0.165987i \(-0.946919\pi\)
0.636813 + 0.771018i \(0.280252\pi\)
\(410\) 337178. 584009.i 0.0990603 0.171577i
\(411\) 936765. + 1.62252e6i 0.273543 + 0.473791i
\(412\) 6.17495e6 1.79222
\(413\) 0 0
\(414\) −258552. −0.0741391
\(415\) −641988. 1.11196e6i −0.182981 0.316933i
\(416\) −668515. + 1.15790e6i −0.189399 + 0.328049i
\(417\) −1.24011e6 + 2.14793e6i −0.349237 + 0.604896i
\(418\) 151640. + 262648.i 0.0424495 + 0.0735248i
\(419\) −2.98669e6 −0.831104 −0.415552 0.909569i \(-0.636412\pi\)
−0.415552 + 0.909569i \(0.636412\pi\)
\(420\) 0 0
\(421\) −3.46331e6 −0.952326 −0.476163 0.879357i \(-0.657973\pi\)
−0.476163 + 0.879357i \(0.657973\pi\)
\(422\) 585310. + 1.01379e6i 0.159994 + 0.277118i
\(423\) −361584. + 626282.i −0.0982558 + 0.170184i
\(424\) 4725.00 8183.94i 0.00127640 0.00221079i
\(425\) −785631. 1.36075e6i −0.210982 0.365432i
\(426\) −131112. −0.0350041
\(427\) 0 0
\(428\) 2.47913e6 0.654169
\(429\) −694620. 1.20312e6i −0.182223 0.315620i
\(430\) −293012. + 507512.i −0.0764213 + 0.132366i
\(431\) −1.16846e6 + 2.02384e6i −0.302986 + 0.524787i −0.976811 0.214104i \(-0.931317\pi\)
0.673825 + 0.738891i \(0.264650\pi\)
\(432\) 338620. + 586508.i 0.0872979 + 0.151204i
\(433\) −3.50838e6 −0.899264 −0.449632 0.893214i \(-0.648445\pi\)
−0.449632 + 0.893214i \(0.648445\pi\)
\(434\) 0 0
\(435\) −2.52205e6 −0.639044
\(436\) −714519. 1.23758e6i −0.180010 0.311787i
\(437\) 1.42363e6 2.46580e6i 0.356611 0.617668i
\(438\) 352701. 610896.i 0.0878459 0.152154i
\(439\) −1.77416e6 3.07294e6i −0.439372 0.761015i 0.558269 0.829660i \(-0.311466\pi\)
−0.997641 + 0.0686452i \(0.978132\pi\)
\(440\) −728280. −0.179336
\(441\) 0 0
\(442\) −362292. −0.0882070
\(443\) −884166. 1.53142e6i −0.214055 0.370753i 0.738925 0.673788i \(-0.235334\pi\)
−0.952980 + 0.303034i \(0.902000\pi\)
\(444\) −1.36682e6 + 2.36740e6i −0.329044 + 0.569921i
\(445\) −1.99386e6 + 3.45347e6i −0.477304 + 0.826715i
\(446\) −199688. 345870.i −0.0475351 0.0823333i
\(447\) 2.66495e6 0.630842
\(448\) 0 0
\(449\) −5.52579e6 −1.29354 −0.646768 0.762687i \(-0.723880\pi\)
−0.646768 + 0.762687i \(0.723880\pi\)
\(450\) 79744.5 + 138122.i 0.0185639 + 0.0321536i
\(451\) 3.37178e6 5.84009e6i 0.780581 1.35201i
\(452\) 4.07194e6 7.05281e6i 0.937466 1.62374i
\(453\) −1.91912e6 3.32402e6i −0.439397 0.761059i
\(454\) 707916. 0.161191
\(455\) 0 0
\(456\) 505764. 0.113903
\(457\) 1.48113e6 + 2.56539e6i 0.331744 + 0.574597i 0.982854 0.184386i \(-0.0590297\pi\)
−0.651110 + 0.758983i \(0.725696\pi\)
\(458\) 367889. 637202.i 0.0819508 0.141943i
\(459\) −290871. + 503803.i −0.0644420 + 0.111617i
\(460\) 1.68218e6 + 2.91363e6i 0.370663 + 0.642007i
\(461\) 2.11884e6 0.464350 0.232175 0.972674i \(-0.425416\pi\)
0.232175 + 0.972674i \(0.425416\pi\)
\(462\) 0 0
\(463\) 3.19226e6 0.692062 0.346031 0.938223i \(-0.387529\pi\)
0.346031 + 0.938223i \(0.387529\pi\)
\(464\) 3.82841e6 + 6.63100e6i 0.825512 + 1.42983i
\(465\) 381888. 661449.i 0.0819037 0.141861i
\(466\) 104379. 180790.i 0.0222663 0.0385664i
\(467\) 3.71311e6 + 6.43129e6i 0.787853 + 1.36460i 0.927280 + 0.374369i \(0.122141\pi\)
−0.139427 + 0.990232i \(0.544526\pi\)
\(468\) −1.13999e6 −0.240596
\(469\) 0 0
\(470\) −303552. −0.0633853
\(471\) 803187. + 1.39116e6i 0.166826 + 0.288952i
\(472\) −1.33547e6 + 2.31311e6i −0.275918 + 0.477904i
\(473\) −2.93012e6 + 5.07512e6i −0.602189 + 1.04302i
\(474\) −10224.0 17708.5i −0.00209014 0.00362023i
\(475\) −1.75635e6 −0.357171
\(476\) 0 0
\(477\) 12150.0 0.00244501
\(478\) −356688. 617802.i −0.0714034 0.123674i
\(479\) 1.69842e6 2.94176e6i 0.338226 0.585825i −0.645873 0.763445i \(-0.723506\pi\)
0.984099 + 0.177620i \(0.0568397\pi\)
\(480\) −450585. + 780436.i −0.0892634 + 0.154609i
\(481\) −2.22415e6 3.85233e6i −0.438329 0.759209i
\(482\) −505246. −0.0990570
\(483\) 0 0
\(484\) 1.40898e6 0.273396
\(485\) 170034. + 294508.i 0.0328232 + 0.0568515i
\(486\) 29524.5 51137.9i 0.00567012 0.00982093i
\(487\) 1.85691e6 3.21626e6i 0.354787 0.614510i −0.632294 0.774728i \(-0.717887\pi\)
0.987082 + 0.160219i \(0.0512200\pi\)
\(488\) 464877. + 805191.i 0.0883667 + 0.153056i
\(489\) −2.27495e6 −0.430229
\(490\) 0 0
\(491\) 5.57494e6 1.04361 0.521803 0.853066i \(-0.325260\pi\)
0.521803 + 0.853066i \(0.325260\pi\)
\(492\) −2.76684e6 4.79231e6i −0.515314 0.892550i
\(493\) −3.28856e6 + 5.69595e6i −0.609380 + 1.05548i
\(494\) −202484. + 350713.i −0.0373313 + 0.0646597i
\(495\) −468180. 810912.i −0.0858815 0.148751i
\(496\) −2.31878e6 −0.423210
\(497\) 0 0
\(498\) 339876. 0.0614111
\(499\) −1.96349e6 3.40086e6i −0.353002 0.611418i 0.633772 0.773520i \(-0.281506\pi\)
−0.986774 + 0.162102i \(0.948172\pi\)
\(500\) 2.68454e6 4.64976e6i 0.480225 0.831774i
\(501\) 2.28640e6 3.96015e6i 0.406965 0.704884i
\(502\) −158554. 274624.i −0.0280813 0.0486383i
\(503\) 6.42079e6 1.13154 0.565768 0.824564i \(-0.308580\pi\)
0.565768 + 0.824564i \(0.308580\pi\)
\(504\) 0 0
\(505\) 3.69818e6 0.645297
\(506\) −542640. 939880.i −0.0942184 0.163191i
\(507\) −743296. + 1.28743e6i −0.128423 + 0.222435i
\(508\) 3.04742e6 5.27829e6i 0.523930 0.907474i
\(509\) −73139.0 126680.i −0.0125128 0.0216728i 0.859701 0.510797i \(-0.170650\pi\)
−0.872214 + 0.489124i \(0.837316\pi\)
\(510\) −244188. −0.0415718
\(511\) 0 0
\(512\) 4.60877e6 0.776980
\(513\) 325134. + 563149.i 0.0545468 + 0.0944778i
\(514\) 721423. 1.24954e6i 0.120443 0.208614i
\(515\) −3.38626e6 + 5.86518e6i −0.562604 + 0.974459i
\(516\) 2.40442e6 + 4.16458e6i 0.397545 + 0.688568i
\(517\) −3.03552e6 −0.499467
\(518\) 0 0
\(519\) 1.99651e6 0.325351
\(520\) −486234. 842182.i −0.0788564 0.136583i
\(521\) −3.85468e6 + 6.67651e6i −0.622149 + 1.07759i 0.366935 + 0.930246i \(0.380407\pi\)
−0.989085 + 0.147348i \(0.952926\pi\)
\(522\) 333801. 578160.i 0.0536181 0.0928693i
\(523\) 284710. + 493132.i 0.0455144 + 0.0788332i 0.887885 0.460065i \(-0.152174\pi\)
−0.842371 + 0.538898i \(0.818841\pi\)
\(524\) 2.39134e6 0.380464
\(525\) 0 0
\(526\) 271496. 0.0427857
\(527\) −995904. 1.72496e6i −0.156204 0.270553i
\(528\) −1.42137e6 + 2.46189e6i −0.221882 + 0.384311i
\(529\) −1.87626e6 + 3.24978e6i −0.291510 + 0.504911i
\(530\) 2550.00 + 4416.73i 0.000394322 + 0.000682985i
\(531\) −3.43408e6 −0.528535
\(532\) 0 0
\(533\) 9.00464e6 1.37293
\(534\) −527787. 914154.i −0.0800950 0.138729i
\(535\) −1.35952e6 + 2.35476e6i −0.205354 + 0.355683i
\(536\) −52794.0 + 91441.9i −0.00793730 + 0.0137478i
\(537\) −511038. 885144.i −0.0764746 0.132458i
\(538\) 850614. 0.126700
\(539\) 0 0
\(540\) −768366. −0.113392
\(541\) 4.72401e6 + 8.18222e6i 0.693933 + 1.20193i 0.970539 + 0.240944i \(0.0774570\pi\)
−0.276606 + 0.960983i \(0.589210\pi\)
\(542\) 270064. 467765.i 0.0394883 0.0683957i
\(543\) 2.98403e6 5.16849e6i 0.434314 0.752254i
\(544\) 1.17506e6 + 2.03525e6i 0.170240 + 0.294864i
\(545\) 1.56733e6 0.226032
\(546\) 0 0
\(547\) −1.35321e6 −0.193374 −0.0966869 0.995315i \(-0.530825\pi\)
−0.0966869 + 0.995315i \(0.530825\pi\)
\(548\) 3.22664e6 + 5.58870e6i 0.458985 + 0.794985i
\(549\) −597699. + 1.03525e6i −0.0846353 + 0.146593i
\(550\) −334730. + 579769.i −0.0471833 + 0.0817238i
\(551\) 3.67593e6 + 6.36690e6i 0.515808 + 0.893406i
\(552\) −1.80986e6 −0.252812
\(553\) 0 0
\(554\) 513574. 0.0710933
\(555\) −1.49909e6 2.59651e6i −0.206584 0.357814i
\(556\) −4.27149e6 + 7.39844e6i −0.585993 + 1.01497i
\(557\) −4.09695e6 + 7.09613e6i −0.559529 + 0.969133i 0.438006 + 0.898972i \(0.355685\pi\)
−0.997536 + 0.0701612i \(0.977649\pi\)
\(558\) 101088. + 175090.i 0.0137440 + 0.0238054i
\(559\) −7.82514e6 −1.05916
\(560\) 0 0
\(561\) −2.44188e6 −0.327580
\(562\) 678211. + 1.17470e6i 0.0905783 + 0.156886i
\(563\) 5.28982e6 9.16223e6i 0.703347 1.21823i −0.263938 0.964540i \(-0.585021\pi\)
0.967285 0.253693i \(-0.0816454\pi\)
\(564\) −1.24546e6 + 2.15719e6i −0.164866 + 0.285556i
\(565\) 4.46600e6 + 7.73534e6i 0.588570 + 1.01943i
\(566\) 286756. 0.0376246
\(567\) 0 0
\(568\) −917784. −0.119363
\(569\) 6.01026e6 + 1.04101e7i 0.778238 + 1.34795i 0.932956 + 0.359989i \(0.117220\pi\)
−0.154718 + 0.987959i \(0.549447\pi\)
\(570\) −136476. + 236383.i −0.0175942 + 0.0304740i
\(571\) 1.24474e6 2.15595e6i 0.159767 0.276725i −0.775017 0.631940i \(-0.782259\pi\)
0.934785 + 0.355215i \(0.115592\pi\)
\(572\) −2.39258e6 4.14407e6i −0.305757 0.529587i
\(573\) −4.55098e6 −0.579053
\(574\) 0 0
\(575\) 6.28505e6 0.792755
\(576\) 1.08471e6 + 1.87878e6i 0.136225 + 0.235949i
\(577\) −4.10661e6 + 7.11286e6i −0.513504 + 0.889415i 0.486373 + 0.873751i \(0.338320\pi\)
−0.999877 + 0.0156639i \(0.995014\pi\)
\(578\) 391526. 678144.i 0.0487463 0.0844311i
\(579\) −1.94572e6 3.37008e6i −0.241204 0.417777i
\(580\) −8.68707e6 −1.07227
\(581\) 0 0
\(582\) −90018.0 −0.0110159
\(583\) 25500.0 + 44167.3i 0.00310720 + 0.00538182i
\(584\) 2.46891e6 4.27627e6i 0.299552 0.518840i
\(585\) 625158. 1.08281e6i 0.0755266 0.130816i
\(586\) 853633. + 1.47854e6i 0.102690 + 0.177864i
\(587\) −1.21827e6 −0.145931 −0.0729655 0.997334i \(-0.523246\pi\)
−0.0729655 + 0.997334i \(0.523246\pi\)
\(588\) 0 0
\(589\) −2.22643e6 −0.264436
\(590\) −720732. 1.24834e6i −0.0852401 0.147640i
\(591\) −593829. + 1.02854e6i −0.0699347 + 0.121130i
\(592\) −4.55117e6 + 7.88286e6i −0.533727 + 0.924442i
\(593\) 4.21190e6 + 7.29522e6i 0.491859 + 0.851925i 0.999956 0.00937481i \(-0.00298414\pi\)
−0.508097 + 0.861300i \(0.669651\pi\)
\(594\) 247860. 0.0288231
\(595\) 0 0
\(596\) 9.17929e6 1.05851
\(597\) 1.34341e6 + 2.32686e6i 0.154267 + 0.267199i
\(598\) 724584. 1.25502e6i 0.0828583 0.143515i
\(599\) −4.10627e6 + 7.11226e6i −0.467606 + 0.809918i −0.999315 0.0370096i \(-0.988217\pi\)
0.531709 + 0.846927i \(0.321550\pi\)
\(600\) 558212. + 966851.i 0.0633025 + 0.109643i
\(601\) 3.25478e6 0.367566 0.183783 0.982967i \(-0.441166\pi\)
0.183783 + 0.982967i \(0.441166\pi\)
\(602\) 0 0
\(603\) −135756. −0.0152043
\(604\) −6.61032e6 1.14494e7i −0.737276 1.27700i
\(605\) −772667. + 1.33830e6i −0.0858230 + 0.148650i
\(606\) −489465. + 847778.i −0.0541427 + 0.0937779i
\(607\) −3.91050e6 6.77319e6i −0.430785 0.746142i 0.566156 0.824298i \(-0.308430\pi\)
−0.996941 + 0.0781561i \(0.975097\pi\)
\(608\) 2.62694e6 0.288198
\(609\) 0 0
\(610\) −501772. −0.0545986
\(611\) −2.02666e6 3.51027e6i −0.219623 0.380397i
\(612\) −1.00189e6 + 1.73532e6i −0.108129 + 0.187284i
\(613\) 4.75835e6 8.24170e6i 0.511452 0.885861i −0.488460 0.872586i \(-0.662441\pi\)
0.999912 0.0132748i \(-0.00422563\pi\)
\(614\) 273394. + 473532.i 0.0292663 + 0.0506907i
\(615\) 6.06920e6 0.647059
\(616\) 0 0
\(617\) −7.04895e6 −0.745438 −0.372719 0.927944i \(-0.621574\pi\)
−0.372719 + 0.927944i \(0.621574\pi\)
\(618\) −896364. 1.55255e6i −0.0944090 0.163521i
\(619\) 3.16087e6 5.47479e6i 0.331574 0.574302i −0.651247 0.758866i \(-0.725754\pi\)
0.982821 + 0.184563i \(0.0590871\pi\)
\(620\) 1.31539e6 2.27833e6i 0.137428 0.238033i
\(621\) −1.16348e6 2.01521e6i −0.121069 0.209697i
\(622\) 3.23426e6 0.335197
\(623\) 0 0
\(624\) −3.79589e6 −0.390259
\(625\) −132230. 229030.i −0.0135404 0.0234527i
\(626\) −906565. + 1.57022e6i −0.0924620 + 0.160149i
\(627\) −1.36476e6 + 2.36383e6i −0.138640 + 0.240131i
\(628\) 2.76653e6 + 4.79178e6i 0.279922 + 0.484839i
\(629\) −7.81880e6 −0.787977
\(630\) 0 0
\(631\) 8.61236e6 0.861090 0.430545 0.902569i \(-0.358321\pi\)
0.430545 + 0.902569i \(0.358321\pi\)
\(632\) −71568.0 123959.i −0.00712732 0.0123449i
\(633\) −5.26779e6 + 9.12408e6i −0.522540 + 0.905065i
\(634\) 638289. 1.10555e6i 0.0630658 0.109233i
\(635\) 3.34234e6 + 5.78910e6i 0.328939 + 0.569740i
\(636\) 41850.0 0.00410254
\(637\) 0 0
\(638\) 2.80228e6 0.272559
\(639\) −590004. 1.02192e6i −0.0571614 0.0990064i
\(640\) −2.05739e6 + 3.56351e6i −0.198549 + 0.343896i
\(641\) 2.61414e6 4.52783e6i 0.251295 0.435256i −0.712587 0.701583i \(-0.752477\pi\)
0.963883 + 0.266327i \(0.0858102\pi\)
\(642\) −359874. 623320.i −0.0344598 0.0596861i
\(643\) 1.61373e7 1.53923 0.769615 0.638508i \(-0.220448\pi\)
0.769615 + 0.638508i \(0.220448\pi\)
\(644\) 0 0
\(645\) −5.27422e6 −0.499182
\(646\) 355908. + 616451.i 0.0335549 + 0.0581189i
\(647\) 7.93743e6 1.37480e7i 0.745451 1.29116i −0.204533 0.978860i \(-0.565567\pi\)
0.949984 0.312299i \(-0.101099\pi\)
\(648\) 206672. 357966.i 0.0193350 0.0334891i
\(649\) −7.20732e6 1.24834e7i −0.671679 1.16338i
\(650\) −893926. −0.0829886
\(651\) 0 0
\(652\) −7.83593e6 −0.721891
\(653\) 2.97056e6 + 5.14516e6i 0.272619 + 0.472189i 0.969532 0.244966i \(-0.0787769\pi\)
−0.696913 + 0.717156i \(0.745444\pi\)
\(654\) −207441. + 359298.i −0.0189649 + 0.0328481i
\(655\) −1.31138e6 + 2.27138e6i −0.119433 + 0.206864i
\(656\) −9.21289e6 1.59572e7i −0.835866 1.44776i
\(657\) 6.34862e6 0.573807
\(658\) 0 0
\(659\) −7.64430e6 −0.685684 −0.342842 0.939393i \(-0.611390\pi\)
−0.342842 + 0.939393i \(0.611390\pi\)
\(660\) −1.61262e6 2.79314e6i −0.144103 0.249593i
\(661\) 3.79344e6 6.57043e6i 0.337699 0.584912i −0.646301 0.763083i \(-0.723685\pi\)
0.983999 + 0.178171i \(0.0570181\pi\)
\(662\) 868106. 1.50360e6i 0.0769888 0.133349i
\(663\) −1.63031e6 2.82379e6i −0.144041 0.249487i
\(664\) 2.37913e6 0.209410
\(665\) 0 0
\(666\) 793638. 0.0693325
\(667\) −1.31542e7 2.27838e7i −1.14486 1.98295i
\(668\) 7.87536e6 1.36405e7i 0.682857 1.18274i
\(669\) 1.79719e6 3.11283e6i 0.155249 0.268899i
\(670\) −28492.0 49349.6i −0.00245209 0.00424714i
\(671\) −5.01772e6 −0.430229
\(672\) 0 0
\(673\) −2.06681e7 −1.75899 −0.879494 0.475910i \(-0.842119\pi\)
−0.879494 + 0.475910i \(0.842119\pi\)
\(674\) −1.03607e6 1.79453e6i −0.0878498 0.152160i
\(675\) −717700. + 1.24309e6i −0.0606295 + 0.105013i
\(676\) −2.56024e6 + 4.43447e6i −0.215484 + 0.373229i
\(677\) −3.94770e6 6.83762e6i −0.331034 0.573368i 0.651681 0.758493i \(-0.274064\pi\)
−0.982715 + 0.185125i \(0.940731\pi\)
\(678\) −2.36435e6 −0.197532
\(679\) 0 0
\(680\) −1.70932e6 −0.141759
\(681\) 3.18562e6 + 5.51766e6i 0.263225 + 0.455918i
\(682\) −424320. + 734944.i −0.0349327 + 0.0605053i
\(683\) 9.80075e6 1.69754e7i 0.803911 1.39241i −0.113114 0.993582i \(-0.536082\pi\)
0.917024 0.398832i \(-0.130584\pi\)
\(684\) 1.11991e6 + 1.93973e6i 0.0915253 + 0.158527i
\(685\) −7.07778e6 −0.576329
\(686\) 0 0
\(687\) 6.62200e6 0.535300
\(688\) 8.00612e6 + 1.38670e7i 0.644839 + 1.11689i
\(689\) −34050.0 + 58976.3i −0.00273256 + 0.00473293i
\(690\) 488376. 845892.i 0.0390509 0.0676382i
\(691\) 8.63549e6 + 1.49571e7i 0.688005 + 1.19166i 0.972482 + 0.232977i \(0.0748468\pi\)
−0.284477 + 0.958683i \(0.591820\pi\)
\(692\) 6.87685e6 0.545914
\(693\) 0 0
\(694\) −1.65146e6 −0.130158
\(695\) −4.68486e6 8.11442e6i −0.367904 0.637229i
\(696\) 2.33661e6 4.04712e6i 0.182836 0.316682i
\(697\) 7.91377e6 1.37070e7i 0.617023 1.06871i
\(698\) −633227. 1.09678e6i −0.0491950 0.0852082i
\(699\) 1.87882e6 0.145443
\(700\) 0 0
\(701\) −5.36344e6 −0.412238 −0.206119 0.978527i \(-0.566083\pi\)
−0.206119 + 0.978527i \(0.566083\pi\)
\(702\) 165483. + 286625.i 0.0126739 + 0.0219519i
\(703\) −4.36991e6 + 7.56890e6i −0.333491 + 0.577623i
\(704\) −4.55311e6 + 7.88622e6i −0.346239 + 0.599704i
\(705\) −1.36598e6 2.36595e6i −0.103508 0.179281i
\(706\) 573218. 0.0432821
\(707\) 0 0
\(708\) −1.18285e7 −0.886841
\(709\) 8.68665e6 + 1.50457e7i 0.648988 + 1.12408i 0.983365 + 0.181641i \(0.0581409\pi\)
−0.334377 + 0.942440i \(0.608526\pi\)
\(710\) 247656. 428953.i 0.0184375 0.0319348i
\(711\) 92016.0 159376.i 0.00682636 0.0118236i
\(712\) −3.69451e6 6.39908e6i −0.273122 0.473061i
\(713\) 7.96723e6 0.586926
\(714\) 0 0
\(715\) 5.24824e6 0.383927
\(716\) −1.76024e6 3.04883e6i −0.128319 0.222254i
\(717\) 3.21019e6 5.56022e6i 0.233202 0.403919i
\(718\) −2.23161e6 + 3.86527e6i −0.161550 + 0.279813i
\(719\) −212304. 367721.i −0.0153157 0.0265275i 0.858266 0.513205i \(-0.171542\pi\)
−0.873582 + 0.486678i \(0.838209\pi\)
\(720\) −2.55847e6 −0.183928
\(721\) 0 0
\(722\) −1.68044e6 −0.119972
\(723\) −2.27361e6 3.93800e6i −0.161759 0.280176i
\(724\) 1.02783e7 1.78026e7i 0.728746 1.26222i
\(725\) −8.11425e6 + 1.40543e7i −0.573328 + 0.993034i
\(726\) −204530. 354255.i −0.0144017 0.0249445i
\(727\) 2.18290e7 1.53179 0.765893 0.642968i \(-0.222297\pi\)
0.765893 + 0.642968i \(0.222297\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 1.33243e6 + 2.30783e6i 0.0925414 + 0.160286i
\(731\) −6.87716e6 + 1.19116e7i −0.476010 + 0.824473i
\(732\) −2.05874e6 + 3.56584e6i −0.142012 + 0.245971i
\(733\) −1.08838e7 1.88512e7i −0.748202 1.29592i −0.948684 0.316227i \(-0.897584\pi\)
0.200481 0.979698i \(-0.435749\pi\)
\(734\) −4.50797e6 −0.308845
\(735\) 0 0
\(736\) −9.40044e6 −0.639667
\(737\) −284920. 493496.i −0.0193221 0.0334669i
\(738\) −803277. + 1.39132e6i −0.0542906 + 0.0940340i
\(739\) −3.10893e6 + 5.38482e6i −0.209411 + 0.362711i −0.951529 0.307558i \(-0.900488\pi\)
0.742118 + 0.670269i \(0.233821\pi\)
\(740\) −5.16355e6 8.94352e6i −0.346632 0.600384i
\(741\) −3.64471e6 −0.243847
\(742\) 0 0
\(743\) 3.77647e6 0.250966 0.125483 0.992096i \(-0.459952\pi\)
0.125483 + 0.992096i \(0.459952\pi\)
\(744\) 707616. + 1.22563e6i 0.0468668 + 0.0811757i
\(745\) −5.03380e6 + 8.71880e6i −0.332281 + 0.575527i
\(746\) −832675. + 1.44224e6i −0.0547808 + 0.0948831i
\(747\) 1.52944e6 + 2.64907e6i 0.100284 + 0.173697i
\(748\) −8.41092e6 −0.549654
\(749\) 0 0
\(750\) −1.55876e6 −0.101188
\(751\) 1.44398e6 + 2.50104e6i 0.0934244 + 0.161816i 0.908950 0.416905i \(-0.136885\pi\)
−0.815526 + 0.578721i \(0.803552\pi\)
\(752\) −4.14706e6 + 7.18291e6i −0.267421 + 0.463187i
\(753\) 1.42699e6 2.47161e6i 0.0917133 0.158852i
\(754\) 1.87093e6 + 3.24055e6i 0.119848 + 0.207582i
\(755\) 1.45000e7 0.925768
\(756\) 0 0
\(757\) 1.25519e6 0.0796104 0.0398052 0.999207i \(-0.487326\pi\)
0.0398052 + 0.999207i \(0.487326\pi\)
\(758\) 1.26616e6 + 2.19306e6i 0.0800417 + 0.138636i
\(759\) 4.88376e6 8.45892e6i 0.307716 0.532979i
\(760\) −955332. + 1.65468e6i −0.0599957 + 0.103916i
\(761\) 7.13115e6 + 1.23515e7i 0.446373 + 0.773140i 0.998147 0.0608533i \(-0.0193822\pi\)
−0.551774 + 0.833994i \(0.686049\pi\)
\(762\) −1.76947e6 −0.110397
\(763\) 0 0
\(764\) −1.56756e7 −0.971606
\(765\) −1.09885e6 1.90326e6i −0.0678865 0.117583i
\(766\) −398184. + 689675.i −0.0245195 + 0.0424690i
\(767\) 9.62389e6 1.66691e7i 0.590694 1.02311i
\(768\) 3.31215e6 + 5.73681e6i 0.202631 + 0.350968i
\(769\) −2.02261e7 −1.23338 −0.616689 0.787207i \(-0.711526\pi\)