Properties

Label 147.6.e.e.79.1
Level $147$
Weight $6$
Character 147.79
Analytic conductor $23.576$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,6,Mod(67,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.67");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 147.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.5764215125\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 147.79
Dual form 147.6.e.e.67.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-4.50000 - 7.79423i) q^{3} +(15.5000 + 26.8468i) q^{4} +(-17.0000 + 29.4449i) q^{5} +9.00000 q^{6} -63.0000 q^{8} +(-40.5000 + 70.1481i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(-4.50000 - 7.79423i) q^{3} +(15.5000 + 26.8468i) q^{4} +(-17.0000 + 29.4449i) q^{5} +9.00000 q^{6} -63.0000 q^{8} +(-40.5000 + 70.1481i) q^{9} +(-17.0000 - 29.4449i) q^{10} +(170.000 + 294.449i) q^{11} +(139.500 - 241.621i) q^{12} -454.000 q^{13} +306.000 q^{15} +(-464.500 + 804.538i) q^{16} +(-399.000 - 691.088i) q^{17} +(-40.5000 - 70.1481i) q^{18} +(446.000 - 772.495i) q^{19} -1054.00 q^{20} -340.000 q^{22} +(1596.00 - 2764.35i) q^{23} +(283.500 + 491.036i) q^{24} +(984.500 + 1705.20i) q^{25} +(227.000 - 393.176i) q^{26} +729.000 q^{27} -8242.00 q^{29} +(-153.000 + 265.004i) q^{30} +(-1248.00 - 2161.60i) q^{31} +(-1472.50 - 2550.44i) q^{32} +(1530.00 - 2650.04i) q^{33} +798.000 q^{34} -2511.00 q^{36} +(-4899.00 + 8485.32i) q^{37} +(446.000 + 772.495i) q^{38} +(2043.00 + 3538.58i) q^{39} +(1071.00 - 1855.03i) q^{40} -19834.0 q^{41} -17236.0 q^{43} +(-5270.00 + 9127.91i) q^{44} +(-1377.00 - 2385.03i) q^{45} +(1596.00 + 2764.35i) q^{46} +(4464.00 - 7731.87i) q^{47} +8361.00 q^{48} -1969.00 q^{50} +(-3591.00 + 6219.79i) q^{51} +(-7037.00 - 12188.4i) q^{52} +(-75.0000 - 129.904i) q^{53} +(-364.500 + 631.333i) q^{54} -11560.0 q^{55} -8028.00 q^{57} +(4121.00 - 7137.78i) q^{58} +(-21198.0 - 36716.0i) q^{59} +(4743.00 + 8215.12i) q^{60} +(7379.00 - 12780.8i) q^{61} +2496.00 q^{62} -26783.0 q^{64} +(7718.00 - 13368.0i) q^{65} +(1530.00 + 2650.04i) q^{66} +(838.000 + 1451.46i) q^{67} +(12369.0 - 21423.7i) q^{68} -28728.0 q^{69} +14568.0 q^{71} +(2551.50 - 4419.33i) q^{72} +(39189.0 + 67877.3i) q^{73} +(-4899.00 - 8485.32i) q^{74} +(8860.50 - 15346.8i) q^{75} +27652.0 q^{76} -4086.00 q^{78} +(1136.00 - 1967.61i) q^{79} +(-15793.0 - 27354.3i) q^{80} +(-3280.50 - 5681.99i) q^{81} +(9917.00 - 17176.7i) q^{82} +37764.0 q^{83} +27132.0 q^{85} +(8618.00 - 14926.8i) q^{86} +(37089.0 + 64240.0i) q^{87} +(-10710.0 - 18550.3i) q^{88} +(-58643.0 + 101573. i) q^{89} +2754.00 q^{90} +98952.0 q^{92} +(-11232.0 + 19454.4i) q^{93} +(4464.00 + 7731.87i) q^{94} +(15164.0 + 26264.8i) q^{95} +(-13252.5 + 22954.0i) q^{96} -10002.0 q^{97} -27540.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - 9 q^{3} + 31 q^{4} - 34 q^{5} + 18 q^{6} - 126 q^{8} - 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} - 9 q^{3} + 31 q^{4} - 34 q^{5} + 18 q^{6} - 126 q^{8} - 81 q^{9} - 34 q^{10} + 340 q^{11} + 279 q^{12} - 908 q^{13} + 612 q^{15} - 929 q^{16} - 798 q^{17} - 81 q^{18} + 892 q^{19} - 2108 q^{20} - 680 q^{22} + 3192 q^{23} + 567 q^{24} + 1969 q^{25} + 454 q^{26} + 1458 q^{27} - 16484 q^{29} - 306 q^{30} - 2496 q^{31} - 2945 q^{32} + 3060 q^{33} + 1596 q^{34} - 5022 q^{36} - 9798 q^{37} + 892 q^{38} + 4086 q^{39} + 2142 q^{40} - 39668 q^{41} - 34472 q^{43} - 10540 q^{44} - 2754 q^{45} + 3192 q^{46} + 8928 q^{47} + 16722 q^{48} - 3938 q^{50} - 7182 q^{51} - 14074 q^{52} - 150 q^{53} - 729 q^{54} - 23120 q^{55} - 16056 q^{57} + 8242 q^{58} - 42396 q^{59} + 9486 q^{60} + 14758 q^{61} + 4992 q^{62} - 53566 q^{64} + 15436 q^{65} + 3060 q^{66} + 1676 q^{67} + 24738 q^{68} - 57456 q^{69} + 29136 q^{71} + 5103 q^{72} + 78378 q^{73} - 9798 q^{74} + 17721 q^{75} + 55304 q^{76} - 8172 q^{78} + 2272 q^{79} - 31586 q^{80} - 6561 q^{81} + 19834 q^{82} + 75528 q^{83} + 54264 q^{85} + 17236 q^{86} + 74178 q^{87} - 21420 q^{88} - 117286 q^{89} + 5508 q^{90} + 197904 q^{92} - 22464 q^{93} + 8928 q^{94} + 30328 q^{95} - 26505 q^{96} - 20004 q^{97} - 55080 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.0883883 + 0.153093i −0.906830 0.421496i \(-0.861505\pi\)
0.818442 + 0.574590i \(0.194838\pi\)
\(3\) −4.50000 7.79423i −0.288675 0.500000i
\(4\) 15.5000 + 26.8468i 0.484375 + 0.838962i
\(5\) −17.0000 + 29.4449i −0.304105 + 0.526726i −0.977062 0.212956i \(-0.931691\pi\)
0.672956 + 0.739682i \(0.265024\pi\)
\(6\) 9.00000 0.102062
\(7\) 0 0
\(8\) −63.0000 −0.348029
\(9\) −40.5000 + 70.1481i −0.166667 + 0.288675i
\(10\) −17.0000 29.4449i −0.0537587 0.0931128i
\(11\) 170.000 + 294.449i 0.423611 + 0.733716i 0.996290 0.0860642i \(-0.0274290\pi\)
−0.572679 + 0.819780i \(0.694096\pi\)
\(12\) 139.500 241.621i 0.279654 0.484375i
\(13\) −454.000 −0.745071 −0.372535 0.928018i \(-0.621511\pi\)
−0.372535 + 0.928018i \(0.621511\pi\)
\(14\) 0 0
\(15\) 306.000 0.351150
\(16\) −464.500 + 804.538i −0.453613 + 0.785681i
\(17\) −399.000 691.088i −0.334850 0.579978i 0.648606 0.761124i \(-0.275352\pi\)
−0.983456 + 0.181147i \(0.942019\pi\)
\(18\) −40.5000 70.1481i −0.0294628 0.0510310i
\(19\) 446.000 772.495i 0.283433 0.490921i −0.688795 0.724956i \(-0.741860\pi\)
0.972228 + 0.234036i \(0.0751932\pi\)
\(20\) −1054.00 −0.589204
\(21\) 0 0
\(22\) −340.000 −0.149769
\(23\) 1596.00 2764.35i 0.629091 1.08962i −0.358644 0.933475i \(-0.616761\pi\)
0.987735 0.156143i \(-0.0499060\pi\)
\(24\) 283.500 + 491.036i 0.100467 + 0.174015i
\(25\) 984.500 + 1705.20i 0.315040 + 0.545665i
\(26\) 227.000 393.176i 0.0658556 0.114065i
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −8242.00 −1.81986 −0.909929 0.414764i \(-0.863864\pi\)
−0.909929 + 0.414764i \(0.863864\pi\)
\(30\) −153.000 + 265.004i −0.0310376 + 0.0537587i
\(31\) −1248.00 2161.60i −0.233244 0.403990i 0.725517 0.688204i \(-0.241601\pi\)
−0.958761 + 0.284214i \(0.908267\pi\)
\(32\) −1472.50 2550.44i −0.254203 0.440292i
\(33\) 1530.00 2650.04i 0.244572 0.423611i
\(34\) 798.000 0.118387
\(35\) 0 0
\(36\) −2511.00 −0.322917
\(37\) −4899.00 + 8485.32i −0.588306 + 1.01898i 0.406149 + 0.913807i \(0.366872\pi\)
−0.994454 + 0.105168i \(0.966462\pi\)
\(38\) 446.000 + 772.495i 0.0501044 + 0.0867834i
\(39\) 2043.00 + 3538.58i 0.215083 + 0.372535i
\(40\) 1071.00 1855.03i 0.105837 0.183316i
\(41\) −19834.0 −1.84268 −0.921342 0.388754i \(-0.872906\pi\)
−0.921342 + 0.388754i \(0.872906\pi\)
\(42\) 0 0
\(43\) −17236.0 −1.42156 −0.710780 0.703414i \(-0.751658\pi\)
−0.710780 + 0.703414i \(0.751658\pi\)
\(44\) −5270.00 + 9127.91i −0.410373 + 0.710787i
\(45\) −1377.00 2385.03i −0.101368 0.175575i
\(46\) 1596.00 + 2764.35i 0.111209 + 0.192619i
\(47\) 4464.00 7731.87i 0.294767 0.510552i −0.680163 0.733061i \(-0.738091\pi\)
0.974931 + 0.222508i \(0.0714245\pi\)
\(48\) 8361.00 0.523788
\(49\) 0 0
\(50\) −1969.00 −0.111383
\(51\) −3591.00 + 6219.79i −0.193326 + 0.334850i
\(52\) −7037.00 12188.4i −0.360894 0.625086i
\(53\) −75.0000 129.904i −0.00366751 0.00635232i 0.864186 0.503173i \(-0.167834\pi\)
−0.867853 + 0.496820i \(0.834501\pi\)
\(54\) −364.500 + 631.333i −0.0170103 + 0.0294628i
\(55\) −11560.0 −0.515289
\(56\) 0 0
\(57\) −8028.00 −0.327281
\(58\) 4121.00 7137.78i 0.160854 0.278608i
\(59\) −21198.0 36716.0i −0.792802 1.37317i −0.924225 0.381847i \(-0.875288\pi\)
0.131423 0.991326i \(-0.458045\pi\)
\(60\) 4743.00 + 8215.12i 0.170089 + 0.294602i
\(61\) 7379.00 12780.8i 0.253906 0.439778i −0.710692 0.703503i \(-0.751618\pi\)
0.964598 + 0.263725i \(0.0849513\pi\)
\(62\) 2496.00 0.0824642
\(63\) 0 0
\(64\) −26783.0 −0.817352
\(65\) 7718.00 13368.0i 0.226580 0.392448i
\(66\) 1530.00 + 2650.04i 0.0432346 + 0.0748845i
\(67\) 838.000 + 1451.46i 0.0228064 + 0.0395019i 0.877203 0.480119i \(-0.159407\pi\)
−0.854397 + 0.519621i \(0.826073\pi\)
\(68\) 12369.0 21423.7i 0.324386 0.561853i
\(69\) −28728.0 −0.726411
\(70\) 0 0
\(71\) 14568.0 0.342968 0.171484 0.985187i \(-0.445144\pi\)
0.171484 + 0.985187i \(0.445144\pi\)
\(72\) 2551.50 4419.33i 0.0580049 0.100467i
\(73\) 39189.0 + 67877.3i 0.860710 + 1.49079i 0.871244 + 0.490850i \(0.163314\pi\)
−0.0105340 + 0.999945i \(0.503353\pi\)
\(74\) −4899.00 8485.32i −0.103999 0.180131i
\(75\) 8860.50 15346.8i 0.181888 0.315040i
\(76\) 27652.0 0.549152
\(77\) 0 0
\(78\) −4086.00 −0.0760435
\(79\) 1136.00 1967.61i 0.0204791 0.0354708i −0.855604 0.517631i \(-0.826814\pi\)
0.876083 + 0.482160i \(0.160148\pi\)
\(80\) −15793.0 27354.3i −0.275892 0.477860i
\(81\) −3280.50 5681.99i −0.0555556 0.0962250i
\(82\) 9917.00 17176.7i 0.162872 0.282102i
\(83\) 37764.0 0.601704 0.300852 0.953671i \(-0.402729\pi\)
0.300852 + 0.953671i \(0.402729\pi\)
\(84\) 0 0
\(85\) 27132.0 0.407319
\(86\) 8618.00 14926.8i 0.125649 0.217631i
\(87\) 37089.0 + 64240.0i 0.525348 + 0.909929i
\(88\) −10710.0 18550.3i −0.147429 0.255354i
\(89\) −58643.0 + 101573.i −0.784768 + 1.35926i 0.144370 + 0.989524i \(0.453884\pi\)
−0.929138 + 0.369734i \(0.879449\pi\)
\(90\) 2754.00 0.0358391
\(91\) 0 0
\(92\) 98952.0 1.21886
\(93\) −11232.0 + 19454.4i −0.134663 + 0.233244i
\(94\) 4464.00 + 7731.87i 0.0521080 + 0.0902537i
\(95\) 15164.0 + 26264.8i 0.172387 + 0.298583i
\(96\) −13252.5 + 22954.0i −0.146764 + 0.254203i
\(97\) −10002.0 −0.107934 −0.0539669 0.998543i \(-0.517187\pi\)
−0.0539669 + 0.998543i \(0.517187\pi\)
\(98\) 0 0
\(99\) −27540.0 −0.282407
\(100\) −30519.5 + 52861.3i −0.305195 + 0.528613i
\(101\) −54385.0 94197.6i −0.530488 0.918832i −0.999367 0.0355701i \(-0.988675\pi\)
0.468879 0.883262i \(-0.344658\pi\)
\(102\) −3591.00 6219.79i −0.0341755 0.0591937i
\(103\) −99596.0 + 172505.i −0.925015 + 1.60217i −0.133478 + 0.991052i \(0.542615\pi\)
−0.791537 + 0.611121i \(0.790719\pi\)
\(104\) 28602.0 0.259306
\(105\) 0 0
\(106\) 150.000 0.00129666
\(107\) 39986.0 69257.8i 0.337636 0.584802i −0.646352 0.763040i \(-0.723706\pi\)
0.983988 + 0.178237i \(0.0570394\pi\)
\(108\) 11299.5 + 19571.3i 0.0932180 + 0.161458i
\(109\) 23049.0 + 39922.0i 0.185817 + 0.321845i 0.943852 0.330370i \(-0.107173\pi\)
−0.758034 + 0.652215i \(0.773840\pi\)
\(110\) 5780.00 10011.3i 0.0455456 0.0788872i
\(111\) 88182.0 0.679317
\(112\) 0 0
\(113\) 262706. 1.93541 0.967707 0.252078i \(-0.0811138\pi\)
0.967707 + 0.252078i \(0.0811138\pi\)
\(114\) 4014.00 6952.45i 0.0289278 0.0501044i
\(115\) 54264.0 + 93988.0i 0.382620 + 0.662717i
\(116\) −127751. 221271.i −0.881494 1.52679i
\(117\) 18387.0 31847.2i 0.124178 0.215083i
\(118\) 42396.0 0.280298
\(119\) 0 0
\(120\) −19278.0 −0.122211
\(121\) 22725.5 39361.7i 0.141107 0.244405i
\(122\) 7379.00 + 12780.8i 0.0448847 + 0.0777425i
\(123\) 89253.0 + 154591.i 0.531937 + 0.921342i
\(124\) 38688.0 67009.6i 0.225955 0.391366i
\(125\) −173196. −0.991432
\(126\) 0 0
\(127\) 196608. 1.08166 0.540831 0.841131i \(-0.318110\pi\)
0.540831 + 0.841131i \(0.318110\pi\)
\(128\) 60511.5 104809.i 0.326447 0.565423i
\(129\) 77562.0 + 134341.i 0.410369 + 0.710780i
\(130\) 7718.00 + 13368.0i 0.0400540 + 0.0693756i
\(131\) −38570.0 + 66805.2i −0.196368 + 0.340120i −0.947348 0.320205i \(-0.896248\pi\)
0.750980 + 0.660325i \(0.229581\pi\)
\(132\) 94860.0 0.473858
\(133\) 0 0
\(134\) −1676.00 −0.00806329
\(135\) −12393.0 + 21465.3i −0.0585251 + 0.101368i
\(136\) 25137.0 + 43538.6i 0.116538 + 0.201849i
\(137\) −104085. 180281.i −0.473791 0.820630i 0.525759 0.850634i \(-0.323781\pi\)
−0.999550 + 0.0300037i \(0.990448\pi\)
\(138\) 14364.0 24879.2i 0.0642063 0.111209i
\(139\) 275580. 1.20979 0.604896 0.796304i \(-0.293215\pi\)
0.604896 + 0.796304i \(0.293215\pi\)
\(140\) 0 0
\(141\) −80352.0 −0.340368
\(142\) −7284.00 + 12616.3i −0.0303144 + 0.0525061i
\(143\) −77180.0 133680.i −0.315620 0.546670i
\(144\) −37624.5 65167.5i −0.151204 0.261894i
\(145\) 140114. 242685.i 0.553429 0.958566i
\(146\) −78378.0 −0.304307
\(147\) 0 0
\(148\) −303738. −1.13984
\(149\) 148053. 256435.i 0.546326 0.946264i −0.452197 0.891918i \(-0.649359\pi\)
0.998522 0.0543454i \(-0.0173072\pi\)
\(150\) 8860.50 + 15346.8i 0.0321536 + 0.0556917i
\(151\) 213236. + 369336.i 0.761059 + 1.31819i 0.942305 + 0.334755i \(0.108653\pi\)
−0.181247 + 0.983438i \(0.558013\pi\)
\(152\) −28098.0 + 48667.2i −0.0986430 + 0.170855i
\(153\) 64638.0 0.223233
\(154\) 0 0
\(155\) 84864.0 0.283723
\(156\) −63333.0 + 109696.i −0.208362 + 0.360894i
\(157\) 89243.0 + 154573.i 0.288952 + 0.500479i 0.973560 0.228432i \(-0.0733600\pi\)
−0.684608 + 0.728911i \(0.740027\pi\)
\(158\) 1136.00 + 1967.61i 0.00362023 + 0.00627041i
\(159\) −675.000 + 1169.13i −0.00211744 + 0.00366751i
\(160\) 100130. 0.309218
\(161\) 0 0
\(162\) 6561.00 0.0196419
\(163\) −126386. + 218907.i −0.372589 + 0.645343i −0.989963 0.141327i \(-0.954863\pi\)
0.617374 + 0.786670i \(0.288197\pi\)
\(164\) −307427. 532479.i −0.892550 1.54594i
\(165\) 52020.0 + 90101.3i 0.148751 + 0.257645i
\(166\) −18882.0 + 32704.6i −0.0531836 + 0.0921167i
\(167\) −508088. −1.40977 −0.704884 0.709322i \(-0.749001\pi\)
−0.704884 + 0.709322i \(0.749001\pi\)
\(168\) 0 0
\(169\) −165177. −0.444870
\(170\) −13566.0 + 23497.0i −0.0360022 + 0.0623577i
\(171\) 36126.0 + 62572.1i 0.0944778 + 0.163640i
\(172\) −267158. 462731.i −0.688568 1.19264i
\(173\) −110917. + 192114.i −0.281762 + 0.488027i −0.971819 0.235729i \(-0.924252\pi\)
0.690057 + 0.723755i \(0.257586\pi\)
\(174\) −74178.0 −0.185739
\(175\) 0 0
\(176\) −315860. −0.768622
\(177\) −190782. + 330444.i −0.457725 + 0.792802i
\(178\) −58643.0 101573.i −0.138729 0.240285i
\(179\) 56782.0 + 98349.3i 0.132458 + 0.229424i 0.924624 0.380882i \(-0.124380\pi\)
−0.792166 + 0.610306i \(0.791046\pi\)
\(180\) 42687.0 73936.1i 0.0982007 0.170089i
\(181\) −663118. −1.50451 −0.752254 0.658873i \(-0.771033\pi\)
−0.752254 + 0.658873i \(0.771033\pi\)
\(182\) 0 0
\(183\) −132822. −0.293185
\(184\) −100548. + 174154.i −0.218942 + 0.379218i
\(185\) −166566. 288501.i −0.357814 0.619752i
\(186\) −11232.0 19454.4i −0.0238054 0.0412321i
\(187\) 135660. 234970.i 0.283692 0.491370i
\(188\) 276768. 0.571112
\(189\) 0 0
\(190\) −30328.0 −0.0609480
\(191\) −252832. + 437918.i −0.501474 + 0.868579i 0.498524 + 0.866876i \(0.333875\pi\)
−0.999999 + 0.00170313i \(0.999458\pi\)
\(192\) 120524. + 208753.i 0.235949 + 0.408676i
\(193\) 216191. + 374454.i 0.417777 + 0.723611i 0.995716 0.0924695i \(-0.0294761\pi\)
−0.577939 + 0.816080i \(0.696143\pi\)
\(194\) 5001.00 8661.99i 0.00954009 0.0165239i
\(195\) −138924. −0.261632
\(196\) 0 0
\(197\) −131962. −0.242261 −0.121130 0.992637i \(-0.538652\pi\)
−0.121130 + 0.992637i \(0.538652\pi\)
\(198\) 13770.0 23850.3i 0.0249615 0.0432346i
\(199\) 149268. + 258540.i 0.267199 + 0.462801i 0.968137 0.250420i \(-0.0805687\pi\)
−0.700939 + 0.713221i \(0.747235\pi\)
\(200\) −62023.5 107428.i −0.109643 0.189907i
\(201\) 7542.00 13063.1i 0.0131673 0.0228064i
\(202\) 108770. 0.187556
\(203\) 0 0
\(204\) −222642. −0.374569
\(205\) 337178. 584009.i 0.560370 0.970589i
\(206\) −99596.0 172505.i −0.163521 0.283227i
\(207\) 129276. + 223913.i 0.209697 + 0.363206i
\(208\) 210883. 365260.i 0.337974 0.585388i
\(209\) 303280. 0.480262
\(210\) 0 0
\(211\) −1.17062e6 −1.81013 −0.905065 0.425273i \(-0.860178\pi\)
−0.905065 + 0.425273i \(0.860178\pi\)
\(212\) 2325.00 4027.02i 0.00355290 0.00615381i
\(213\) −65556.0 113546.i −0.0990064 0.171484i
\(214\) 39986.0 + 69257.8i 0.0596861 + 0.103379i
\(215\) 293012. 507512.i 0.432304 0.748772i
\(216\) −45927.0 −0.0669782
\(217\) 0 0
\(218\) −46098.0 −0.0656963
\(219\) 352701. 610896.i 0.496931 0.860710i
\(220\) −179180. 310349.i −0.249593 0.432308i
\(221\) 181146. + 313754.i 0.249487 + 0.432124i
\(222\) −44091.0 + 76367.9i −0.0600437 + 0.103999i
\(223\) −399376. −0.537799 −0.268899 0.963168i \(-0.586660\pi\)
−0.268899 + 0.963168i \(0.586660\pi\)
\(224\) 0 0
\(225\) −159489. −0.210027
\(226\) −131353. + 227510.i −0.171068 + 0.296299i
\(227\) 353958. + 613073.i 0.455918 + 0.789674i 0.998740 0.0501739i \(-0.0159776\pi\)
−0.542822 + 0.839848i \(0.682644\pi\)
\(228\) −124434. 215526.i −0.158527 0.274576i
\(229\) −367889. + 637202.i −0.463584 + 0.802950i −0.999136 0.0415514i \(-0.986770\pi\)
0.535553 + 0.844502i \(0.320103\pi\)
\(230\) −108528. −0.135276
\(231\) 0 0
\(232\) 519246. 0.633364
\(233\) 104379. 180790.i 0.125957 0.218164i −0.796149 0.605100i \(-0.793133\pi\)
0.922107 + 0.386936i \(0.126466\pi\)
\(234\) 18387.0 + 31847.2i 0.0219519 + 0.0380217i
\(235\) 151776. + 262884.i 0.179281 + 0.310523i
\(236\) 657138. 1.13820e6i 0.768027 1.33026i
\(237\) −20448.0 −0.0236472
\(238\) 0 0
\(239\) 713376. 0.807837 0.403919 0.914795i \(-0.367648\pi\)
0.403919 + 0.914795i \(0.367648\pi\)
\(240\) −142137. + 246189.i −0.159287 + 0.275892i
\(241\) −252623. 437556.i −0.280176 0.485278i 0.691252 0.722614i \(-0.257059\pi\)
−0.971428 + 0.237335i \(0.923726\pi\)
\(242\) 22725.5 + 39361.7i 0.0249445 + 0.0432052i
\(243\) −29524.5 + 51137.9i −0.0320750 + 0.0555556i
\(244\) 457498. 0.491943
\(245\) 0 0
\(246\) −178506. −0.188068
\(247\) −202484. + 350713.i −0.211178 + 0.365771i
\(248\) 78624.0 + 136181.i 0.0811757 + 0.140600i
\(249\) −169938. 294341.i −0.173697 0.300852i
\(250\) 86598.0 149992.i 0.0876310 0.151781i
\(251\) −317108. −0.317704 −0.158852 0.987302i \(-0.550779\pi\)
−0.158852 + 0.987302i \(0.550779\pi\)
\(252\) 0 0
\(253\) 1.08528e6 1.06596
\(254\) −98304.0 + 170268.i −0.0956064 + 0.165595i
\(255\) −122094. 211473.i −0.117583 0.203659i
\(256\) −368016. 637423.i −0.350968 0.607894i
\(257\) −721423. + 1.24954e6i −0.681329 + 1.18010i 0.293246 + 0.956037i \(0.405265\pi\)
−0.974575 + 0.224060i \(0.928069\pi\)
\(258\) −155124. −0.145087
\(259\) 0 0
\(260\) 478516. 0.438999
\(261\) 333801. 578160.i 0.303310 0.525348i
\(262\) −38570.0 66805.2i −0.0347133 0.0601253i
\(263\) −135748. 235122.i −0.121016 0.209606i 0.799152 0.601128i \(-0.205282\pi\)
−0.920169 + 0.391522i \(0.871949\pi\)
\(264\) −96390.0 + 166952.i −0.0851181 + 0.147429i
\(265\) 5100.00 0.00446124
\(266\) 0 0
\(267\) 1.05557e6 0.906172
\(268\) −25978.0 + 44995.2i −0.0220937 + 0.0382674i
\(269\) 425307. + 736653.i 0.358362 + 0.620701i 0.987687 0.156441i \(-0.0500021\pi\)
−0.629325 + 0.777142i \(0.716669\pi\)
\(270\) −12393.0 21465.3i −0.0103459 0.0179196i
\(271\) −270064. + 467765.i −0.223380 + 0.386905i −0.955832 0.293913i \(-0.905042\pi\)
0.732452 + 0.680818i \(0.238376\pi\)
\(272\) 741342. 0.607570
\(273\) 0 0
\(274\) 208170. 0.167510
\(275\) −334730. + 579769.i −0.266909 + 0.462300i
\(276\) −445284. 771255.i −0.351856 0.609432i
\(277\) −256787. 444768.i −0.201082 0.348285i 0.747795 0.663929i \(-0.231112\pi\)
−0.948877 + 0.315645i \(0.897779\pi\)
\(278\) −137790. + 238659.i −0.106932 + 0.185211i
\(279\) 202176. 0.155496
\(280\) 0 0
\(281\) −1.35642e6 −1.02478 −0.512388 0.858754i \(-0.671239\pi\)
−0.512388 + 0.858754i \(0.671239\pi\)
\(282\) 40176.0 69586.9i 0.0300846 0.0521080i
\(283\) 143378. + 248338.i 0.106418 + 0.184322i 0.914317 0.405000i \(-0.132728\pi\)
−0.807898 + 0.589322i \(0.799395\pi\)
\(284\) 225804. + 391104.i 0.166125 + 0.287737i
\(285\) 136476. 236383.i 0.0995277 0.172387i
\(286\) 154360. 0.111589
\(287\) 0 0
\(288\) 238545. 0.169469
\(289\) 391526. 678144.i 0.275751 0.477614i
\(290\) 140114. + 242685.i 0.0978333 + 0.169452i
\(291\) 45009.0 + 77957.9i 0.0311578 + 0.0539669i
\(292\) −1.21486e6 + 2.10420e6i −0.833813 + 1.44421i
\(293\) 1.70727e6 1.16180 0.580901 0.813974i \(-0.302700\pi\)
0.580901 + 0.813974i \(0.302700\pi\)
\(294\) 0 0
\(295\) 1.44146e6 0.964381
\(296\) 308637. 534575.i 0.204748 0.354633i
\(297\) 123930. + 214653.i 0.0815240 + 0.141204i
\(298\) 148053. + 256435.i 0.0965776 + 0.167277i
\(299\) −724584. + 1.25502e6i −0.468717 + 0.811842i
\(300\) 549351. 0.352409
\(301\) 0 0
\(302\) −426472. −0.269075
\(303\) −489465. + 847778.i −0.306277 + 0.530488i
\(304\) 414334. + 717648.i 0.257138 + 0.445376i
\(305\) 250886. + 434547.i 0.154428 + 0.267478i
\(306\) −32319.0 + 55978.2i −0.0197312 + 0.0341755i
\(307\) 546788. 0.331111 0.165555 0.986201i \(-0.447058\pi\)
0.165555 + 0.986201i \(0.447058\pi\)
\(308\) 0 0
\(309\) 1.79273e6 1.06812
\(310\) −42432.0 + 73494.4i −0.0250778 + 0.0434360i
\(311\) 1.61713e6 + 2.80095e6i 0.948079 + 1.64212i 0.749466 + 0.662043i \(0.230310\pi\)
0.198613 + 0.980078i \(0.436356\pi\)
\(312\) −128709. 222931.i −0.0748553 0.129653i
\(313\) 906565. 1.57022e6i 0.523044 0.905939i −0.476597 0.879122i \(-0.658130\pi\)
0.999640 0.0268164i \(-0.00853694\pi\)
\(314\) −178486. −0.102160
\(315\) 0 0
\(316\) 70432.0 0.0396782
\(317\) 638289. 1.10555e6i 0.356754 0.617917i −0.630662 0.776057i \(-0.717217\pi\)
0.987417 + 0.158141i \(0.0505500\pi\)
\(318\) −675.000 1169.13i −0.000374314 0.000648331i
\(319\) −1.40114e6 2.42685e6i −0.770912 1.33526i
\(320\) 455311. 788622.i 0.248561 0.430520i
\(321\) −719748. −0.389868
\(322\) 0 0
\(323\) −711816. −0.379631
\(324\) 101696. 176142.i 0.0538194 0.0932180i
\(325\) −446963. 774163.i −0.234727 0.406559i
\(326\) −126386. 218907.i −0.0658650 0.114082i
\(327\) 207441. 359298.i 0.107282 0.185817i
\(328\) 1.24954e6 0.641307
\(329\) 0 0
\(330\) −104040. −0.0525915
\(331\) 868106. 1.50360e6i 0.435515 0.754334i −0.561823 0.827258i \(-0.689900\pi\)
0.997337 + 0.0729241i \(0.0232331\pi\)
\(332\) 585342. + 1.01384e6i 0.291450 + 0.504807i
\(333\) −396819. 687311.i −0.196102 0.339659i
\(334\) 254044. 440017.i 0.124607 0.215826i
\(335\) −56984.0 −0.0277422
\(336\) 0 0
\(337\) 2.07215e6 0.993907 0.496953 0.867777i \(-0.334452\pi\)
0.496953 + 0.867777i \(0.334452\pi\)
\(338\) 82588.5 143047.i 0.0393213 0.0681065i
\(339\) −1.18218e6 2.04759e6i −0.558706 0.967707i
\(340\) 420546. + 728407.i 0.197295 + 0.341725i
\(341\) 424320. 734944.i 0.197609 0.342269i
\(342\) −72252.0 −0.0334029
\(343\) 0 0
\(344\) 1.08587e6 0.494744
\(345\) 488376. 845892.i 0.220906 0.382620i
\(346\) −110917. 192114.i −0.0498090 0.0862717i
\(347\) 825730. + 1.43021e6i 0.368141 + 0.637639i 0.989275 0.146065i \(-0.0466610\pi\)
−0.621134 + 0.783705i \(0.713328\pi\)
\(348\) −1.14976e6 + 1.99144e6i −0.508931 + 0.881494i
\(349\) −1.26645e6 −0.556578 −0.278289 0.960497i \(-0.589767\pi\)
−0.278289 + 0.960497i \(0.589767\pi\)
\(350\) 0 0
\(351\) −330966. −0.143389
\(352\) 500650. 867151.i 0.215366 0.373025i
\(353\) 286609. + 496421.i 0.122420 + 0.212038i 0.920722 0.390220i \(-0.127601\pi\)
−0.798301 + 0.602258i \(0.794268\pi\)
\(354\) −190782. 330444.i −0.0809150 0.140149i
\(355\) −247656. + 428953.i −0.104298 + 0.180650i
\(356\) −3.63587e6 −1.52049
\(357\) 0 0
\(358\) −113564. −0.0468310
\(359\) −2.23161e6 + 3.86527e6i −0.913866 + 1.58286i −0.105313 + 0.994439i \(0.533584\pi\)
−0.808553 + 0.588423i \(0.799749\pi\)
\(360\) 86751.0 + 150257.i 0.0352792 + 0.0611053i
\(361\) 840218. + 1.45530e6i 0.339331 + 0.587739i
\(362\) 331559. 574277.i 0.132981 0.230330i
\(363\) −409059. −0.162937
\(364\) 0 0
\(365\) −2.66485e6 −1.04699
\(366\) 66411.0 115027.i 0.0259142 0.0448847i
\(367\) −2.25398e6 3.90401e6i −0.873546 1.51303i −0.858304 0.513142i \(-0.828481\pi\)
−0.0152419 0.999884i \(-0.504852\pi\)
\(368\) 1.48268e6 + 2.56808e6i 0.570728 + 0.988530i
\(369\) 803277. 1.39132e6i 0.307114 0.531937i
\(370\) 333132. 0.126506
\(371\) 0 0
\(372\) −696384. −0.260910
\(373\) −832675. + 1.44224e6i −0.309887 + 0.536740i −0.978337 0.207017i \(-0.933625\pi\)
0.668450 + 0.743757i \(0.266958\pi\)
\(374\) 135660. + 234970.i 0.0501502 + 0.0868627i
\(375\) 779382. + 1.34993e6i 0.286202 + 0.495716i
\(376\) −281232. + 487108.i −0.102588 + 0.177687i
\(377\) 3.74187e6 1.35592
\(378\) 0 0
\(379\) −2.53232e6 −0.905568 −0.452784 0.891620i \(-0.649569\pi\)
−0.452784 + 0.891620i \(0.649569\pi\)
\(380\) −470084. + 814209.i −0.167000 + 0.289252i
\(381\) −884736. 1.53241e6i −0.312249 0.540831i
\(382\) −252832. 437918.i −0.0886490 0.153544i
\(383\) 398184. 689675.i 0.138703 0.240241i −0.788303 0.615288i \(-0.789040\pi\)
0.927006 + 0.375046i \(0.122373\pi\)
\(384\) −1.08921e6 −0.376949
\(385\) 0 0
\(386\) −432382. −0.147706
\(387\) 698058. 1.20907e6i 0.236927 0.410369i
\(388\) −155031. 268522.i −0.0522804 0.0905524i
\(389\) −973995. 1.68701e6i −0.326349 0.565254i 0.655435 0.755251i \(-0.272485\pi\)
−0.981785 + 0.189998i \(0.939152\pi\)
\(390\) 69462.0 120312.i 0.0231252 0.0400540i
\(391\) −2.54722e6 −0.842605
\(392\) 0 0
\(393\) 694260. 0.226747
\(394\) 65981.0 114282.i 0.0214130 0.0370885i
\(395\) 38624.0 + 66898.7i 0.0124556 + 0.0215737i
\(396\) −426870. 739361.i −0.136791 0.236929i
\(397\) 540579. 936310.i 0.172140 0.298156i −0.767028 0.641614i \(-0.778265\pi\)
0.939168 + 0.343458i \(0.111598\pi\)
\(398\) −298536. −0.0944689
\(399\) 0 0
\(400\) −1.82920e6 −0.571625
\(401\) −1.38385e6 + 2.39690e6i −0.429762 + 0.744369i −0.996852 0.0792866i \(-0.974736\pi\)
0.567090 + 0.823656i \(0.308069\pi\)
\(402\) 7542.00 + 13063.1i 0.00232767 + 0.00403164i
\(403\) 566592. + 981366.i 0.173783 + 0.301001i
\(404\) 1.68593e6 2.92013e6i 0.513910 0.890119i
\(405\) 223074. 0.0675789
\(406\) 0 0
\(407\) −3.33132e6 −0.996851
\(408\) 226233. 391847.i 0.0672830 0.116538i
\(409\) 1.18175e6 + 2.04685e6i 0.349315 + 0.605031i 0.986128 0.165987i \(-0.0530811\pi\)
−0.636813 + 0.771018i \(0.719748\pi\)
\(410\) 337178. + 584009.i 0.0990603 + 0.171577i
\(411\) −936765. + 1.62252e6i −0.273543 + 0.473791i
\(412\) −6.17495e6 −1.79222
\(413\) 0 0
\(414\) −258552. −0.0741391
\(415\) −641988. + 1.11196e6i −0.182981 + 0.316933i
\(416\) 668515. + 1.15790e6i 0.189399 + 0.328049i
\(417\) −1.24011e6 2.14793e6i −0.349237 0.604896i
\(418\) −151640. + 262648.i −0.0424495 + 0.0735248i
\(419\) 2.98669e6 0.831104 0.415552 0.909569i \(-0.363588\pi\)
0.415552 + 0.909569i \(0.363588\pi\)
\(420\) 0 0
\(421\) −3.46331e6 −0.952326 −0.476163 0.879357i \(-0.657973\pi\)
−0.476163 + 0.879357i \(0.657973\pi\)
\(422\) 585310. 1.01379e6i 0.159994 0.277118i
\(423\) 361584. + 626282.i 0.0982558 + 0.170184i
\(424\) 4725.00 + 8183.94i 0.00127640 + 0.00221079i
\(425\) 785631. 1.36075e6i 0.210982 0.365432i
\(426\) 131112. 0.0350041
\(427\) 0 0
\(428\) 2.47913e6 0.654169
\(429\) −694620. + 1.20312e6i −0.182223 + 0.315620i
\(430\) 293012. + 507512.i 0.0764213 + 0.132366i
\(431\) −1.16846e6 2.02384e6i −0.302986 0.524787i 0.673825 0.738891i \(-0.264650\pi\)
−0.976811 + 0.214104i \(0.931317\pi\)
\(432\) −338620. + 586508.i −0.0872979 + 0.151204i
\(433\) 3.50838e6 0.899264 0.449632 0.893214i \(-0.351555\pi\)
0.449632 + 0.893214i \(0.351555\pi\)
\(434\) 0 0
\(435\) −2.52205e6 −0.639044
\(436\) −714519. + 1.23758e6i −0.180010 + 0.311787i
\(437\) −1.42363e6 2.46580e6i −0.356611 0.617668i
\(438\) 352701. + 610896.i 0.0878459 + 0.152154i
\(439\) 1.77416e6 3.07294e6i 0.439372 0.761015i −0.558269 0.829660i \(-0.688534\pi\)
0.997641 + 0.0686452i \(0.0218676\pi\)
\(440\) 728280. 0.179336
\(441\) 0 0
\(442\) −362292. −0.0882070
\(443\) −884166. + 1.53142e6i −0.214055 + 0.370753i −0.952980 0.303034i \(-0.902000\pi\)
0.738925 + 0.673788i \(0.235334\pi\)
\(444\) 1.36682e6 + 2.36740e6i 0.329044 + 0.569921i
\(445\) −1.99386e6 3.45347e6i −0.477304 0.826715i
\(446\) 199688. 345870.i 0.0475351 0.0823333i
\(447\) −2.66495e6 −0.630842
\(448\) 0 0
\(449\) −5.52579e6 −1.29354 −0.646768 0.762687i \(-0.723880\pi\)
−0.646768 + 0.762687i \(0.723880\pi\)
\(450\) 79744.5 138122.i 0.0185639 0.0321536i
\(451\) −3.37178e6 5.84009e6i −0.780581 1.35201i
\(452\) 4.07194e6 + 7.05281e6i 0.937466 + 1.62374i
\(453\) 1.91912e6 3.32402e6i 0.439397 0.761059i
\(454\) −707916. −0.161191
\(455\) 0 0
\(456\) 505764. 0.113903
\(457\) 1.48113e6 2.56539e6i 0.331744 0.574597i −0.651110 0.758983i \(-0.725696\pi\)
0.982854 + 0.184386i \(0.0590297\pi\)
\(458\) −367889. 637202.i −0.0819508 0.141943i
\(459\) −290871. 503803.i −0.0644420 0.111617i
\(460\) −1.68218e6 + 2.91363e6i −0.370663 + 0.642007i
\(461\) −2.11884e6 −0.464350 −0.232175 0.972674i \(-0.574584\pi\)
−0.232175 + 0.972674i \(0.574584\pi\)
\(462\) 0 0
\(463\) 3.19226e6 0.692062 0.346031 0.938223i \(-0.387529\pi\)
0.346031 + 0.938223i \(0.387529\pi\)
\(464\) 3.82841e6 6.63100e6i 0.825512 1.42983i
\(465\) −381888. 661449.i −0.0819037 0.141861i
\(466\) 104379. + 180790.i 0.0222663 + 0.0385664i
\(467\) −3.71311e6 + 6.43129e6i −0.787853 + 1.36460i 0.139427 + 0.990232i \(0.455474\pi\)
−0.927280 + 0.374369i \(0.877859\pi\)
\(468\) 1.13999e6 0.240596
\(469\) 0 0
\(470\) −303552. −0.0633853
\(471\) 803187. 1.39116e6i 0.166826 0.288952i
\(472\) 1.33547e6 + 2.31311e6i 0.275918 + 0.477904i
\(473\) −2.93012e6 5.07512e6i −0.602189 1.04302i
\(474\) 10224.0 17708.5i 0.00209014 0.00362023i
\(475\) 1.75635e6 0.357171
\(476\) 0 0
\(477\) 12150.0 0.00244501
\(478\) −356688. + 617802.i −0.0714034 + 0.123674i
\(479\) −1.69842e6 2.94176e6i −0.338226 0.585825i 0.645873 0.763445i \(-0.276494\pi\)
−0.984099 + 0.177620i \(0.943160\pi\)
\(480\) −450585. 780436.i −0.0892634 0.154609i
\(481\) 2.22415e6 3.85233e6i 0.438329 0.759209i
\(482\) 505246. 0.0990570
\(483\) 0 0
\(484\) 1.40898e6 0.273396
\(485\) 170034. 294508.i 0.0328232 0.0568515i
\(486\) −29524.5 51137.9i −0.00567012 0.00982093i
\(487\) 1.85691e6 + 3.21626e6i 0.354787 + 0.614510i 0.987082 0.160219i \(-0.0512200\pi\)
−0.632294 + 0.774728i \(0.717887\pi\)
\(488\) −464877. + 805191.i −0.0883667 + 0.153056i
\(489\) 2.27495e6 0.430229
\(490\) 0 0
\(491\) 5.57494e6 1.04361 0.521803 0.853066i \(-0.325260\pi\)
0.521803 + 0.853066i \(0.325260\pi\)
\(492\) −2.76684e6 + 4.79231e6i −0.515314 + 0.892550i
\(493\) 3.28856e6 + 5.69595e6i 0.609380 + 1.05548i
\(494\) −202484. 350713.i −0.0373313 0.0646597i
\(495\) 468180. 810912.i 0.0858815 0.148751i
\(496\) 2.31878e6 0.423210
\(497\) 0 0
\(498\) 339876. 0.0614111
\(499\) −1.96349e6 + 3.40086e6i −0.353002 + 0.611418i −0.986774 0.162102i \(-0.948172\pi\)
0.633772 + 0.773520i \(0.281506\pi\)
\(500\) −2.68454e6 4.64976e6i −0.480225 0.831774i
\(501\) 2.28640e6 + 3.96015e6i 0.406965 + 0.704884i
\(502\) 158554. 274624.i 0.0280813 0.0486383i
\(503\) −6.42079e6 −1.13154 −0.565768 0.824564i \(-0.691420\pi\)
−0.565768 + 0.824564i \(0.691420\pi\)
\(504\) 0 0
\(505\) 3.69818e6 0.645297
\(506\) −542640. + 939880.i −0.0942184 + 0.163191i
\(507\) 743296. + 1.28743e6i 0.128423 + 0.222435i
\(508\) 3.04742e6 + 5.27829e6i 0.523930 + 0.907474i
\(509\) 73139.0 126680.i 0.0125128 0.0216728i −0.859701 0.510797i \(-0.829350\pi\)
0.872214 + 0.489124i \(0.162684\pi\)
\(510\) 244188. 0.0415718
\(511\) 0 0
\(512\) 4.60877e6 0.776980
\(513\) 325134. 563149.i 0.0545468 0.0944778i
\(514\) −721423. 1.24954e6i −0.120443 0.208614i
\(515\) −3.38626e6 5.86518e6i −0.562604 0.974459i
\(516\) −2.40442e6 + 4.16458e6i −0.397545 + 0.688568i
\(517\) 3.03552e6 0.499467
\(518\) 0 0
\(519\) 1.99651e6 0.325351
\(520\) −486234. + 842182.i −0.0788564 + 0.136583i
\(521\) 3.85468e6 + 6.67651e6i 0.622149 + 1.07759i 0.989085 + 0.147348i \(0.0470736\pi\)
−0.366935 + 0.930246i \(0.619593\pi\)
\(522\) 333801. + 578160.i 0.0536181 + 0.0928693i
\(523\) −284710. + 493132.i −0.0455144 + 0.0788332i −0.887885 0.460065i \(-0.847826\pi\)
0.842371 + 0.538898i \(0.181159\pi\)
\(524\) −2.39134e6 −0.380464
\(525\) 0 0
\(526\) 271496. 0.0427857
\(527\) −995904. + 1.72496e6i −0.156204 + 0.270553i
\(528\) 1.42137e6 + 2.46189e6i 0.221882 + 0.384311i
\(529\) −1.87626e6 3.24978e6i −0.291510 0.504911i
\(530\) −2550.00 + 4416.73i −0.000394322 + 0.000682985i
\(531\) 3.43408e6 0.528535
\(532\) 0 0
\(533\) 9.00464e6 1.37293
\(534\) −527787. + 914154.i −0.0800950 + 0.138729i
\(535\) 1.35952e6 + 2.35476e6i 0.205354 + 0.355683i
\(536\) −52794.0 91441.9i −0.00793730 0.0137478i
\(537\) 511038. 885144.i 0.0764746 0.132458i
\(538\) −850614. −0.126700
\(539\) 0 0
\(540\) −768366. −0.113392
\(541\) 4.72401e6 8.18222e6i 0.693933 1.20193i −0.276606 0.960983i \(-0.589210\pi\)
0.970539 0.240944i \(-0.0774570\pi\)
\(542\) −270064. 467765.i −0.0394883 0.0683957i
\(543\) 2.98403e6 + 5.16849e6i 0.434314 + 0.752254i
\(544\) −1.17506e6 + 2.03525e6i −0.170240 + 0.294864i
\(545\) −1.56733e6 −0.226032
\(546\) 0 0
\(547\) −1.35321e6 −0.193374 −0.0966869 0.995315i \(-0.530825\pi\)
−0.0966869 + 0.995315i \(0.530825\pi\)
\(548\) 3.22664e6 5.58870e6i 0.458985 0.794985i
\(549\) 597699. + 1.03525e6i 0.0846353 + 0.146593i
\(550\) −334730. 579769.i −0.0471833 0.0817238i
\(551\) −3.67593e6 + 6.36690e6i −0.515808 + 0.893406i
\(552\) 1.80986e6 0.252812
\(553\) 0 0
\(554\) 513574. 0.0710933
\(555\) −1.49909e6 + 2.59651e6i −0.206584 + 0.357814i
\(556\) 4.27149e6 + 7.39844e6i 0.585993 + 1.01497i
\(557\) −4.09695e6 7.09613e6i −0.559529 0.969133i −0.997536 0.0701612i \(-0.977649\pi\)
0.438006 0.898972i \(-0.355685\pi\)
\(558\) −101088. + 175090.i −0.0137440 + 0.0238054i
\(559\) 7.82514e6 1.05916
\(560\) 0 0
\(561\) −2.44188e6 −0.327580
\(562\) 678211. 1.17470e6i 0.0905783 0.156886i
\(563\) −5.28982e6 9.16223e6i −0.703347 1.21823i −0.967285 0.253693i \(-0.918355\pi\)
0.263938 0.964540i \(-0.414979\pi\)
\(564\) −1.24546e6 2.15719e6i −0.164866 0.285556i
\(565\) −4.46600e6 + 7.73534e6i −0.588570 + 1.01943i
\(566\) −286756. −0.0376246
\(567\) 0 0
\(568\) −917784. −0.119363
\(569\) 6.01026e6 1.04101e7i 0.778238 1.34795i −0.154718 0.987959i \(-0.549447\pi\)
0.932956 0.359989i \(-0.117220\pi\)
\(570\) 136476. + 236383.i 0.0175942 + 0.0304740i
\(571\) 1.24474e6 + 2.15595e6i 0.159767 + 0.276725i 0.934785 0.355215i \(-0.115592\pi\)
−0.775017 + 0.631940i \(0.782259\pi\)
\(572\) 2.39258e6 4.14407e6i 0.305757 0.529587i
\(573\) 4.55098e6 0.579053
\(574\) 0 0
\(575\) 6.28505e6 0.792755
\(576\) 1.08471e6 1.87878e6i 0.136225 0.235949i
\(577\) 4.10661e6 + 7.11286e6i 0.513504 + 0.889415i 0.999877 + 0.0156639i \(0.00498618\pi\)
−0.486373 + 0.873751i \(0.661680\pi\)
\(578\) 391526. + 678144.i 0.0487463 + 0.0844311i
\(579\) 1.94572e6 3.37008e6i 0.241204 0.417777i
\(580\) 8.68707e6 1.07227
\(581\) 0 0
\(582\) −90018.0 −0.0110159
\(583\) 25500.0 44167.3i 0.00310720 0.00538182i
\(584\) −2.46891e6 4.27627e6i −0.299552 0.518840i
\(585\) 625158. + 1.08281e6i 0.0755266 + 0.130816i
\(586\) −853633. + 1.47854e6i −0.102690 + 0.177864i
\(587\) 1.21827e6 0.145931 0.0729655 0.997334i \(-0.476754\pi\)
0.0729655 + 0.997334i \(0.476754\pi\)
\(588\) 0 0
\(589\) −2.22643e6 −0.264436
\(590\) −720732. + 1.24834e6i −0.0852401 + 0.147640i
\(591\) 593829. + 1.02854e6i 0.0699347 + 0.121130i
\(592\) −4.55117e6 7.88286e6i −0.533727 0.924442i
\(593\) −4.21190e6 + 7.29522e6i −0.491859 + 0.851925i −0.999956 0.00937481i \(-0.997016\pi\)
0.508097 + 0.861300i \(0.330349\pi\)
\(594\) −247860. −0.0288231
\(595\) 0 0
\(596\) 9.17929e6 1.05851
\(597\) 1.34341e6 2.32686e6i 0.154267 0.267199i
\(598\) −724584. 1.25502e6i −0.0828583 0.143515i
\(599\) −4.10627e6 7.11226e6i −0.467606 0.809918i 0.531709 0.846927i \(-0.321550\pi\)
−0.999315 + 0.0370096i \(0.988217\pi\)
\(600\) −558212. + 966851.i −0.0633025 + 0.109643i
\(601\) −3.25478e6 −0.367566 −0.183783 0.982967i \(-0.558834\pi\)
−0.183783 + 0.982967i \(0.558834\pi\)
\(602\) 0 0
\(603\) −135756. −0.0152043
\(604\) −6.61032e6 + 1.14494e7i −0.737276 + 1.27700i
\(605\) 772667. + 1.33830e6i 0.0858230 + 0.148650i
\(606\) −489465. 847778.i −0.0541427 0.0937779i
\(607\) 3.91050e6 6.77319e6i 0.430785 0.746142i −0.566156 0.824298i \(-0.691570\pi\)
0.996941 + 0.0781561i \(0.0249032\pi\)
\(608\) −2.62694e6 −0.288198
\(609\) 0 0
\(610\) −501772. −0.0545986
\(611\) −2.02666e6 + 3.51027e6i −0.219623 + 0.380397i
\(612\) 1.00189e6 + 1.73532e6i 0.108129 + 0.187284i
\(613\) 4.75835e6 + 8.24170e6i 0.511452 + 0.885861i 0.999912 + 0.0132748i \(0.00422563\pi\)
−0.488460 + 0.872586i \(0.662441\pi\)
\(614\) −273394. + 473532.i −0.0292663 + 0.0506907i
\(615\) −6.06920e6 −0.647059
\(616\) 0 0
\(617\) −7.04895e6 −0.745438 −0.372719 0.927944i \(-0.621574\pi\)
−0.372719 + 0.927944i \(0.621574\pi\)
\(618\) −896364. + 1.55255e6i −0.0944090 + 0.163521i
\(619\) −3.16087e6 5.47479e6i −0.331574 0.574302i 0.651247 0.758866i \(-0.274246\pi\)
−0.982821 + 0.184563i \(0.940913\pi\)
\(620\) 1.31539e6 + 2.27833e6i 0.137428 + 0.238033i
\(621\) 1.16348e6 2.01521e6i 0.121069 0.209697i
\(622\) −3.23426e6 −0.335197
\(623\) 0 0
\(624\) −3.79589e6 −0.390259
\(625\) −132230. + 229030.i −0.0135404 + 0.0234527i
\(626\) 906565. + 1.57022e6i 0.0924620 + 0.160149i
\(627\) −1.36476e6 2.36383e6i −0.138640 0.240131i
\(628\) −2.76653e6 + 4.79178e6i −0.279922 + 0.484839i
\(629\) 7.81880e6 0.787977
\(630\) 0 0
\(631\) 8.61236e6 0.861090 0.430545 0.902569i \(-0.358321\pi\)
0.430545 + 0.902569i \(0.358321\pi\)
\(632\) −71568.0 + 123959.i −0.00712732 + 0.0123449i
\(633\) 5.26779e6 + 9.12408e6i 0.522540 + 0.905065i
\(634\) 638289. + 1.10555e6i 0.0630658 + 0.109233i
\(635\) −3.34234e6 + 5.78910e6i −0.328939 + 0.569740i
\(636\) −41850.0 −0.00410254
\(637\) 0 0
\(638\) 2.80228e6 0.272559
\(639\) −590004. + 1.02192e6i −0.0571614 + 0.0990064i
\(640\) 2.05739e6 + 3.56351e6i 0.198549 + 0.343896i
\(641\) 2.61414e6 + 4.52783e6i 0.251295 + 0.435256i 0.963883 0.266327i \(-0.0858102\pi\)
−0.712587 + 0.701583i \(0.752477\pi\)
\(642\) 359874. 623320.i 0.0344598 0.0596861i
\(643\) −1.61373e7 −1.53923 −0.769615 0.638508i \(-0.779552\pi\)
−0.769615 + 0.638508i \(0.779552\pi\)
\(644\) 0 0
\(645\) −5.27422e6 −0.499182
\(646\) 355908. 616451.i 0.0335549 0.0581189i
\(647\) −7.93743e6 1.37480e7i −0.745451 1.29116i −0.949984 0.312299i \(-0.898901\pi\)
0.204533 0.978860i \(-0.434433\pi\)
\(648\) 206672. + 357966.i 0.0193350 + 0.0334891i
\(649\) 7.20732e6 1.24834e7i 0.671679 1.16338i
\(650\) 893926. 0.0829886
\(651\) 0 0
\(652\) −7.83593e6 −0.721891
\(653\) 2.97056e6 5.14516e6i 0.272619 0.472189i −0.696913 0.717156i \(-0.745444\pi\)
0.969532 + 0.244966i \(0.0787769\pi\)
\(654\) 207441. + 359298.i 0.0189649 + 0.0328481i
\(655\) −1.31138e6 2.27138e6i −0.119433 0.206864i
\(656\) 9.21289e6 1.59572e7i 0.835866 1.44776i
\(657\) −6.34862e6 −0.573807
\(658\) 0 0
\(659\) −7.64430e6 −0.685684 −0.342842 0.939393i \(-0.611390\pi\)
−0.342842 + 0.939393i \(0.611390\pi\)
\(660\) −1.61262e6 + 2.79314e6i −0.144103 + 0.249593i
\(661\) −3.79344e6 6.57043e6i −0.337699 0.584912i 0.646301 0.763083i \(-0.276315\pi\)
−0.983999 + 0.178171i \(0.942982\pi\)
\(662\) 868106. + 1.50360e6i 0.0769888 + 0.133349i
\(663\) 1.63031e6 2.82379e6i 0.144041 0.249487i
\(664\) −2.37913e6 −0.209410
\(665\) 0 0
\(666\) 793638. 0.0693325
\(667\) −1.31542e7 + 2.27838e7i −1.14486 + 1.98295i
\(668\) −7.87536e6 1.36405e7i −0.682857 1.18274i
\(669\) 1.79719e6 + 3.11283e6i 0.155249 + 0.268899i
\(670\) 28492.0 49349.6i 0.00245209 0.00424714i
\(671\) 5.01772e6 0.430229
\(672\) 0 0
\(673\) −2.06681e7 −1.75899 −0.879494 0.475910i \(-0.842119\pi\)
−0.879494 + 0.475910i \(0.842119\pi\)
\(674\) −1.03607e6 + 1.79453e6i −0.0878498 + 0.152160i
\(675\) 717700. + 1.24309e6i 0.0606295 + 0.105013i
\(676\) −2.56024e6 4.43447e6i −0.215484 0.373229i
\(677\) 3.94770e6 6.83762e6i 0.331034 0.573368i −0.651681 0.758493i \(-0.725936\pi\)
0.982715 + 0.185125i \(0.0592691\pi\)
\(678\) 2.36435e6 0.197532
\(679\) 0 0
\(680\) −1.70932e6 −0.141759
\(681\) 3.18562e6 5.51766e6i 0.263225 0.455918i
\(682\) 424320. + 734944.i 0.0349327 + 0.0605053i
\(683\) 9.80075e6 + 1.69754e7i 0.803911 + 1.39241i 0.917024 + 0.398832i \(0.130584\pi\)
−0.113114 + 0.993582i \(0.536082\pi\)
\(684\) −1.11991e6 + 1.93973e6i −0.0915253 + 0.158527i
\(685\) 7.07778e6 0.576329
\(686\) 0 0
\(687\) 6.62200e6 0.535300
\(688\) 8.00612e6 1.38670e7i 0.644839 1.11689i
\(689\) 34050.0 + 58976.3i 0.00273256 + 0.00473293i
\(690\) 488376. + 845892.i 0.0390509 + 0.0676382i
\(691\) −8.63549e6 + 1.49571e7i −0.688005 + 1.19166i 0.284477 + 0.958683i \(0.408180\pi\)
−0.972482 + 0.232977i \(0.925153\pi\)
\(692\) −6.87685e6 −0.545914
\(693\) 0 0
\(694\) −1.65146e6 −0.130158
\(695\) −4.68486e6 + 8.11442e6i −0.367904 + 0.637229i
\(696\) −2.33661e6 4.04712e6i −0.182836 0.316682i
\(697\) 7.91377e6 + 1.37070e7i 0.617023 + 1.06871i
\(698\) 633227. 1.09678e6i 0.0491950 0.0852082i
\(699\) −1.87882e6 −0.145443
\(700\) 0 0
\(701\) −5.36344e6 −0.412238 −0.206119 0.978527i \(-0.566083\pi\)
−0.206119 + 0.978527i \(0.566083\pi\)
\(702\) 165483. 286625.i 0.0126739 0.0219519i
\(703\) 4.36991e6 + 7.56890e6i 0.333491 + 0.577623i
\(704\) −4.55311e6 7.88622e6i −0.346239 0.599704i
\(705\) 1.36598e6 2.36595e6i 0.103508 0.179281i
\(706\) −573218. −0.0432821
\(707\) 0 0
\(708\) −1.18285e7 −0.886841
\(709\) 8.68665e6 1.50457e7i 0.648988 1.12408i −0.334377 0.942440i \(-0.608526\pi\)
0.983365 0.181641i \(-0.0581409\pi\)
\(710\) −247656. 428953.i −0.0184375 0.0319348i
\(711\) 92016.0 + 159376.i 0.00682636 + 0.0118236i
\(712\) 3.69451e6 6.39908e6i 0.273122 0.473061i
\(713\) −7.96723e6 −0.586926
\(714\) 0 0
\(715\) 5.24824e6 0.383927
\(716\) −1.76024e6 + 3.04883e6i −0.128319 + 0.222254i
\(717\) −3.21019e6 5.56022e6i −0.233202 0.403919i
\(718\) −2.23161e6 3.86527e6i −0.161550 0.279813i
\(719\) 212304. 367721.i 0.0153157 0.0265275i −0.858266 0.513205i \(-0.828458\pi\)
0.873582 + 0.486678i \(0.161791\pi\)
\(720\) 2.55847e6 0.183928
\(721\) 0 0
\(722\) −1.68044e6 −0.119972
\(723\) −2.27361e6 + 3.93800e6i −0.161759 + 0.280176i
\(724\) −1.02783e7 1.78026e7i −0.728746 1.26222i
\(725\) −8.11425e6 1.40543e7i −0.573328 0.993034i
\(726\) 204530. 354255.i 0.0144017 0.0249445i
\(727\) −2.18290e7 −1.53179 −0.765893 0.642968i \(-0.777703\pi\)
−0.765893 + 0.642968i \(0.777703\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 1.33243e6 2.30783e6i 0.0925414 0.160286i
\(731\) 6.87716e6 + 1.19116e7i 0.476010 + 0.824473i
\(732\) −2.05874e6 3.56584e6i −0.142012 0.245971i
\(733\) 1.08838e7 1.88512e7i 0.748202 1.29592i −0.200481 0.979698i \(-0.564251\pi\)
0.948684 0.316227i \(-0.102416\pi\)
\(734\) 4.50797e6 0.308845
\(735\) 0 0
\(736\) −9.40044e6 −0.639667
\(737\) −284920. + 493496.i −0.0193221 + 0.0334669i
\(738\) 803277. + 1.39132e6i 0.0542906 + 0.0940340i
\(739\) −3.10893e6 5.38482e6i −0.209411 0.362711i 0.742118 0.670269i \(-0.233821\pi\)
−0.951529 + 0.307558i \(0.900488\pi\)
\(740\) 5.16355e6 8.94352e6i 0.346632 0.600384i
\(741\) 3.64471e6 0.243847
\(742\) 0 0
\(743\) 3.77647e6 0.250966 0.125483 0.992096i \(-0.459952\pi\)
0.125483 + 0.992096i \(0.459952\pi\)
\(744\) 707616. 1.22563e6i 0.0468668 0.0811757i
\(745\) 5.03380e6 + 8.71880e6i 0.332281 + 0.575527i
\(746\) −832675. 1.44224e6i −0.0547808 0.0948831i
\(747\) −1.52944e6 + 2.64907e6i −0.100284 + 0.173697i
\(748\) 8.41092e6 0.549654
\(749\) 0 0
\(750\) −1.55876e6 −0.101188
\(751\) 1.44398e6 2.50104e6i 0.0934244 0.161816i −0.815526 0.578721i \(-0.803552\pi\)
0.908950 + 0.416905i \(0.136885\pi\)
\(752\) 4.14706e6 + 7.18291e6i 0.267421 + 0.463187i
\(753\) 1.42699e6 + 2.47161e6i 0.0917133 + 0.158852i
\(754\) −1.87093e6 + 3.24055e6i −0.119848 + 0.207582i
\(755\) −1.45000e7 −0.925768
\(756\) 0 0
\(757\) 1.25519e6 0.0796104 0.0398052 0.999207i \(-0.487326\pi\)
0.0398052 + 0.999207i \(0.487326\pi\)
\(758\) 1.26616e6 2.19306e6i 0.0800417 0.138636i
\(759\) −4.88376e6 8.45892e6i −0.307716 0.532979i
\(760\) −955332. 1.65468e6i −0.0599957 0.103916i
\(761\) −7.13115e6 + 1.23515e7i −0.446373 + 0.773140i −0.998147 0.0608533i \(-0.980618\pi\)
0.551774 + 0.833994i \(0.313951\pi\)
\(762\) 1.76947e6 0.110397
\(763\) 0 0
\(764\) −1.56756e7 −0.971606
\(765\) −1.09885e6 + 1.90326e6i −0.0678865 + 0.117583i
\(766\) 398184. + 689675.i 0.0245195 + 0.0424690i
\(767\) 9.62389e6 + 1.66691e7i 0.590694 + 1.02311i
\(768\) −3.31215e6 + 5.73681e6i −0.202631 + 0.350968i
\(769\) 2.02261e7 1.23338