Properties

Label 147.6.e.e.67.1
Level $147$
Weight $6$
Character 147.67
Analytic conductor $23.576$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,6,Mod(67,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.67");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 147.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.5764215125\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 147.67
Dual form 147.6.e.e.79.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-4.50000 + 7.79423i) q^{3} +(15.5000 - 26.8468i) q^{4} +(-17.0000 - 29.4449i) q^{5} +9.00000 q^{6} -63.0000 q^{8} +(-40.5000 - 70.1481i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(-4.50000 + 7.79423i) q^{3} +(15.5000 - 26.8468i) q^{4} +(-17.0000 - 29.4449i) q^{5} +9.00000 q^{6} -63.0000 q^{8} +(-40.5000 - 70.1481i) q^{9} +(-17.0000 + 29.4449i) q^{10} +(170.000 - 294.449i) q^{11} +(139.500 + 241.621i) q^{12} -454.000 q^{13} +306.000 q^{15} +(-464.500 - 804.538i) q^{16} +(-399.000 + 691.088i) q^{17} +(-40.5000 + 70.1481i) q^{18} +(446.000 + 772.495i) q^{19} -1054.00 q^{20} -340.000 q^{22} +(1596.00 + 2764.35i) q^{23} +(283.500 - 491.036i) q^{24} +(984.500 - 1705.20i) q^{25} +(227.000 + 393.176i) q^{26} +729.000 q^{27} -8242.00 q^{29} +(-153.000 - 265.004i) q^{30} +(-1248.00 + 2161.60i) q^{31} +(-1472.50 + 2550.44i) q^{32} +(1530.00 + 2650.04i) q^{33} +798.000 q^{34} -2511.00 q^{36} +(-4899.00 - 8485.32i) q^{37} +(446.000 - 772.495i) q^{38} +(2043.00 - 3538.58i) q^{39} +(1071.00 + 1855.03i) q^{40} -19834.0 q^{41} -17236.0 q^{43} +(-5270.00 - 9127.91i) q^{44} +(-1377.00 + 2385.03i) q^{45} +(1596.00 - 2764.35i) q^{46} +(4464.00 + 7731.87i) q^{47} +8361.00 q^{48} -1969.00 q^{50} +(-3591.00 - 6219.79i) q^{51} +(-7037.00 + 12188.4i) q^{52} +(-75.0000 + 129.904i) q^{53} +(-364.500 - 631.333i) q^{54} -11560.0 q^{55} -8028.00 q^{57} +(4121.00 + 7137.78i) q^{58} +(-21198.0 + 36716.0i) q^{59} +(4743.00 - 8215.12i) q^{60} +(7379.00 + 12780.8i) q^{61} +2496.00 q^{62} -26783.0 q^{64} +(7718.00 + 13368.0i) q^{65} +(1530.00 - 2650.04i) q^{66} +(838.000 - 1451.46i) q^{67} +(12369.0 + 21423.7i) q^{68} -28728.0 q^{69} +14568.0 q^{71} +(2551.50 + 4419.33i) q^{72} +(39189.0 - 67877.3i) q^{73} +(-4899.00 + 8485.32i) q^{74} +(8860.50 + 15346.8i) q^{75} +27652.0 q^{76} -4086.00 q^{78} +(1136.00 + 1967.61i) q^{79} +(-15793.0 + 27354.3i) q^{80} +(-3280.50 + 5681.99i) q^{81} +(9917.00 + 17176.7i) q^{82} +37764.0 q^{83} +27132.0 q^{85} +(8618.00 + 14926.8i) q^{86} +(37089.0 - 64240.0i) q^{87} +(-10710.0 + 18550.3i) q^{88} +(-58643.0 - 101573. i) q^{89} +2754.00 q^{90} +98952.0 q^{92} +(-11232.0 - 19454.4i) q^{93} +(4464.00 - 7731.87i) q^{94} +(15164.0 - 26264.8i) q^{95} +(-13252.5 - 22954.0i) q^{96} -10002.0 q^{97} -27540.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - 9 q^{3} + 31 q^{4} - 34 q^{5} + 18 q^{6} - 126 q^{8} - 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} - 9 q^{3} + 31 q^{4} - 34 q^{5} + 18 q^{6} - 126 q^{8} - 81 q^{9} - 34 q^{10} + 340 q^{11} + 279 q^{12} - 908 q^{13} + 612 q^{15} - 929 q^{16} - 798 q^{17} - 81 q^{18} + 892 q^{19} - 2108 q^{20} - 680 q^{22} + 3192 q^{23} + 567 q^{24} + 1969 q^{25} + 454 q^{26} + 1458 q^{27} - 16484 q^{29} - 306 q^{30} - 2496 q^{31} - 2945 q^{32} + 3060 q^{33} + 1596 q^{34} - 5022 q^{36} - 9798 q^{37} + 892 q^{38} + 4086 q^{39} + 2142 q^{40} - 39668 q^{41} - 34472 q^{43} - 10540 q^{44} - 2754 q^{45} + 3192 q^{46} + 8928 q^{47} + 16722 q^{48} - 3938 q^{50} - 7182 q^{51} - 14074 q^{52} - 150 q^{53} - 729 q^{54} - 23120 q^{55} - 16056 q^{57} + 8242 q^{58} - 42396 q^{59} + 9486 q^{60} + 14758 q^{61} + 4992 q^{62} - 53566 q^{64} + 15436 q^{65} + 3060 q^{66} + 1676 q^{67} + 24738 q^{68} - 57456 q^{69} + 29136 q^{71} + 5103 q^{72} + 78378 q^{73} - 9798 q^{74} + 17721 q^{75} + 55304 q^{76} - 8172 q^{78} + 2272 q^{79} - 31586 q^{80} - 6561 q^{81} + 19834 q^{82} + 75528 q^{83} + 54264 q^{85} + 17236 q^{86} + 74178 q^{87} - 21420 q^{88} - 117286 q^{89} + 5508 q^{90} + 197904 q^{92} - 22464 q^{93} + 8928 q^{94} + 30328 q^{95} - 26505 q^{96} - 20004 q^{97} - 55080 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.0883883 0.153093i 0.818442 0.574590i \(-0.194838\pi\)
−0.906830 + 0.421496i \(0.861505\pi\)
\(3\) −4.50000 + 7.79423i −0.288675 + 0.500000i
\(4\) 15.5000 26.8468i 0.484375 0.838962i
\(5\) −17.0000 29.4449i −0.304105 0.526726i 0.672956 0.739682i \(-0.265024\pi\)
−0.977062 + 0.212956i \(0.931691\pi\)
\(6\) 9.00000 0.102062
\(7\) 0 0
\(8\) −63.0000 −0.348029
\(9\) −40.5000 70.1481i −0.166667 0.288675i
\(10\) −17.0000 + 29.4449i −0.0537587 + 0.0931128i
\(11\) 170.000 294.449i 0.423611 0.733716i −0.572679 0.819780i \(-0.694096\pi\)
0.996290 + 0.0860642i \(0.0274290\pi\)
\(12\) 139.500 + 241.621i 0.279654 + 0.484375i
\(13\) −454.000 −0.745071 −0.372535 0.928018i \(-0.621511\pi\)
−0.372535 + 0.928018i \(0.621511\pi\)
\(14\) 0 0
\(15\) 306.000 0.351150
\(16\) −464.500 804.538i −0.453613 0.785681i
\(17\) −399.000 + 691.088i −0.334850 + 0.579978i −0.983456 0.181147i \(-0.942019\pi\)
0.648606 + 0.761124i \(0.275352\pi\)
\(18\) −40.5000 + 70.1481i −0.0294628 + 0.0510310i
\(19\) 446.000 + 772.495i 0.283433 + 0.490921i 0.972228 0.234036i \(-0.0751932\pi\)
−0.688795 + 0.724956i \(0.741860\pi\)
\(20\) −1054.00 −0.589204
\(21\) 0 0
\(22\) −340.000 −0.149769
\(23\) 1596.00 + 2764.35i 0.629091 + 1.08962i 0.987735 + 0.156143i \(0.0499060\pi\)
−0.358644 + 0.933475i \(0.616761\pi\)
\(24\) 283.500 491.036i 0.100467 0.174015i
\(25\) 984.500 1705.20i 0.315040 0.545665i
\(26\) 227.000 + 393.176i 0.0658556 + 0.114065i
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −8242.00 −1.81986 −0.909929 0.414764i \(-0.863864\pi\)
−0.909929 + 0.414764i \(0.863864\pi\)
\(30\) −153.000 265.004i −0.0310376 0.0537587i
\(31\) −1248.00 + 2161.60i −0.233244 + 0.403990i −0.958761 0.284214i \(-0.908267\pi\)
0.725517 + 0.688204i \(0.241601\pi\)
\(32\) −1472.50 + 2550.44i −0.254203 + 0.440292i
\(33\) 1530.00 + 2650.04i 0.244572 + 0.423611i
\(34\) 798.000 0.118387
\(35\) 0 0
\(36\) −2511.00 −0.322917
\(37\) −4899.00 8485.32i −0.588306 1.01898i −0.994454 0.105168i \(-0.966462\pi\)
0.406149 0.913807i \(-0.366872\pi\)
\(38\) 446.000 772.495i 0.0501044 0.0867834i
\(39\) 2043.00 3538.58i 0.215083 0.372535i
\(40\) 1071.00 + 1855.03i 0.105837 + 0.183316i
\(41\) −19834.0 −1.84268 −0.921342 0.388754i \(-0.872906\pi\)
−0.921342 + 0.388754i \(0.872906\pi\)
\(42\) 0 0
\(43\) −17236.0 −1.42156 −0.710780 0.703414i \(-0.751658\pi\)
−0.710780 + 0.703414i \(0.751658\pi\)
\(44\) −5270.00 9127.91i −0.410373 0.710787i
\(45\) −1377.00 + 2385.03i −0.101368 + 0.175575i
\(46\) 1596.00 2764.35i 0.111209 0.192619i
\(47\) 4464.00 + 7731.87i 0.294767 + 0.510552i 0.974931 0.222508i \(-0.0714245\pi\)
−0.680163 + 0.733061i \(0.738091\pi\)
\(48\) 8361.00 0.523788
\(49\) 0 0
\(50\) −1969.00 −0.111383
\(51\) −3591.00 6219.79i −0.193326 0.334850i
\(52\) −7037.00 + 12188.4i −0.360894 + 0.625086i
\(53\) −75.0000 + 129.904i −0.00366751 + 0.00635232i −0.867853 0.496820i \(-0.834501\pi\)
0.864186 + 0.503173i \(0.167834\pi\)
\(54\) −364.500 631.333i −0.0170103 0.0294628i
\(55\) −11560.0 −0.515289
\(56\) 0 0
\(57\) −8028.00 −0.327281
\(58\) 4121.00 + 7137.78i 0.160854 + 0.278608i
\(59\) −21198.0 + 36716.0i −0.792802 + 1.37317i 0.131423 + 0.991326i \(0.458045\pi\)
−0.924225 + 0.381847i \(0.875288\pi\)
\(60\) 4743.00 8215.12i 0.170089 0.294602i
\(61\) 7379.00 + 12780.8i 0.253906 + 0.439778i 0.964598 0.263725i \(-0.0849513\pi\)
−0.710692 + 0.703503i \(0.751618\pi\)
\(62\) 2496.00 0.0824642
\(63\) 0 0
\(64\) −26783.0 −0.817352
\(65\) 7718.00 + 13368.0i 0.226580 + 0.392448i
\(66\) 1530.00 2650.04i 0.0432346 0.0748845i
\(67\) 838.000 1451.46i 0.0228064 0.0395019i −0.854397 0.519621i \(-0.826073\pi\)
0.877203 + 0.480119i \(0.159407\pi\)
\(68\) 12369.0 + 21423.7i 0.324386 + 0.561853i
\(69\) −28728.0 −0.726411
\(70\) 0 0
\(71\) 14568.0 0.342968 0.171484 0.985187i \(-0.445144\pi\)
0.171484 + 0.985187i \(0.445144\pi\)
\(72\) 2551.50 + 4419.33i 0.0580049 + 0.100467i
\(73\) 39189.0 67877.3i 0.860710 1.49079i −0.0105340 0.999945i \(-0.503353\pi\)
0.871244 0.490850i \(-0.163314\pi\)
\(74\) −4899.00 + 8485.32i −0.103999 + 0.180131i
\(75\) 8860.50 + 15346.8i 0.181888 + 0.315040i
\(76\) 27652.0 0.549152
\(77\) 0 0
\(78\) −4086.00 −0.0760435
\(79\) 1136.00 + 1967.61i 0.0204791 + 0.0354708i 0.876083 0.482160i \(-0.160148\pi\)
−0.855604 + 0.517631i \(0.826814\pi\)
\(80\) −15793.0 + 27354.3i −0.275892 + 0.477860i
\(81\) −3280.50 + 5681.99i −0.0555556 + 0.0962250i
\(82\) 9917.00 + 17176.7i 0.162872 + 0.282102i
\(83\) 37764.0 0.601704 0.300852 0.953671i \(-0.402729\pi\)
0.300852 + 0.953671i \(0.402729\pi\)
\(84\) 0 0
\(85\) 27132.0 0.407319
\(86\) 8618.00 + 14926.8i 0.125649 + 0.217631i
\(87\) 37089.0 64240.0i 0.525348 0.909929i
\(88\) −10710.0 + 18550.3i −0.147429 + 0.255354i
\(89\) −58643.0 101573.i −0.784768 1.35926i −0.929138 0.369734i \(-0.879449\pi\)
0.144370 0.989524i \(-0.453884\pi\)
\(90\) 2754.00 0.0358391
\(91\) 0 0
\(92\) 98952.0 1.21886
\(93\) −11232.0 19454.4i −0.134663 0.233244i
\(94\) 4464.00 7731.87i 0.0521080 0.0902537i
\(95\) 15164.0 26264.8i 0.172387 0.298583i
\(96\) −13252.5 22954.0i −0.146764 0.254203i
\(97\) −10002.0 −0.107934 −0.0539669 0.998543i \(-0.517187\pi\)
−0.0539669 + 0.998543i \(0.517187\pi\)
\(98\) 0 0
\(99\) −27540.0 −0.282407
\(100\) −30519.5 52861.3i −0.305195 0.528613i
\(101\) −54385.0 + 94197.6i −0.530488 + 0.918832i 0.468879 + 0.883262i \(0.344658\pi\)
−0.999367 + 0.0355701i \(0.988675\pi\)
\(102\) −3591.00 + 6219.79i −0.0341755 + 0.0591937i
\(103\) −99596.0 172505.i −0.925015 1.60217i −0.791537 0.611121i \(-0.790719\pi\)
−0.133478 0.991052i \(-0.542615\pi\)
\(104\) 28602.0 0.259306
\(105\) 0 0
\(106\) 150.000 0.00129666
\(107\) 39986.0 + 69257.8i 0.337636 + 0.584802i 0.983988 0.178237i \(-0.0570394\pi\)
−0.646352 + 0.763040i \(0.723706\pi\)
\(108\) 11299.5 19571.3i 0.0932180 0.161458i
\(109\) 23049.0 39922.0i 0.185817 0.321845i −0.758034 0.652215i \(-0.773840\pi\)
0.943852 + 0.330370i \(0.107173\pi\)
\(110\) 5780.00 + 10011.3i 0.0455456 + 0.0788872i
\(111\) 88182.0 0.679317
\(112\) 0 0
\(113\) 262706. 1.93541 0.967707 0.252078i \(-0.0811138\pi\)
0.967707 + 0.252078i \(0.0811138\pi\)
\(114\) 4014.00 + 6952.45i 0.0289278 + 0.0501044i
\(115\) 54264.0 93988.0i 0.382620 0.662717i
\(116\) −127751. + 221271.i −0.881494 + 1.52679i
\(117\) 18387.0 + 31847.2i 0.124178 + 0.215083i
\(118\) 42396.0 0.280298
\(119\) 0 0
\(120\) −19278.0 −0.122211
\(121\) 22725.5 + 39361.7i 0.141107 + 0.244405i
\(122\) 7379.00 12780.8i 0.0448847 0.0777425i
\(123\) 89253.0 154591.i 0.531937 0.921342i
\(124\) 38688.0 + 67009.6i 0.225955 + 0.391366i
\(125\) −173196. −0.991432
\(126\) 0 0
\(127\) 196608. 1.08166 0.540831 0.841131i \(-0.318110\pi\)
0.540831 + 0.841131i \(0.318110\pi\)
\(128\) 60511.5 + 104809.i 0.326447 + 0.565423i
\(129\) 77562.0 134341.i 0.410369 0.710780i
\(130\) 7718.00 13368.0i 0.0400540 0.0693756i
\(131\) −38570.0 66805.2i −0.196368 0.340120i 0.750980 0.660325i \(-0.229581\pi\)
−0.947348 + 0.320205i \(0.896248\pi\)
\(132\) 94860.0 0.473858
\(133\) 0 0
\(134\) −1676.00 −0.00806329
\(135\) −12393.0 21465.3i −0.0585251 0.101368i
\(136\) 25137.0 43538.6i 0.116538 0.201849i
\(137\) −104085. + 180281.i −0.473791 + 0.820630i −0.999550 0.0300037i \(-0.990448\pi\)
0.525759 + 0.850634i \(0.323781\pi\)
\(138\) 14364.0 + 24879.2i 0.0642063 + 0.111209i
\(139\) 275580. 1.20979 0.604896 0.796304i \(-0.293215\pi\)
0.604896 + 0.796304i \(0.293215\pi\)
\(140\) 0 0
\(141\) −80352.0 −0.340368
\(142\) −7284.00 12616.3i −0.0303144 0.0525061i
\(143\) −77180.0 + 133680.i −0.315620 + 0.546670i
\(144\) −37624.5 + 65167.5i −0.151204 + 0.261894i
\(145\) 140114. + 242685.i 0.553429 + 0.958566i
\(146\) −78378.0 −0.304307
\(147\) 0 0
\(148\) −303738. −1.13984
\(149\) 148053. + 256435.i 0.546326 + 0.946264i 0.998522 + 0.0543454i \(0.0173072\pi\)
−0.452197 + 0.891918i \(0.649359\pi\)
\(150\) 8860.50 15346.8i 0.0321536 0.0556917i
\(151\) 213236. 369336.i 0.761059 1.31819i −0.181247 0.983438i \(-0.558013\pi\)
0.942305 0.334755i \(-0.108653\pi\)
\(152\) −28098.0 48667.2i −0.0986430 0.170855i
\(153\) 64638.0 0.223233
\(154\) 0 0
\(155\) 84864.0 0.283723
\(156\) −63333.0 109696.i −0.208362 0.360894i
\(157\) 89243.0 154573.i 0.288952 0.500479i −0.684608 0.728911i \(-0.740027\pi\)
0.973560 + 0.228432i \(0.0733600\pi\)
\(158\) 1136.00 1967.61i 0.00362023 0.00627041i
\(159\) −675.000 1169.13i −0.00211744 0.00366751i
\(160\) 100130. 0.309218
\(161\) 0 0
\(162\) 6561.00 0.0196419
\(163\) −126386. 218907.i −0.372589 0.645343i 0.617374 0.786670i \(-0.288197\pi\)
−0.989963 + 0.141327i \(0.954863\pi\)
\(164\) −307427. + 532479.i −0.892550 + 1.54594i
\(165\) 52020.0 90101.3i 0.148751 0.257645i
\(166\) −18882.0 32704.6i −0.0531836 0.0921167i
\(167\) −508088. −1.40977 −0.704884 0.709322i \(-0.749001\pi\)
−0.704884 + 0.709322i \(0.749001\pi\)
\(168\) 0 0
\(169\) −165177. −0.444870
\(170\) −13566.0 23497.0i −0.0360022 0.0623577i
\(171\) 36126.0 62572.1i 0.0944778 0.163640i
\(172\) −267158. + 462731.i −0.688568 + 1.19264i
\(173\) −110917. 192114.i −0.281762 0.488027i 0.690057 0.723755i \(-0.257586\pi\)
−0.971819 + 0.235729i \(0.924252\pi\)
\(174\) −74178.0 −0.185739
\(175\) 0 0
\(176\) −315860. −0.768622
\(177\) −190782. 330444.i −0.457725 0.792802i
\(178\) −58643.0 + 101573.i −0.138729 + 0.240285i
\(179\) 56782.0 98349.3i 0.132458 0.229424i −0.792166 0.610306i \(-0.791046\pi\)
0.924624 + 0.380882i \(0.124380\pi\)
\(180\) 42687.0 + 73936.1i 0.0982007 + 0.170089i
\(181\) −663118. −1.50451 −0.752254 0.658873i \(-0.771033\pi\)
−0.752254 + 0.658873i \(0.771033\pi\)
\(182\) 0 0
\(183\) −132822. −0.293185
\(184\) −100548. 174154.i −0.218942 0.379218i
\(185\) −166566. + 288501.i −0.357814 + 0.619752i
\(186\) −11232.0 + 19454.4i −0.0238054 + 0.0412321i
\(187\) 135660. + 234970.i 0.283692 + 0.491370i
\(188\) 276768. 0.571112
\(189\) 0 0
\(190\) −30328.0 −0.0609480
\(191\) −252832. 437918.i −0.501474 0.868579i −0.999999 0.00170313i \(-0.999458\pi\)
0.498524 0.866876i \(-0.333875\pi\)
\(192\) 120524. 208753.i 0.235949 0.408676i
\(193\) 216191. 374454.i 0.417777 0.723611i −0.577939 0.816080i \(-0.696143\pi\)
0.995716 + 0.0924695i \(0.0294761\pi\)
\(194\) 5001.00 + 8661.99i 0.00954009 + 0.0165239i
\(195\) −138924. −0.261632
\(196\) 0 0
\(197\) −131962. −0.242261 −0.121130 0.992637i \(-0.538652\pi\)
−0.121130 + 0.992637i \(0.538652\pi\)
\(198\) 13770.0 + 23850.3i 0.0249615 + 0.0432346i
\(199\) 149268. 258540.i 0.267199 0.462801i −0.700939 0.713221i \(-0.747235\pi\)
0.968137 + 0.250420i \(0.0805687\pi\)
\(200\) −62023.5 + 107428.i −0.109643 + 0.189907i
\(201\) 7542.00 + 13063.1i 0.0131673 + 0.0228064i
\(202\) 108770. 0.187556
\(203\) 0 0
\(204\) −222642. −0.374569
\(205\) 337178. + 584009.i 0.560370 + 0.970589i
\(206\) −99596.0 + 172505.i −0.163521 + 0.283227i
\(207\) 129276. 223913.i 0.209697 0.363206i
\(208\) 210883. + 365260.i 0.337974 + 0.585388i
\(209\) 303280. 0.480262
\(210\) 0 0
\(211\) −1.17062e6 −1.81013 −0.905065 0.425273i \(-0.860178\pi\)
−0.905065 + 0.425273i \(0.860178\pi\)
\(212\) 2325.00 + 4027.02i 0.00355290 + 0.00615381i
\(213\) −65556.0 + 113546.i −0.0990064 + 0.171484i
\(214\) 39986.0 69257.8i 0.0596861 0.103379i
\(215\) 293012. + 507512.i 0.432304 + 0.748772i
\(216\) −45927.0 −0.0669782
\(217\) 0 0
\(218\) −46098.0 −0.0656963
\(219\) 352701. + 610896.i 0.496931 + 0.860710i
\(220\) −179180. + 310349.i −0.249593 + 0.432308i
\(221\) 181146. 313754.i 0.249487 0.432124i
\(222\) −44091.0 76367.9i −0.0600437 0.103999i
\(223\) −399376. −0.537799 −0.268899 0.963168i \(-0.586660\pi\)
−0.268899 + 0.963168i \(0.586660\pi\)
\(224\) 0 0
\(225\) −159489. −0.210027
\(226\) −131353. 227510.i −0.171068 0.296299i
\(227\) 353958. 613073.i 0.455918 0.789674i −0.542822 0.839848i \(-0.682644\pi\)
0.998740 + 0.0501739i \(0.0159776\pi\)
\(228\) −124434. + 215526.i −0.158527 + 0.274576i
\(229\) −367889. 637202.i −0.463584 0.802950i 0.535553 0.844502i \(-0.320103\pi\)
−0.999136 + 0.0415514i \(0.986770\pi\)
\(230\) −108528. −0.135276
\(231\) 0 0
\(232\) 519246. 0.633364
\(233\) 104379. + 180790.i 0.125957 + 0.218164i 0.922107 0.386936i \(-0.126466\pi\)
−0.796149 + 0.605100i \(0.793133\pi\)
\(234\) 18387.0 31847.2i 0.0219519 0.0380217i
\(235\) 151776. 262884.i 0.179281 0.310523i
\(236\) 657138. + 1.13820e6i 0.768027 + 1.33026i
\(237\) −20448.0 −0.0236472
\(238\) 0 0
\(239\) 713376. 0.807837 0.403919 0.914795i \(-0.367648\pi\)
0.403919 + 0.914795i \(0.367648\pi\)
\(240\) −142137. 246189.i −0.159287 0.275892i
\(241\) −252623. + 437556.i −0.280176 + 0.485278i −0.971428 0.237335i \(-0.923726\pi\)
0.691252 + 0.722614i \(0.257059\pi\)
\(242\) 22725.5 39361.7i 0.0249445 0.0432052i
\(243\) −29524.5 51137.9i −0.0320750 0.0555556i
\(244\) 457498. 0.491943
\(245\) 0 0
\(246\) −178506. −0.188068
\(247\) −202484. 350713.i −0.211178 0.365771i
\(248\) 78624.0 136181.i 0.0811757 0.140600i
\(249\) −169938. + 294341.i −0.173697 + 0.300852i
\(250\) 86598.0 + 149992.i 0.0876310 + 0.151781i
\(251\) −317108. −0.317704 −0.158852 0.987302i \(-0.550779\pi\)
−0.158852 + 0.987302i \(0.550779\pi\)
\(252\) 0 0
\(253\) 1.08528e6 1.06596
\(254\) −98304.0 170268.i −0.0956064 0.165595i
\(255\) −122094. + 211473.i −0.117583 + 0.203659i
\(256\) −368016. + 637423.i −0.350968 + 0.607894i
\(257\) −721423. 1.24954e6i −0.681329 1.18010i −0.974575 0.224060i \(-0.928069\pi\)
0.293246 0.956037i \(-0.405265\pi\)
\(258\) −155124. −0.145087
\(259\) 0 0
\(260\) 478516. 0.438999
\(261\) 333801. + 578160.i 0.303310 + 0.525348i
\(262\) −38570.0 + 66805.2i −0.0347133 + 0.0601253i
\(263\) −135748. + 235122.i −0.121016 + 0.209606i −0.920169 0.391522i \(-0.871949\pi\)
0.799152 + 0.601128i \(0.205282\pi\)
\(264\) −96390.0 166952.i −0.0851181 0.147429i
\(265\) 5100.00 0.00446124
\(266\) 0 0
\(267\) 1.05557e6 0.906172
\(268\) −25978.0 44995.2i −0.0220937 0.0382674i
\(269\) 425307. 736653.i 0.358362 0.620701i −0.629325 0.777142i \(-0.716669\pi\)
0.987687 + 0.156441i \(0.0500021\pi\)
\(270\) −12393.0 + 21465.3i −0.0103459 + 0.0179196i
\(271\) −270064. 467765.i −0.223380 0.386905i 0.732452 0.680818i \(-0.238376\pi\)
−0.955832 + 0.293913i \(0.905042\pi\)
\(272\) 741342. 0.607570
\(273\) 0 0
\(274\) 208170. 0.167510
\(275\) −334730. 579769.i −0.266909 0.462300i
\(276\) −445284. + 771255.i −0.351856 + 0.609432i
\(277\) −256787. + 444768.i −0.201082 + 0.348285i −0.948877 0.315645i \(-0.897779\pi\)
0.747795 + 0.663929i \(0.231112\pi\)
\(278\) −137790. 238659.i −0.106932 0.185211i
\(279\) 202176. 0.155496
\(280\) 0 0
\(281\) −1.35642e6 −1.02478 −0.512388 0.858754i \(-0.671239\pi\)
−0.512388 + 0.858754i \(0.671239\pi\)
\(282\) 40176.0 + 69586.9i 0.0300846 + 0.0521080i
\(283\) 143378. 248338.i 0.106418 0.184322i −0.807898 0.589322i \(-0.799395\pi\)
0.914317 + 0.405000i \(0.132728\pi\)
\(284\) 225804. 391104.i 0.166125 0.287737i
\(285\) 136476. + 236383.i 0.0995277 + 0.172387i
\(286\) 154360. 0.111589
\(287\) 0 0
\(288\) 238545. 0.169469
\(289\) 391526. + 678144.i 0.275751 + 0.477614i
\(290\) 140114. 242685.i 0.0978333 0.169452i
\(291\) 45009.0 77957.9i 0.0311578 0.0539669i
\(292\) −1.21486e6 2.10420e6i −0.833813 1.44421i
\(293\) 1.70727e6 1.16180 0.580901 0.813974i \(-0.302700\pi\)
0.580901 + 0.813974i \(0.302700\pi\)
\(294\) 0 0
\(295\) 1.44146e6 0.964381
\(296\) 308637. + 534575.i 0.204748 + 0.354633i
\(297\) 123930. 214653.i 0.0815240 0.141204i
\(298\) 148053. 256435.i 0.0965776 0.167277i
\(299\) −724584. 1.25502e6i −0.468717 0.811842i
\(300\) 549351. 0.352409
\(301\) 0 0
\(302\) −426472. −0.269075
\(303\) −489465. 847778.i −0.306277 0.530488i
\(304\) 414334. 717648.i 0.257138 0.445376i
\(305\) 250886. 434547.i 0.154428 0.267478i
\(306\) −32319.0 55978.2i −0.0197312 0.0341755i
\(307\) 546788. 0.331111 0.165555 0.986201i \(-0.447058\pi\)
0.165555 + 0.986201i \(0.447058\pi\)
\(308\) 0 0
\(309\) 1.79273e6 1.06812
\(310\) −42432.0 73494.4i −0.0250778 0.0434360i
\(311\) 1.61713e6 2.80095e6i 0.948079 1.64212i 0.198613 0.980078i \(-0.436356\pi\)
0.749466 0.662043i \(-0.230310\pi\)
\(312\) −128709. + 222931.i −0.0748553 + 0.129653i
\(313\) 906565. + 1.57022e6i 0.523044 + 0.905939i 0.999640 + 0.0268164i \(0.00853694\pi\)
−0.476597 + 0.879122i \(0.658130\pi\)
\(314\) −178486. −0.102160
\(315\) 0 0
\(316\) 70432.0 0.0396782
\(317\) 638289. + 1.10555e6i 0.356754 + 0.617917i 0.987417 0.158141i \(-0.0505500\pi\)
−0.630662 + 0.776057i \(0.717217\pi\)
\(318\) −675.000 + 1169.13i −0.000374314 + 0.000648331i
\(319\) −1.40114e6 + 2.42685e6i −0.770912 + 1.33526i
\(320\) 455311. + 788622.i 0.248561 + 0.430520i
\(321\) −719748. −0.389868
\(322\) 0 0
\(323\) −711816. −0.379631
\(324\) 101696. + 176142.i 0.0538194 + 0.0932180i
\(325\) −446963. + 774163.i −0.234727 + 0.406559i
\(326\) −126386. + 218907.i −0.0658650 + 0.114082i
\(327\) 207441. + 359298.i 0.107282 + 0.185817i
\(328\) 1.24954e6 0.641307
\(329\) 0 0
\(330\) −104040. −0.0525915
\(331\) 868106. + 1.50360e6i 0.435515 + 0.754334i 0.997337 0.0729241i \(-0.0232331\pi\)
−0.561823 + 0.827258i \(0.689900\pi\)
\(332\) 585342. 1.01384e6i 0.291450 0.504807i
\(333\) −396819. + 687311.i −0.196102 + 0.339659i
\(334\) 254044. + 440017.i 0.124607 + 0.215826i
\(335\) −56984.0 −0.0277422
\(336\) 0 0
\(337\) 2.07215e6 0.993907 0.496953 0.867777i \(-0.334452\pi\)
0.496953 + 0.867777i \(0.334452\pi\)
\(338\) 82588.5 + 143047.i 0.0393213 + 0.0681065i
\(339\) −1.18218e6 + 2.04759e6i −0.558706 + 0.967707i
\(340\) 420546. 728407.i 0.197295 0.341725i
\(341\) 424320. + 734944.i 0.197609 + 0.342269i
\(342\) −72252.0 −0.0334029
\(343\) 0 0
\(344\) 1.08587e6 0.494744
\(345\) 488376. + 845892.i 0.220906 + 0.382620i
\(346\) −110917. + 192114.i −0.0498090 + 0.0862717i
\(347\) 825730. 1.43021e6i 0.368141 0.637639i −0.621134 0.783705i \(-0.713328\pi\)
0.989275 + 0.146065i \(0.0466610\pi\)
\(348\) −1.14976e6 1.99144e6i −0.508931 0.881494i
\(349\) −1.26645e6 −0.556578 −0.278289 0.960497i \(-0.589767\pi\)
−0.278289 + 0.960497i \(0.589767\pi\)
\(350\) 0 0
\(351\) −330966. −0.143389
\(352\) 500650. + 867151.i 0.215366 + 0.373025i
\(353\) 286609. 496421.i 0.122420 0.212038i −0.798301 0.602258i \(-0.794268\pi\)
0.920722 + 0.390220i \(0.127601\pi\)
\(354\) −190782. + 330444.i −0.0809150 + 0.140149i
\(355\) −247656. 428953.i −0.104298 0.180650i
\(356\) −3.63587e6 −1.52049
\(357\) 0 0
\(358\) −113564. −0.0468310
\(359\) −2.23161e6 3.86527e6i −0.913866 1.58286i −0.808553 0.588423i \(-0.799749\pi\)
−0.105313 0.994439i \(-0.533584\pi\)
\(360\) 86751.0 150257.i 0.0352792 0.0611053i
\(361\) 840218. 1.45530e6i 0.339331 0.587739i
\(362\) 331559. + 574277.i 0.132981 + 0.230330i
\(363\) −409059. −0.162937
\(364\) 0 0
\(365\) −2.66485e6 −1.04699
\(366\) 66411.0 + 115027.i 0.0259142 + 0.0448847i
\(367\) −2.25398e6 + 3.90401e6i −0.873546 + 1.51303i −0.0152419 + 0.999884i \(0.504852\pi\)
−0.858304 + 0.513142i \(0.828481\pi\)
\(368\) 1.48268e6 2.56808e6i 0.570728 0.988530i
\(369\) 803277. + 1.39132e6i 0.307114 + 0.531937i
\(370\) 333132. 0.126506
\(371\) 0 0
\(372\) −696384. −0.260910
\(373\) −832675. 1.44224e6i −0.309887 0.536740i 0.668450 0.743757i \(-0.266958\pi\)
−0.978337 + 0.207017i \(0.933625\pi\)
\(374\) 135660. 234970.i 0.0501502 0.0868627i
\(375\) 779382. 1.34993e6i 0.286202 0.495716i
\(376\) −281232. 487108.i −0.102588 0.177687i
\(377\) 3.74187e6 1.35592
\(378\) 0 0
\(379\) −2.53232e6 −0.905568 −0.452784 0.891620i \(-0.649569\pi\)
−0.452784 + 0.891620i \(0.649569\pi\)
\(380\) −470084. 814209.i −0.167000 0.289252i
\(381\) −884736. + 1.53241e6i −0.312249 + 0.540831i
\(382\) −252832. + 437918.i −0.0886490 + 0.153544i
\(383\) 398184. + 689675.i 0.138703 + 0.240241i 0.927006 0.375046i \(-0.122373\pi\)
−0.788303 + 0.615288i \(0.789040\pi\)
\(384\) −1.08921e6 −0.376949
\(385\) 0 0
\(386\) −432382. −0.147706
\(387\) 698058. + 1.20907e6i 0.236927 + 0.410369i
\(388\) −155031. + 268522.i −0.0522804 + 0.0905524i
\(389\) −973995. + 1.68701e6i −0.326349 + 0.565254i −0.981785 0.189998i \(-0.939152\pi\)
0.655435 + 0.755251i \(0.272485\pi\)
\(390\) 69462.0 + 120312.i 0.0231252 + 0.0400540i
\(391\) −2.54722e6 −0.842605
\(392\) 0 0
\(393\) 694260. 0.226747
\(394\) 65981.0 + 114282.i 0.0214130 + 0.0370885i
\(395\) 38624.0 66898.7i 0.0124556 0.0215737i
\(396\) −426870. + 739361.i −0.136791 + 0.236929i
\(397\) 540579. + 936310.i 0.172140 + 0.298156i 0.939168 0.343458i \(-0.111598\pi\)
−0.767028 + 0.641614i \(0.778265\pi\)
\(398\) −298536. −0.0944689
\(399\) 0 0
\(400\) −1.82920e6 −0.571625
\(401\) −1.38385e6 2.39690e6i −0.429762 0.744369i 0.567090 0.823656i \(-0.308069\pi\)
−0.996852 + 0.0792866i \(0.974736\pi\)
\(402\) 7542.00 13063.1i 0.00232767 0.00403164i
\(403\) 566592. 981366.i 0.173783 0.301001i
\(404\) 1.68593e6 + 2.92013e6i 0.513910 + 0.890119i
\(405\) 223074. 0.0675789
\(406\) 0 0
\(407\) −3.33132e6 −0.996851
\(408\) 226233. + 391847.i 0.0672830 + 0.116538i
\(409\) 1.18175e6 2.04685e6i 0.349315 0.605031i −0.636813 0.771018i \(-0.719748\pi\)
0.986128 + 0.165987i \(0.0530811\pi\)
\(410\) 337178. 584009.i 0.0990603 0.171577i
\(411\) −936765. 1.62252e6i −0.273543 0.473791i
\(412\) −6.17495e6 −1.79222
\(413\) 0 0
\(414\) −258552. −0.0741391
\(415\) −641988. 1.11196e6i −0.182981 0.316933i
\(416\) 668515. 1.15790e6i 0.189399 0.328049i
\(417\) −1.24011e6 + 2.14793e6i −0.349237 + 0.604896i
\(418\) −151640. 262648.i −0.0424495 0.0735248i
\(419\) 2.98669e6 0.831104 0.415552 0.909569i \(-0.363588\pi\)
0.415552 + 0.909569i \(0.363588\pi\)
\(420\) 0 0
\(421\) −3.46331e6 −0.952326 −0.476163 0.879357i \(-0.657973\pi\)
−0.476163 + 0.879357i \(0.657973\pi\)
\(422\) 585310. + 1.01379e6i 0.159994 + 0.277118i
\(423\) 361584. 626282.i 0.0982558 0.170184i
\(424\) 4725.00 8183.94i 0.00127640 0.00221079i
\(425\) 785631. + 1.36075e6i 0.210982 + 0.365432i
\(426\) 131112. 0.0350041
\(427\) 0 0
\(428\) 2.47913e6 0.654169
\(429\) −694620. 1.20312e6i −0.182223 0.315620i
\(430\) 293012. 507512.i 0.0764213 0.132366i
\(431\) −1.16846e6 + 2.02384e6i −0.302986 + 0.524787i −0.976811 0.214104i \(-0.931317\pi\)
0.673825 + 0.738891i \(0.264650\pi\)
\(432\) −338620. 586508.i −0.0872979 0.151204i
\(433\) 3.50838e6 0.899264 0.449632 0.893214i \(-0.351555\pi\)
0.449632 + 0.893214i \(0.351555\pi\)
\(434\) 0 0
\(435\) −2.52205e6 −0.639044
\(436\) −714519. 1.23758e6i −0.180010 0.311787i
\(437\) −1.42363e6 + 2.46580e6i −0.356611 + 0.617668i
\(438\) 352701. 610896.i 0.0878459 0.152154i
\(439\) 1.77416e6 + 3.07294e6i 0.439372 + 0.761015i 0.997641 0.0686452i \(-0.0218676\pi\)
−0.558269 + 0.829660i \(0.688534\pi\)
\(440\) 728280. 0.179336
\(441\) 0 0
\(442\) −362292. −0.0882070
\(443\) −884166. 1.53142e6i −0.214055 0.370753i 0.738925 0.673788i \(-0.235334\pi\)
−0.952980 + 0.303034i \(0.902000\pi\)
\(444\) 1.36682e6 2.36740e6i 0.329044 0.569921i
\(445\) −1.99386e6 + 3.45347e6i −0.477304 + 0.826715i
\(446\) 199688. + 345870.i 0.0475351 + 0.0823333i
\(447\) −2.66495e6 −0.630842
\(448\) 0 0
\(449\) −5.52579e6 −1.29354 −0.646768 0.762687i \(-0.723880\pi\)
−0.646768 + 0.762687i \(0.723880\pi\)
\(450\) 79744.5 + 138122.i 0.0185639 + 0.0321536i
\(451\) −3.37178e6 + 5.84009e6i −0.780581 + 1.35201i
\(452\) 4.07194e6 7.05281e6i 0.937466 1.62374i
\(453\) 1.91912e6 + 3.32402e6i 0.439397 + 0.761059i
\(454\) −707916. −0.161191
\(455\) 0 0
\(456\) 505764. 0.113903
\(457\) 1.48113e6 + 2.56539e6i 0.331744 + 0.574597i 0.982854 0.184386i \(-0.0590297\pi\)
−0.651110 + 0.758983i \(0.725696\pi\)
\(458\) −367889. + 637202.i −0.0819508 + 0.141943i
\(459\) −290871. + 503803.i −0.0644420 + 0.111617i
\(460\) −1.68218e6 2.91363e6i −0.370663 0.642007i
\(461\) −2.11884e6 −0.464350 −0.232175 0.972674i \(-0.574584\pi\)
−0.232175 + 0.972674i \(0.574584\pi\)
\(462\) 0 0
\(463\) 3.19226e6 0.692062 0.346031 0.938223i \(-0.387529\pi\)
0.346031 + 0.938223i \(0.387529\pi\)
\(464\) 3.82841e6 + 6.63100e6i 0.825512 + 1.42983i
\(465\) −381888. + 661449.i −0.0819037 + 0.141861i
\(466\) 104379. 180790.i 0.0222663 0.0385664i
\(467\) −3.71311e6 6.43129e6i −0.787853 1.36460i −0.927280 0.374369i \(-0.877859\pi\)
0.139427 0.990232i \(-0.455474\pi\)
\(468\) 1.13999e6 0.240596
\(469\) 0 0
\(470\) −303552. −0.0633853
\(471\) 803187. + 1.39116e6i 0.166826 + 0.288952i
\(472\) 1.33547e6 2.31311e6i 0.275918 0.477904i
\(473\) −2.93012e6 + 5.07512e6i −0.602189 + 1.04302i
\(474\) 10224.0 + 17708.5i 0.00209014 + 0.00362023i
\(475\) 1.75635e6 0.357171
\(476\) 0 0
\(477\) 12150.0 0.00244501
\(478\) −356688. 617802.i −0.0714034 0.123674i
\(479\) −1.69842e6 + 2.94176e6i −0.338226 + 0.585825i −0.984099 0.177620i \(-0.943160\pi\)
0.645873 + 0.763445i \(0.276494\pi\)
\(480\) −450585. + 780436.i −0.0892634 + 0.154609i
\(481\) 2.22415e6 + 3.85233e6i 0.438329 + 0.759209i
\(482\) 505246. 0.0990570
\(483\) 0 0
\(484\) 1.40898e6 0.273396
\(485\) 170034. + 294508.i 0.0328232 + 0.0568515i
\(486\) −29524.5 + 51137.9i −0.00567012 + 0.00982093i
\(487\) 1.85691e6 3.21626e6i 0.354787 0.614510i −0.632294 0.774728i \(-0.717887\pi\)
0.987082 + 0.160219i \(0.0512200\pi\)
\(488\) −464877. 805191.i −0.0883667 0.153056i
\(489\) 2.27495e6 0.430229
\(490\) 0 0
\(491\) 5.57494e6 1.04361 0.521803 0.853066i \(-0.325260\pi\)
0.521803 + 0.853066i \(0.325260\pi\)
\(492\) −2.76684e6 4.79231e6i −0.515314 0.892550i
\(493\) 3.28856e6 5.69595e6i 0.609380 1.05548i
\(494\) −202484. + 350713.i −0.0373313 + 0.0646597i
\(495\) 468180. + 810912.i 0.0858815 + 0.148751i
\(496\) 2.31878e6 0.423210
\(497\) 0 0
\(498\) 339876. 0.0614111
\(499\) −1.96349e6 3.40086e6i −0.353002 0.611418i 0.633772 0.773520i \(-0.281506\pi\)
−0.986774 + 0.162102i \(0.948172\pi\)
\(500\) −2.68454e6 + 4.64976e6i −0.480225 + 0.831774i
\(501\) 2.28640e6 3.96015e6i 0.406965 0.704884i
\(502\) 158554. + 274624.i 0.0280813 + 0.0486383i
\(503\) −6.42079e6 −1.13154 −0.565768 0.824564i \(-0.691420\pi\)
−0.565768 + 0.824564i \(0.691420\pi\)
\(504\) 0 0
\(505\) 3.69818e6 0.645297
\(506\) −542640. 939880.i −0.0942184 0.163191i
\(507\) 743296. 1.28743e6i 0.128423 0.222435i
\(508\) 3.04742e6 5.27829e6i 0.523930 0.907474i
\(509\) 73139.0 + 126680.i 0.0125128 + 0.0216728i 0.872214 0.489124i \(-0.162684\pi\)
−0.859701 + 0.510797i \(0.829350\pi\)
\(510\) 244188. 0.0415718
\(511\) 0 0
\(512\) 4.60877e6 0.776980
\(513\) 325134. + 563149.i 0.0545468 + 0.0944778i
\(514\) −721423. + 1.24954e6i −0.120443 + 0.208614i
\(515\) −3.38626e6 + 5.86518e6i −0.562604 + 0.974459i
\(516\) −2.40442e6 4.16458e6i −0.397545 0.688568i
\(517\) 3.03552e6 0.499467
\(518\) 0 0
\(519\) 1.99651e6 0.325351
\(520\) −486234. 842182.i −0.0788564 0.136583i
\(521\) 3.85468e6 6.67651e6i 0.622149 1.07759i −0.366935 0.930246i \(-0.619593\pi\)
0.989085 0.147348i \(-0.0470736\pi\)
\(522\) 333801. 578160.i 0.0536181 0.0928693i
\(523\) −284710. 493132.i −0.0455144 0.0788332i 0.842371 0.538898i \(-0.181159\pi\)
−0.887885 + 0.460065i \(0.847826\pi\)
\(524\) −2.39134e6 −0.380464
\(525\) 0 0
\(526\) 271496. 0.0427857
\(527\) −995904. 1.72496e6i −0.156204 0.270553i
\(528\) 1.42137e6 2.46189e6i 0.221882 0.384311i
\(529\) −1.87626e6 + 3.24978e6i −0.291510 + 0.504911i
\(530\) −2550.00 4416.73i −0.000394322 0.000682985i
\(531\) 3.43408e6 0.528535
\(532\) 0 0
\(533\) 9.00464e6 1.37293
\(534\) −527787. 914154.i −0.0800950 0.138729i
\(535\) 1.35952e6 2.35476e6i 0.205354 0.355683i
\(536\) −52794.0 + 91441.9i −0.00793730 + 0.0137478i
\(537\) 511038. + 885144.i 0.0764746 + 0.132458i
\(538\) −850614. −0.126700
\(539\) 0 0
\(540\) −768366. −0.113392
\(541\) 4.72401e6 + 8.18222e6i 0.693933 + 1.20193i 0.970539 + 0.240944i \(0.0774570\pi\)
−0.276606 + 0.960983i \(0.589210\pi\)
\(542\) −270064. + 467765.i −0.0394883 + 0.0683957i
\(543\) 2.98403e6 5.16849e6i 0.434314 0.752254i
\(544\) −1.17506e6 2.03525e6i −0.170240 0.294864i
\(545\) −1.56733e6 −0.226032
\(546\) 0 0
\(547\) −1.35321e6 −0.193374 −0.0966869 0.995315i \(-0.530825\pi\)
−0.0966869 + 0.995315i \(0.530825\pi\)
\(548\) 3.22664e6 + 5.58870e6i 0.458985 + 0.794985i
\(549\) 597699. 1.03525e6i 0.0846353 0.146593i
\(550\) −334730. + 579769.i −0.0471833 + 0.0817238i
\(551\) −3.67593e6 6.36690e6i −0.515808 0.893406i
\(552\) 1.80986e6 0.252812
\(553\) 0 0
\(554\) 513574. 0.0710933
\(555\) −1.49909e6 2.59651e6i −0.206584 0.357814i
\(556\) 4.27149e6 7.39844e6i 0.585993 1.01497i
\(557\) −4.09695e6 + 7.09613e6i −0.559529 + 0.969133i 0.438006 + 0.898972i \(0.355685\pi\)
−0.997536 + 0.0701612i \(0.977649\pi\)
\(558\) −101088. 175090.i −0.0137440 0.0238054i
\(559\) 7.82514e6 1.05916
\(560\) 0 0
\(561\) −2.44188e6 −0.327580
\(562\) 678211. + 1.17470e6i 0.0905783 + 0.156886i
\(563\) −5.28982e6 + 9.16223e6i −0.703347 + 1.21823i 0.263938 + 0.964540i \(0.414979\pi\)
−0.967285 + 0.253693i \(0.918355\pi\)
\(564\) −1.24546e6 + 2.15719e6i −0.164866 + 0.285556i
\(565\) −4.46600e6 7.73534e6i −0.588570 1.01943i
\(566\) −286756. −0.0376246
\(567\) 0 0
\(568\) −917784. −0.119363
\(569\) 6.01026e6 + 1.04101e7i 0.778238 + 1.34795i 0.932956 + 0.359989i \(0.117220\pi\)
−0.154718 + 0.987959i \(0.549447\pi\)
\(570\) 136476. 236383.i 0.0175942 0.0304740i
\(571\) 1.24474e6 2.15595e6i 0.159767 0.276725i −0.775017 0.631940i \(-0.782259\pi\)
0.934785 + 0.355215i \(0.115592\pi\)
\(572\) 2.39258e6 + 4.14407e6i 0.305757 + 0.529587i
\(573\) 4.55098e6 0.579053
\(574\) 0 0
\(575\) 6.28505e6 0.792755
\(576\) 1.08471e6 + 1.87878e6i 0.136225 + 0.235949i
\(577\) 4.10661e6 7.11286e6i 0.513504 0.889415i −0.486373 0.873751i \(-0.661680\pi\)
0.999877 0.0156639i \(-0.00498618\pi\)
\(578\) 391526. 678144.i 0.0487463 0.0844311i
\(579\) 1.94572e6 + 3.37008e6i 0.241204 + 0.417777i
\(580\) 8.68707e6 1.07227
\(581\) 0 0
\(582\) −90018.0 −0.0110159
\(583\) 25500.0 + 44167.3i 0.00310720 + 0.00538182i
\(584\) −2.46891e6 + 4.27627e6i −0.299552 + 0.518840i
\(585\) 625158. 1.08281e6i 0.0755266 0.130816i
\(586\) −853633. 1.47854e6i −0.102690 0.177864i
\(587\) 1.21827e6 0.145931 0.0729655 0.997334i \(-0.476754\pi\)
0.0729655 + 0.997334i \(0.476754\pi\)
\(588\) 0 0
\(589\) −2.22643e6 −0.264436
\(590\) −720732. 1.24834e6i −0.0852401 0.147640i
\(591\) 593829. 1.02854e6i 0.0699347 0.121130i
\(592\) −4.55117e6 + 7.88286e6i −0.533727 + 0.924442i
\(593\) −4.21190e6 7.29522e6i −0.491859 0.851925i 0.508097 0.861300i \(-0.330349\pi\)
−0.999956 + 0.00937481i \(0.997016\pi\)
\(594\) −247860. −0.0288231
\(595\) 0 0
\(596\) 9.17929e6 1.05851
\(597\) 1.34341e6 + 2.32686e6i 0.154267 + 0.267199i
\(598\) −724584. + 1.25502e6i −0.0828583 + 0.143515i
\(599\) −4.10627e6 + 7.11226e6i −0.467606 + 0.809918i −0.999315 0.0370096i \(-0.988217\pi\)
0.531709 + 0.846927i \(0.321550\pi\)
\(600\) −558212. 966851.i −0.0633025 0.109643i
\(601\) −3.25478e6 −0.367566 −0.183783 0.982967i \(-0.558834\pi\)
−0.183783 + 0.982967i \(0.558834\pi\)
\(602\) 0 0
\(603\) −135756. −0.0152043
\(604\) −6.61032e6 1.14494e7i −0.737276 1.27700i
\(605\) 772667. 1.33830e6i 0.0858230 0.148650i
\(606\) −489465. + 847778.i −0.0541427 + 0.0937779i
\(607\) 3.91050e6 + 6.77319e6i 0.430785 + 0.746142i 0.996941 0.0781561i \(-0.0249032\pi\)
−0.566156 + 0.824298i \(0.691570\pi\)
\(608\) −2.62694e6 −0.288198
\(609\) 0 0
\(610\) −501772. −0.0545986
\(611\) −2.02666e6 3.51027e6i −0.219623 0.380397i
\(612\) 1.00189e6 1.73532e6i 0.108129 0.187284i
\(613\) 4.75835e6 8.24170e6i 0.511452 0.885861i −0.488460 0.872586i \(-0.662441\pi\)
0.999912 0.0132748i \(-0.00422563\pi\)
\(614\) −273394. 473532.i −0.0292663 0.0506907i
\(615\) −6.06920e6 −0.647059
\(616\) 0 0
\(617\) −7.04895e6 −0.745438 −0.372719 0.927944i \(-0.621574\pi\)
−0.372719 + 0.927944i \(0.621574\pi\)
\(618\) −896364. 1.55255e6i −0.0944090 0.163521i
\(619\) −3.16087e6 + 5.47479e6i −0.331574 + 0.574302i −0.982821 0.184563i \(-0.940913\pi\)
0.651247 + 0.758866i \(0.274246\pi\)
\(620\) 1.31539e6 2.27833e6i 0.137428 0.238033i
\(621\) 1.16348e6 + 2.01521e6i 0.121069 + 0.209697i
\(622\) −3.23426e6 −0.335197
\(623\) 0 0
\(624\) −3.79589e6 −0.390259
\(625\) −132230. 229030.i −0.0135404 0.0234527i
\(626\) 906565. 1.57022e6i 0.0924620 0.160149i
\(627\) −1.36476e6 + 2.36383e6i −0.138640 + 0.240131i
\(628\) −2.76653e6 4.79178e6i −0.279922 0.484839i
\(629\) 7.81880e6 0.787977
\(630\) 0 0
\(631\) 8.61236e6 0.861090 0.430545 0.902569i \(-0.358321\pi\)
0.430545 + 0.902569i \(0.358321\pi\)
\(632\) −71568.0 123959.i −0.00712732 0.0123449i
\(633\) 5.26779e6 9.12408e6i 0.522540 0.905065i
\(634\) 638289. 1.10555e6i 0.0630658 0.109233i
\(635\) −3.34234e6 5.78910e6i −0.328939 0.569740i
\(636\) −41850.0 −0.00410254
\(637\) 0 0
\(638\) 2.80228e6 0.272559
\(639\) −590004. 1.02192e6i −0.0571614 0.0990064i
\(640\) 2.05739e6 3.56351e6i 0.198549 0.343896i
\(641\) 2.61414e6 4.52783e6i 0.251295 0.435256i −0.712587 0.701583i \(-0.752477\pi\)
0.963883 + 0.266327i \(0.0858102\pi\)
\(642\) 359874. + 623320.i 0.0344598 + 0.0596861i
\(643\) −1.61373e7 −1.53923 −0.769615 0.638508i \(-0.779552\pi\)
−0.769615 + 0.638508i \(0.779552\pi\)
\(644\) 0 0
\(645\) −5.27422e6 −0.499182
\(646\) 355908. + 616451.i 0.0335549 + 0.0581189i
\(647\) −7.93743e6 + 1.37480e7i −0.745451 + 1.29116i 0.204533 + 0.978860i \(0.434433\pi\)
−0.949984 + 0.312299i \(0.898901\pi\)
\(648\) 206672. 357966.i 0.0193350 0.0334891i
\(649\) 7.20732e6 + 1.24834e7i 0.671679 + 1.16338i
\(650\) 893926. 0.0829886
\(651\) 0 0
\(652\) −7.83593e6 −0.721891
\(653\) 2.97056e6 + 5.14516e6i 0.272619 + 0.472189i 0.969532 0.244966i \(-0.0787769\pi\)
−0.696913 + 0.717156i \(0.745444\pi\)
\(654\) 207441. 359298.i 0.0189649 0.0328481i
\(655\) −1.31138e6 + 2.27138e6i −0.119433 + 0.206864i
\(656\) 9.21289e6 + 1.59572e7i 0.835866 + 1.44776i
\(657\) −6.34862e6 −0.573807
\(658\) 0 0
\(659\) −7.64430e6 −0.685684 −0.342842 0.939393i \(-0.611390\pi\)
−0.342842 + 0.939393i \(0.611390\pi\)
\(660\) −1.61262e6 2.79314e6i −0.144103 0.249593i
\(661\) −3.79344e6 + 6.57043e6i −0.337699 + 0.584912i −0.983999 0.178171i \(-0.942982\pi\)
0.646301 + 0.763083i \(0.276315\pi\)
\(662\) 868106. 1.50360e6i 0.0769888 0.133349i
\(663\) 1.63031e6 + 2.82379e6i 0.144041 + 0.249487i
\(664\) −2.37913e6 −0.209410
\(665\) 0 0
\(666\) 793638. 0.0693325
\(667\) −1.31542e7 2.27838e7i −1.14486 1.98295i
\(668\) −7.87536e6 + 1.36405e7i −0.682857 + 1.18274i
\(669\) 1.79719e6 3.11283e6i 0.155249 0.268899i
\(670\) 28492.0 + 49349.6i 0.00245209 + 0.00424714i
\(671\) 5.01772e6 0.430229
\(672\) 0 0
\(673\) −2.06681e7 −1.75899 −0.879494 0.475910i \(-0.842119\pi\)
−0.879494 + 0.475910i \(0.842119\pi\)
\(674\) −1.03607e6 1.79453e6i −0.0878498 0.152160i
\(675\) 717700. 1.24309e6i 0.0606295 0.105013i
\(676\) −2.56024e6 + 4.43447e6i −0.215484 + 0.373229i
\(677\) 3.94770e6 + 6.83762e6i 0.331034 + 0.573368i 0.982715 0.185125i \(-0.0592691\pi\)
−0.651681 + 0.758493i \(0.725936\pi\)
\(678\) 2.36435e6 0.197532
\(679\) 0 0
\(680\) −1.70932e6 −0.141759
\(681\) 3.18562e6 + 5.51766e6i 0.263225 + 0.455918i
\(682\) 424320. 734944.i 0.0349327 0.0605053i
\(683\) 9.80075e6 1.69754e7i 0.803911 1.39241i −0.113114 0.993582i \(-0.536082\pi\)
0.917024 0.398832i \(-0.130584\pi\)
\(684\) −1.11991e6 1.93973e6i −0.0915253 0.158527i
\(685\) 7.07778e6 0.576329
\(686\) 0 0
\(687\) 6.62200e6 0.535300
\(688\) 8.00612e6 + 1.38670e7i 0.644839 + 1.11689i
\(689\) 34050.0 58976.3i 0.00273256 0.00473293i
\(690\) 488376. 845892.i 0.0390509 0.0676382i
\(691\) −8.63549e6 1.49571e7i −0.688005 1.19166i −0.972482 0.232977i \(-0.925153\pi\)
0.284477 0.958683i \(-0.408180\pi\)
\(692\) −6.87685e6 −0.545914
\(693\) 0 0
\(694\) −1.65146e6 −0.130158
\(695\) −4.68486e6 8.11442e6i −0.367904 0.637229i
\(696\) −2.33661e6 + 4.04712e6i −0.182836 + 0.316682i
\(697\) 7.91377e6 1.37070e7i 0.617023 1.06871i
\(698\) 633227. + 1.09678e6i 0.0491950 + 0.0852082i
\(699\) −1.87882e6 −0.145443
\(700\) 0 0
\(701\) −5.36344e6 −0.412238 −0.206119 0.978527i \(-0.566083\pi\)
−0.206119 + 0.978527i \(0.566083\pi\)
\(702\) 165483. + 286625.i 0.0126739 + 0.0219519i
\(703\) 4.36991e6 7.56890e6i 0.333491 0.577623i
\(704\) −4.55311e6 + 7.88622e6i −0.346239 + 0.599704i
\(705\) 1.36598e6 + 2.36595e6i 0.103508 + 0.179281i
\(706\) −573218. −0.0432821
\(707\) 0 0
\(708\) −1.18285e7 −0.886841
\(709\) 8.68665e6 + 1.50457e7i 0.648988 + 1.12408i 0.983365 + 0.181641i \(0.0581409\pi\)
−0.334377 + 0.942440i \(0.608526\pi\)
\(710\) −247656. + 428953.i −0.0184375 + 0.0319348i
\(711\) 92016.0 159376.i 0.00682636 0.0118236i
\(712\) 3.69451e6 + 6.39908e6i 0.273122 + 0.473061i
\(713\) −7.96723e6 −0.586926
\(714\) 0 0
\(715\) 5.24824e6 0.383927
\(716\) −1.76024e6 3.04883e6i −0.128319 0.222254i
\(717\) −3.21019e6 + 5.56022e6i −0.233202 + 0.403919i
\(718\) −2.23161e6 + 3.86527e6i −0.161550 + 0.279813i
\(719\) 212304. + 367721.i 0.0153157 + 0.0265275i 0.873582 0.486678i \(-0.161791\pi\)
−0.858266 + 0.513205i \(0.828458\pi\)
\(720\) 2.55847e6 0.183928
\(721\) 0 0
\(722\) −1.68044e6 −0.119972
\(723\) −2.27361e6 3.93800e6i −0.161759 0.280176i
\(724\) −1.02783e7 + 1.78026e7i −0.728746 + 1.26222i
\(725\) −8.11425e6 + 1.40543e7i −0.573328 + 0.993034i
\(726\) 204530. + 354255.i 0.0144017 + 0.0249445i
\(727\) −2.18290e7 −1.53179 −0.765893 0.642968i \(-0.777703\pi\)
−0.765893 + 0.642968i \(0.777703\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 1.33243e6 + 2.30783e6i 0.0925414 + 0.160286i
\(731\) 6.87716e6 1.19116e7i 0.476010 0.824473i
\(732\) −2.05874e6 + 3.56584e6i −0.142012 + 0.245971i
\(733\) 1.08838e7 + 1.88512e7i 0.748202 + 1.29592i 0.948684 + 0.316227i \(0.102416\pi\)
−0.200481 + 0.979698i \(0.564251\pi\)
\(734\) 4.50797e6 0.308845
\(735\) 0 0
\(736\) −9.40044e6 −0.639667
\(737\) −284920. 493496.i −0.0193221 0.0334669i
\(738\) 803277. 1.39132e6i 0.0542906 0.0940340i
\(739\) −3.10893e6 + 5.38482e6i −0.209411 + 0.362711i −0.951529 0.307558i \(-0.900488\pi\)
0.742118 + 0.670269i \(0.233821\pi\)
\(740\) 5.16355e6 + 8.94352e6i 0.346632 + 0.600384i
\(741\) 3.64471e6 0.243847
\(742\) 0 0
\(743\) 3.77647e6 0.250966 0.125483 0.992096i \(-0.459952\pi\)
0.125483 + 0.992096i \(0.459952\pi\)
\(744\) 707616. + 1.22563e6i 0.0468668 + 0.0811757i
\(745\) 5.03380e6 8.71880e6i 0.332281 0.575527i
\(746\) −832675. + 1.44224e6i −0.0547808 + 0.0948831i
\(747\) −1.52944e6 2.64907e6i −0.100284 0.173697i
\(748\) 8.41092e6 0.549654
\(749\) 0 0
\(750\) −1.55876e6 −0.101188
\(751\) 1.44398e6 + 2.50104e6i 0.0934244 + 0.161816i 0.908950 0.416905i \(-0.136885\pi\)
−0.815526 + 0.578721i \(0.803552\pi\)
\(752\) 4.14706e6 7.18291e6i 0.267421 0.463187i
\(753\) 1.42699e6 2.47161e6i 0.0917133 0.158852i
\(754\) −1.87093e6 3.24055e6i −0.119848 0.207582i
\(755\) −1.45000e7 −0.925768
\(756\) 0 0
\(757\) 1.25519e6 0.0796104 0.0398052 0.999207i \(-0.487326\pi\)
0.0398052 + 0.999207i \(0.487326\pi\)
\(758\) 1.26616e6 + 2.19306e6i 0.0800417 + 0.138636i
\(759\) −4.88376e6 + 8.45892e6i −0.307716 + 0.532979i
\(760\) −955332. + 1.65468e6i −0.0599957 + 0.103916i
\(761\) −7.13115e6 1.23515e7i −0.446373 0.773140i 0.551774 0.833994i \(-0.313951\pi\)
−0.998147 + 0.0608533i \(0.980618\pi\)
\(762\) 1.76947e6 0.110397
\(763\) 0 0
\(764\) −1.56756e7 −0.971606
\(765\) −1.09885e6 1.90326e6i −0.0678865 0.117583i
\(766\) 398184. 689675.i 0.0245195 0.0424690i
\(767\) 9.62389e6 1.66691e7i 0.590694 1.02311i
\(768\) −3.31215e6 5.73681e6i −0.202631 0.350968i
\(769\) 2.02261e7 1.23338