Properties

Label 147.6.e.e
Level $147$
Weight $6$
Character orbit 147.e
Analytic conductor $23.576$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,6,Mod(67,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.67");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 147.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.5764215125\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{6} q^{2} + (9 \zeta_{6} - 9) q^{3} + ( - 31 \zeta_{6} + 31) q^{4} - 34 \zeta_{6} q^{5} + 9 q^{6} - 63 q^{8} - 81 \zeta_{6} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \zeta_{6} q^{2} + (9 \zeta_{6} - 9) q^{3} + ( - 31 \zeta_{6} + 31) q^{4} - 34 \zeta_{6} q^{5} + 9 q^{6} - 63 q^{8} - 81 \zeta_{6} q^{9} + (34 \zeta_{6} - 34) q^{10} + ( - 340 \zeta_{6} + 340) q^{11} + 279 \zeta_{6} q^{12} - 454 q^{13} + 306 q^{15} - 929 \zeta_{6} q^{16} + (798 \zeta_{6} - 798) q^{17} + (81 \zeta_{6} - 81) q^{18} + 892 \zeta_{6} q^{19} - 1054 q^{20} - 340 q^{22} + 3192 \zeta_{6} q^{23} + ( - 567 \zeta_{6} + 567) q^{24} + ( - 1969 \zeta_{6} + 1969) q^{25} + 454 \zeta_{6} q^{26} + 729 q^{27} - 8242 q^{29} - 306 \zeta_{6} q^{30} + (2496 \zeta_{6} - 2496) q^{31} + (2945 \zeta_{6} - 2945) q^{32} + 3060 \zeta_{6} q^{33} + 798 q^{34} - 2511 q^{36} - 9798 \zeta_{6} q^{37} + ( - 892 \zeta_{6} + 892) q^{38} + ( - 4086 \zeta_{6} + 4086) q^{39} + 2142 \zeta_{6} q^{40} - 19834 q^{41} - 17236 q^{43} - 10540 \zeta_{6} q^{44} + (2754 \zeta_{6} - 2754) q^{45} + ( - 3192 \zeta_{6} + 3192) q^{46} + 8928 \zeta_{6} q^{47} + 8361 q^{48} - 1969 q^{50} - 7182 \zeta_{6} q^{51} + (14074 \zeta_{6} - 14074) q^{52} + (150 \zeta_{6} - 150) q^{53} - 729 \zeta_{6} q^{54} - 11560 q^{55} - 8028 q^{57} + 8242 \zeta_{6} q^{58} + (42396 \zeta_{6} - 42396) q^{59} + ( - 9486 \zeta_{6} + 9486) q^{60} + 14758 \zeta_{6} q^{61} + 2496 q^{62} - 26783 q^{64} + 15436 \zeta_{6} q^{65} + ( - 3060 \zeta_{6} + 3060) q^{66} + ( - 1676 \zeta_{6} + 1676) q^{67} + 24738 \zeta_{6} q^{68} - 28728 q^{69} + 14568 q^{71} + 5103 \zeta_{6} q^{72} + ( - 78378 \zeta_{6} + 78378) q^{73} + (9798 \zeta_{6} - 9798) q^{74} + 17721 \zeta_{6} q^{75} + 27652 q^{76} - 4086 q^{78} + 2272 \zeta_{6} q^{79} + (31586 \zeta_{6} - 31586) q^{80} + (6561 \zeta_{6} - 6561) q^{81} + 19834 \zeta_{6} q^{82} + 37764 q^{83} + 27132 q^{85} + 17236 \zeta_{6} q^{86} + ( - 74178 \zeta_{6} + 74178) q^{87} + (21420 \zeta_{6} - 21420) q^{88} - 117286 \zeta_{6} q^{89} + 2754 q^{90} + 98952 q^{92} - 22464 \zeta_{6} q^{93} + ( - 8928 \zeta_{6} + 8928) q^{94} + ( - 30328 \zeta_{6} + 30328) q^{95} - 26505 \zeta_{6} q^{96} - 10002 q^{97} - 27540 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - 9 q^{3} + 31 q^{4} - 34 q^{5} + 18 q^{6} - 126 q^{8} - 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} - 9 q^{3} + 31 q^{4} - 34 q^{5} + 18 q^{6} - 126 q^{8} - 81 q^{9} - 34 q^{10} + 340 q^{11} + 279 q^{12} - 908 q^{13} + 612 q^{15} - 929 q^{16} - 798 q^{17} - 81 q^{18} + 892 q^{19} - 2108 q^{20} - 680 q^{22} + 3192 q^{23} + 567 q^{24} + 1969 q^{25} + 454 q^{26} + 1458 q^{27} - 16484 q^{29} - 306 q^{30} - 2496 q^{31} - 2945 q^{32} + 3060 q^{33} + 1596 q^{34} - 5022 q^{36} - 9798 q^{37} + 892 q^{38} + 4086 q^{39} + 2142 q^{40} - 39668 q^{41} - 34472 q^{43} - 10540 q^{44} - 2754 q^{45} + 3192 q^{46} + 8928 q^{47} + 16722 q^{48} - 3938 q^{50} - 7182 q^{51} - 14074 q^{52} - 150 q^{53} - 729 q^{54} - 23120 q^{55} - 16056 q^{57} + 8242 q^{58} - 42396 q^{59} + 9486 q^{60} + 14758 q^{61} + 4992 q^{62} - 53566 q^{64} + 15436 q^{65} + 3060 q^{66} + 1676 q^{67} + 24738 q^{68} - 57456 q^{69} + 29136 q^{71} + 5103 q^{72} + 78378 q^{73} - 9798 q^{74} + 17721 q^{75} + 55304 q^{76} - 8172 q^{78} + 2272 q^{79} - 31586 q^{80} - 6561 q^{81} + 19834 q^{82} + 75528 q^{83} + 54264 q^{85} + 17236 q^{86} + 74178 q^{87} - 21420 q^{88} - 117286 q^{89} + 5508 q^{90} + 197904 q^{92} - 22464 q^{93} + 8928 q^{94} + 30328 q^{95} - 26505 q^{96} - 20004 q^{97} - 55080 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 0.866025i −4.50000 + 7.79423i 15.5000 26.8468i −17.0000 29.4449i 9.00000 0 −63.0000 −40.5000 70.1481i −17.0000 + 29.4449i
79.1 −0.500000 + 0.866025i −4.50000 7.79423i 15.5000 + 26.8468i −17.0000 + 29.4449i 9.00000 0 −63.0000 −40.5000 + 70.1481i −17.0000 29.4449i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 147.6.e.e 2
7.b odd 2 1 147.6.e.f 2
7.c even 3 1 147.6.a.e 1
7.c even 3 1 inner 147.6.e.e 2
7.d odd 6 1 21.6.a.b 1
7.d odd 6 1 147.6.e.f 2
21.g even 6 1 63.6.a.c 1
21.h odd 6 1 441.6.a.d 1
28.f even 6 1 336.6.a.l 1
35.i odd 6 1 525.6.a.c 1
35.k even 12 2 525.6.d.d 2
84.j odd 6 1 1008.6.a.t 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.6.a.b 1 7.d odd 6 1
63.6.a.c 1 21.g even 6 1
147.6.a.e 1 7.c even 3 1
147.6.e.e 2 1.a even 1 1 trivial
147.6.e.e 2 7.c even 3 1 inner
147.6.e.f 2 7.b odd 2 1
147.6.e.f 2 7.d odd 6 1
336.6.a.l 1 28.f even 6 1
441.6.a.d 1 21.h odd 6 1
525.6.a.c 1 35.i odd 6 1
525.6.d.d 2 35.k even 12 2
1008.6.a.t 1 84.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(147, [\chi])\):

\( T_{2}^{2} + T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{2} + 34T_{5} + 1156 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$5$ \( T^{2} + 34T + 1156 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 340T + 115600 \) Copy content Toggle raw display
$13$ \( (T + 454)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 798T + 636804 \) Copy content Toggle raw display
$19$ \( T^{2} - 892T + 795664 \) Copy content Toggle raw display
$23$ \( T^{2} - 3192 T + 10188864 \) Copy content Toggle raw display
$29$ \( (T + 8242)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 2496 T + 6230016 \) Copy content Toggle raw display
$37$ \( T^{2} + 9798 T + 96000804 \) Copy content Toggle raw display
$41$ \( (T + 19834)^{2} \) Copy content Toggle raw display
$43$ \( (T + 17236)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 8928 T + 79709184 \) Copy content Toggle raw display
$53$ \( T^{2} + 150T + 22500 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 1797420816 \) Copy content Toggle raw display
$61$ \( T^{2} - 14758 T + 217798564 \) Copy content Toggle raw display
$67$ \( T^{2} - 1676 T + 2808976 \) Copy content Toggle raw display
$71$ \( (T - 14568)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 6143110884 \) Copy content Toggle raw display
$79$ \( T^{2} - 2272 T + 5161984 \) Copy content Toggle raw display
$83$ \( (T - 37764)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 13756005796 \) Copy content Toggle raw display
$97$ \( (T + 10002)^{2} \) Copy content Toggle raw display
show more
show less