Properties

Label 147.6.e.a
Level $147$
Weight $6$
Character orbit 147.e
Analytic conductor $23.576$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [147,6,Mod(67,147)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(147, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("147.67"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 147.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-10,-9,-68,106] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.5764215125\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 10 \zeta_{6} q^{2} + (9 \zeta_{6} - 9) q^{3} + (68 \zeta_{6} - 68) q^{4} + 106 \zeta_{6} q^{5} + 90 q^{6} + 360 q^{8} - 81 \zeta_{6} q^{9} + ( - 1060 \zeta_{6} + 1060) q^{10} + (92 \zeta_{6} - 92) q^{11} + \cdots + 7452 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 10 q^{2} - 9 q^{3} - 68 q^{4} + 106 q^{5} + 180 q^{6} + 720 q^{8} - 81 q^{9} + 1060 q^{10} - 92 q^{11} - 612 q^{12} + 1340 q^{13} - 1908 q^{15} - 1424 q^{16} + 222 q^{17} - 810 q^{18} + 908 q^{19}+ \cdots + 14904 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
0.500000 + 0.866025i
0.500000 0.866025i
−5.00000 8.66025i −4.50000 + 7.79423i −34.0000 + 58.8897i 53.0000 + 91.7987i 90.0000 0 360.000 −40.5000 70.1481i 530.000 917.987i
79.1 −5.00000 + 8.66025i −4.50000 7.79423i −34.0000 58.8897i 53.0000 91.7987i 90.0000 0 360.000 −40.5000 + 70.1481i 530.000 + 917.987i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 147.6.e.a 2
7.b odd 2 1 147.6.e.b 2
7.c even 3 1 21.6.a.d 1
7.c even 3 1 inner 147.6.e.a 2
7.d odd 6 1 147.6.a.g 1
7.d odd 6 1 147.6.e.b 2
21.g even 6 1 441.6.a.b 1
21.h odd 6 1 63.6.a.a 1
28.g odd 6 1 336.6.a.a 1
35.j even 6 1 525.6.a.a 1
35.l odd 12 2 525.6.d.a 2
84.n even 6 1 1008.6.a.bc 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.6.a.d 1 7.c even 3 1
63.6.a.a 1 21.h odd 6 1
147.6.a.g 1 7.d odd 6 1
147.6.e.a 2 1.a even 1 1 trivial
147.6.e.a 2 7.c even 3 1 inner
147.6.e.b 2 7.b odd 2 1
147.6.e.b 2 7.d odd 6 1
336.6.a.a 1 28.g odd 6 1
441.6.a.b 1 21.g even 6 1
525.6.a.a 1 35.j even 6 1
525.6.d.a 2 35.l odd 12 2
1008.6.a.bc 1 84.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(147, [\chi])\):

\( T_{2}^{2} + 10T_{2} + 100 \) Copy content Toggle raw display
\( T_{5}^{2} - 106T_{5} + 11236 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$3$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$5$ \( T^{2} - 106T + 11236 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 92T + 8464 \) Copy content Toggle raw display
$13$ \( (T - 670)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 222T + 49284 \) Copy content Toggle raw display
$19$ \( T^{2} - 908T + 824464 \) Copy content Toggle raw display
$23$ \( T^{2} - 1176 T + 1382976 \) Copy content Toggle raw display
$29$ \( (T - 1118)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 3696 T + 13660416 \) Copy content Toggle raw display
$37$ \( T^{2} + 4182 T + 17489124 \) Copy content Toggle raw display
$41$ \( (T + 6662)^{2} \) Copy content Toggle raw display
$43$ \( (T + 3700)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 7056 T + 49787136 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 1412106084 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 1069290000 \) Copy content Toggle raw display
$61$ \( T^{2} - 10802 T + 116683204 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 4224480016 \) Copy content Toggle raw display
$71$ \( (T + 61320)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 1514922084 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 7760905216 \) Copy content Toggle raw display
$83$ \( (T - 71892)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 12503265124 \) Copy content Toggle raw display
$97$ \( (T + 150846)^{2} \) Copy content Toggle raw display
show more
show less