Defining parameters
Level: | \( N \) | \(=\) | \( 147 = 3 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 147.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 17 \) | ||
Sturm bound: | \(112\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(147, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 202 | 66 | 136 |
Cusp forms | 170 | 66 | 104 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(147, [\chi])\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(147, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(147, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 2}\)