Properties

Label 147.6.a.k
Level $147$
Weight $6$
Character orbit 147.a
Self dual yes
Analytic conductor $23.576$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,6,Mod(1,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 147.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.5764215125\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{249}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 62 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{249})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 1) q^{2} + 9 q^{3} + (3 \beta + 31) q^{4} + (7 \beta + 13) q^{5} + ( - 9 \beta - 9) q^{6} + ( - 5 \beta - 185) q^{8} + 81 q^{9} + ( - 27 \beta - 447) q^{10} + (\beta - 569) q^{11} + (27 \beta + 279) q^{12}+ \cdots + (81 \beta - 46089) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} + 18 q^{3} + 65 q^{4} + 33 q^{5} - 27 q^{6} - 375 q^{8} + 162 q^{9} - 921 q^{10} - 1137 q^{11} + 585 q^{12} - 925 q^{13} + 297 q^{15} - 895 q^{16} + 324 q^{17} - 243 q^{18} - 2311 q^{19} + 3687 q^{20}+ \cdots - 92097 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
8.38987
−7.38987
−9.38987 9.00000 56.1696 71.7291 −84.5088 0 −226.949 81.0000 −673.526
1.2 6.38987 9.00000 8.83040 −38.7291 57.5088 0 −148.051 81.0000 −247.474
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 147.6.a.k 2
3.b odd 2 1 441.6.a.s 2
7.b odd 2 1 147.6.a.i 2
7.c even 3 2 147.6.e.l 4
7.d odd 6 2 21.6.e.b 4
21.c even 2 1 441.6.a.t 2
21.g even 6 2 63.6.e.c 4
28.f even 6 2 336.6.q.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.6.e.b 4 7.d odd 6 2
63.6.e.c 4 21.g even 6 2
147.6.a.i 2 7.b odd 2 1
147.6.a.k 2 1.a even 1 1 trivial
147.6.e.l 4 7.c even 3 2
336.6.q.e 4 28.f even 6 2
441.6.a.s 2 3.b odd 2 1
441.6.a.t 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(147))\):

\( T_{2}^{2} + 3T_{2} - 60 \) Copy content Toggle raw display
\( T_{5}^{2} - 33T_{5} - 2778 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 3T - 60 \) Copy content Toggle raw display
$3$ \( (T - 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 33T - 2778 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 1137 T + 323130 \) Copy content Toggle raw display
$13$ \( T^{2} + 925T + 208864 \) Copy content Toggle raw display
$17$ \( T^{2} - 324 T - 1337280 \) Copy content Toggle raw display
$19$ \( T^{2} + 2311 T + 1289800 \) Copy content Toggle raw display
$23$ \( T^{2} - 1596 T - 5268480 \) Copy content Toggle raw display
$29$ \( T^{2} + 2217 T + 1102716 \) Copy content Toggle raw display
$31$ \( T^{2} + 4294 T - 32106935 \) Copy content Toggle raw display
$37$ \( T^{2} + 19109 T + 45782164 \) Copy content Toggle raw display
$41$ \( T^{2} - 12858 T - 3221280 \) Copy content Toggle raw display
$43$ \( T^{2} + 2771 T - 257902490 \) Copy content Toggle raw display
$47$ \( T^{2} - 23160 T + 111386604 \) Copy content Toggle raw display
$53$ \( T^{2} + 31653 T + 59619540 \) Copy content Toggle raw display
$59$ \( T^{2} + 41097 T - 532853988 \) Copy content Toggle raw display
$61$ \( T^{2} + 42052 T + 39214660 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 1002216890 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 2483190108 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 1509644078 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 2822066537 \) Copy content Toggle raw display
$83$ \( T^{2} + 61179 T + 711231498 \) Copy content Toggle raw display
$89$ \( T^{2} + 29322 T + 213892896 \) Copy content Toggle raw display
$97$ \( T^{2} - 9791 T - 40418570 \) Copy content Toggle raw display
show more
show less