Properties

Label 147.6.a.b.1.1
Level $147$
Weight $6$
Character 147.1
Self dual yes
Analytic conductor $23.576$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,6,Mod(1,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 147.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.5764215125\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 147.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.00000 q^{2} +9.00000 q^{3} +4.00000 q^{4} -78.0000 q^{5} -54.0000 q^{6} +168.000 q^{8} +81.0000 q^{9} +O(q^{10})\) \(q-6.00000 q^{2} +9.00000 q^{3} +4.00000 q^{4} -78.0000 q^{5} -54.0000 q^{6} +168.000 q^{8} +81.0000 q^{9} +468.000 q^{10} +444.000 q^{11} +36.0000 q^{12} +442.000 q^{13} -702.000 q^{15} -1136.00 q^{16} +126.000 q^{17} -486.000 q^{18} -2684.00 q^{19} -312.000 q^{20} -2664.00 q^{22} +4200.00 q^{23} +1512.00 q^{24} +2959.00 q^{25} -2652.00 q^{26} +729.000 q^{27} -5442.00 q^{29} +4212.00 q^{30} -80.0000 q^{31} +1440.00 q^{32} +3996.00 q^{33} -756.000 q^{34} +324.000 q^{36} -5434.00 q^{37} +16104.0 q^{38} +3978.00 q^{39} -13104.0 q^{40} -7962.00 q^{41} -11524.0 q^{43} +1776.00 q^{44} -6318.00 q^{45} -25200.0 q^{46} +13920.0 q^{47} -10224.0 q^{48} -17754.0 q^{50} +1134.00 q^{51} +1768.00 q^{52} -9594.00 q^{53} -4374.00 q^{54} -34632.0 q^{55} -24156.0 q^{57} +32652.0 q^{58} -27492.0 q^{59} -2808.00 q^{60} -49478.0 q^{61} +480.000 q^{62} +27712.0 q^{64} -34476.0 q^{65} -23976.0 q^{66} -59356.0 q^{67} +504.000 q^{68} +37800.0 q^{69} +32040.0 q^{71} +13608.0 q^{72} +61846.0 q^{73} +32604.0 q^{74} +26631.0 q^{75} -10736.0 q^{76} -23868.0 q^{78} -65776.0 q^{79} +88608.0 q^{80} +6561.00 q^{81} +47772.0 q^{82} -40188.0 q^{83} -9828.00 q^{85} +69144.0 q^{86} -48978.0 q^{87} +74592.0 q^{88} +7974.00 q^{89} +37908.0 q^{90} +16800.0 q^{92} -720.000 q^{93} -83520.0 q^{94} +209352. q^{95} +12960.0 q^{96} +143662. q^{97} +35964.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −6.00000 −1.06066 −0.530330 0.847791i \(-0.677932\pi\)
−0.530330 + 0.847791i \(0.677932\pi\)
\(3\) 9.00000 0.577350
\(4\) 4.00000 0.125000
\(5\) −78.0000 −1.39531 −0.697653 0.716436i \(-0.745772\pi\)
−0.697653 + 0.716436i \(0.745772\pi\)
\(6\) −54.0000 −0.612372
\(7\) 0 0
\(8\) 168.000 0.928078
\(9\) 81.0000 0.333333
\(10\) 468.000 1.47995
\(11\) 444.000 1.10637 0.553186 0.833058i \(-0.313412\pi\)
0.553186 + 0.833058i \(0.313412\pi\)
\(12\) 36.0000 0.0721688
\(13\) 442.000 0.725377 0.362689 0.931910i \(-0.381859\pi\)
0.362689 + 0.931910i \(0.381859\pi\)
\(14\) 0 0
\(15\) −702.000 −0.805581
\(16\) −1136.00 −1.10938
\(17\) 126.000 0.105742 0.0528711 0.998601i \(-0.483163\pi\)
0.0528711 + 0.998601i \(0.483163\pi\)
\(18\) −486.000 −0.353553
\(19\) −2684.00 −1.70568 −0.852842 0.522169i \(-0.825123\pi\)
−0.852842 + 0.522169i \(0.825123\pi\)
\(20\) −312.000 −0.174413
\(21\) 0 0
\(22\) −2664.00 −1.17348
\(23\) 4200.00 1.65550 0.827751 0.561096i \(-0.189620\pi\)
0.827751 + 0.561096i \(0.189620\pi\)
\(24\) 1512.00 0.535826
\(25\) 2959.00 0.946880
\(26\) −2652.00 −0.769379
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −5442.00 −1.20161 −0.600805 0.799396i \(-0.705153\pi\)
−0.600805 + 0.799396i \(0.705153\pi\)
\(30\) 4212.00 0.854447
\(31\) −80.0000 −0.0149515 −0.00747577 0.999972i \(-0.502380\pi\)
−0.00747577 + 0.999972i \(0.502380\pi\)
\(32\) 1440.00 0.248592
\(33\) 3996.00 0.638764
\(34\) −756.000 −0.112157
\(35\) 0 0
\(36\) 324.000 0.0416667
\(37\) −5434.00 −0.652552 −0.326276 0.945274i \(-0.605794\pi\)
−0.326276 + 0.945274i \(0.605794\pi\)
\(38\) 16104.0 1.80915
\(39\) 3978.00 0.418797
\(40\) −13104.0 −1.29495
\(41\) −7962.00 −0.739712 −0.369856 0.929089i \(-0.620593\pi\)
−0.369856 + 0.929089i \(0.620593\pi\)
\(42\) 0 0
\(43\) −11524.0 −0.950456 −0.475228 0.879863i \(-0.657634\pi\)
−0.475228 + 0.879863i \(0.657634\pi\)
\(44\) 1776.00 0.138297
\(45\) −6318.00 −0.465102
\(46\) −25200.0 −1.75592
\(47\) 13920.0 0.919167 0.459584 0.888134i \(-0.347999\pi\)
0.459584 + 0.888134i \(0.347999\pi\)
\(48\) −10224.0 −0.640498
\(49\) 0 0
\(50\) −17754.0 −1.00432
\(51\) 1134.00 0.0610503
\(52\) 1768.00 0.0906721
\(53\) −9594.00 −0.469148 −0.234574 0.972098i \(-0.575370\pi\)
−0.234574 + 0.972098i \(0.575370\pi\)
\(54\) −4374.00 −0.204124
\(55\) −34632.0 −1.54373
\(56\) 0 0
\(57\) −24156.0 −0.984777
\(58\) 32652.0 1.27450
\(59\) −27492.0 −1.02820 −0.514098 0.857731i \(-0.671873\pi\)
−0.514098 + 0.857731i \(0.671873\pi\)
\(60\) −2808.00 −0.100698
\(61\) −49478.0 −1.70250 −0.851251 0.524759i \(-0.824155\pi\)
−0.851251 + 0.524759i \(0.824155\pi\)
\(62\) 480.000 0.0158585
\(63\) 0 0
\(64\) 27712.0 0.845703
\(65\) −34476.0 −1.01212
\(66\) −23976.0 −0.677512
\(67\) −59356.0 −1.61539 −0.807695 0.589600i \(-0.799285\pi\)
−0.807695 + 0.589600i \(0.799285\pi\)
\(68\) 504.000 0.0132178
\(69\) 37800.0 0.955805
\(70\) 0 0
\(71\) 32040.0 0.754304 0.377152 0.926151i \(-0.376903\pi\)
0.377152 + 0.926151i \(0.376903\pi\)
\(72\) 13608.0 0.309359
\(73\) 61846.0 1.35833 0.679164 0.733987i \(-0.262343\pi\)
0.679164 + 0.733987i \(0.262343\pi\)
\(74\) 32604.0 0.692136
\(75\) 26631.0 0.546681
\(76\) −10736.0 −0.213210
\(77\) 0 0
\(78\) −23868.0 −0.444201
\(79\) −65776.0 −1.18577 −0.592884 0.805288i \(-0.702011\pi\)
−0.592884 + 0.805288i \(0.702011\pi\)
\(80\) 88608.0 1.54792
\(81\) 6561.00 0.111111
\(82\) 47772.0 0.784583
\(83\) −40188.0 −0.640326 −0.320163 0.947362i \(-0.603738\pi\)
−0.320163 + 0.947362i \(0.603738\pi\)
\(84\) 0 0
\(85\) −9828.00 −0.147543
\(86\) 69144.0 1.00811
\(87\) −48978.0 −0.693750
\(88\) 74592.0 1.02680
\(89\) 7974.00 0.106709 0.0533545 0.998576i \(-0.483009\pi\)
0.0533545 + 0.998576i \(0.483009\pi\)
\(90\) 37908.0 0.493315
\(91\) 0 0
\(92\) 16800.0 0.206938
\(93\) −720.000 −0.00863227
\(94\) −83520.0 −0.974924
\(95\) 209352. 2.37995
\(96\) 12960.0 0.143525
\(97\) 143662. 1.55029 0.775144 0.631784i \(-0.217677\pi\)
0.775144 + 0.631784i \(0.217677\pi\)
\(98\) 0 0
\(99\) 35964.0 0.368791
\(100\) 11836.0 0.118360
\(101\) 2706.00 0.0263952 0.0131976 0.999913i \(-0.495799\pi\)
0.0131976 + 0.999913i \(0.495799\pi\)
\(102\) −6804.00 −0.0647536
\(103\) −131768. −1.22382 −0.611909 0.790928i \(-0.709598\pi\)
−0.611909 + 0.790928i \(0.709598\pi\)
\(104\) 74256.0 0.673206
\(105\) 0 0
\(106\) 57564.0 0.497607
\(107\) −128916. −1.08855 −0.544274 0.838908i \(-0.683195\pi\)
−0.544274 + 0.838908i \(0.683195\pi\)
\(108\) 2916.00 0.0240563
\(109\) −100978. −0.814068 −0.407034 0.913413i \(-0.633437\pi\)
−0.407034 + 0.913413i \(0.633437\pi\)
\(110\) 207792. 1.63737
\(111\) −48906.0 −0.376751
\(112\) 0 0
\(113\) 220146. 1.62186 0.810932 0.585140i \(-0.198960\pi\)
0.810932 + 0.585140i \(0.198960\pi\)
\(114\) 144936. 1.04451
\(115\) −327600. −2.30993
\(116\) −21768.0 −0.150201
\(117\) 35802.0 0.241792
\(118\) 164952. 1.09057
\(119\) 0 0
\(120\) −117936. −0.747641
\(121\) 36085.0 0.224059
\(122\) 296868. 1.80578
\(123\) −71658.0 −0.427073
\(124\) −320.000 −0.00186894
\(125\) 12948.0 0.0741187
\(126\) 0 0
\(127\) −74320.0 −0.408880 −0.204440 0.978879i \(-0.565537\pi\)
−0.204440 + 0.978879i \(0.565537\pi\)
\(128\) −212352. −1.14560
\(129\) −103716. −0.548746
\(130\) 206856. 1.07352
\(131\) 155316. 0.790748 0.395374 0.918520i \(-0.370615\pi\)
0.395374 + 0.918520i \(0.370615\pi\)
\(132\) 15984.0 0.0798455
\(133\) 0 0
\(134\) 356136. 1.71338
\(135\) −56862.0 −0.268527
\(136\) 21168.0 0.0981369
\(137\) −264246. −1.20284 −0.601419 0.798934i \(-0.705398\pi\)
−0.601419 + 0.798934i \(0.705398\pi\)
\(138\) −226800. −1.01378
\(139\) −224612. −0.986043 −0.493022 0.870017i \(-0.664108\pi\)
−0.493022 + 0.870017i \(0.664108\pi\)
\(140\) 0 0
\(141\) 125280. 0.530682
\(142\) −192240. −0.800061
\(143\) 196248. 0.802537
\(144\) −92016.0 −0.369792
\(145\) 424476. 1.67661
\(146\) −371076. −1.44072
\(147\) 0 0
\(148\) −21736.0 −0.0815690
\(149\) −82074.0 −0.302859 −0.151429 0.988468i \(-0.548388\pi\)
−0.151429 + 0.988468i \(0.548388\pi\)
\(150\) −159786. −0.579843
\(151\) −287032. −1.02444 −0.512222 0.858853i \(-0.671177\pi\)
−0.512222 + 0.858853i \(0.671177\pi\)
\(152\) −450912. −1.58301
\(153\) 10206.0 0.0352474
\(154\) 0 0
\(155\) 6240.00 0.0208620
\(156\) 15912.0 0.0523496
\(157\) −129878. −0.420520 −0.210260 0.977646i \(-0.567431\pi\)
−0.210260 + 0.977646i \(0.567431\pi\)
\(158\) 394656. 1.25770
\(159\) −86346.0 −0.270863
\(160\) −112320. −0.346862
\(161\) 0 0
\(162\) −39366.0 −0.117851
\(163\) 555284. 1.63699 0.818495 0.574513i \(-0.194809\pi\)
0.818495 + 0.574513i \(0.194809\pi\)
\(164\) −31848.0 −0.0924640
\(165\) −311688. −0.891272
\(166\) 241128. 0.679168
\(167\) −43512.0 −0.120731 −0.0603654 0.998176i \(-0.519227\pi\)
−0.0603654 + 0.998176i \(0.519227\pi\)
\(168\) 0 0
\(169\) −175929. −0.473828
\(170\) 58968.0 0.156493
\(171\) −217404. −0.568561
\(172\) −46096.0 −0.118807
\(173\) 18330.0 0.0465637 0.0232818 0.999729i \(-0.492588\pi\)
0.0232818 + 0.999729i \(0.492588\pi\)
\(174\) 293868. 0.735833
\(175\) 0 0
\(176\) −504384. −1.22738
\(177\) −247428. −0.593630
\(178\) −47844.0 −0.113182
\(179\) −153324. −0.357666 −0.178833 0.983879i \(-0.557232\pi\)
−0.178833 + 0.983879i \(0.557232\pi\)
\(180\) −25272.0 −0.0581378
\(181\) 382066. 0.866846 0.433423 0.901191i \(-0.357306\pi\)
0.433423 + 0.901191i \(0.357306\pi\)
\(182\) 0 0
\(183\) −445302. −0.982940
\(184\) 705600. 1.53643
\(185\) 423852. 0.910510
\(186\) 4320.00 0.00915591
\(187\) 55944.0 0.116990
\(188\) 55680.0 0.114896
\(189\) 0 0
\(190\) −1.25611e6 −2.52432
\(191\) −273408. −0.542285 −0.271143 0.962539i \(-0.587402\pi\)
−0.271143 + 0.962539i \(0.587402\pi\)
\(192\) 249408. 0.488267
\(193\) 153602. 0.296827 0.148414 0.988925i \(-0.452583\pi\)
0.148414 + 0.988925i \(0.452583\pi\)
\(194\) −861972. −1.64433
\(195\) −310284. −0.584350
\(196\) 0 0
\(197\) 154422. 0.283494 0.141747 0.989903i \(-0.454728\pi\)
0.141747 + 0.989903i \(0.454728\pi\)
\(198\) −215784. −0.391162
\(199\) 366856. 0.656694 0.328347 0.944557i \(-0.393508\pi\)
0.328347 + 0.944557i \(0.393508\pi\)
\(200\) 497112. 0.878778
\(201\) −534204. −0.932646
\(202\) −16236.0 −0.0279963
\(203\) 0 0
\(204\) 4536.00 0.00763128
\(205\) 621036. 1.03212
\(206\) 790608. 1.29806
\(207\) 340200. 0.551834
\(208\) −502112. −0.804715
\(209\) −1.19170e6 −1.88712
\(210\) 0 0
\(211\) 520244. 0.804453 0.402227 0.915540i \(-0.368236\pi\)
0.402227 + 0.915540i \(0.368236\pi\)
\(212\) −38376.0 −0.0586435
\(213\) 288360. 0.435498
\(214\) 773496. 1.15458
\(215\) 898872. 1.32618
\(216\) 122472. 0.178609
\(217\) 0 0
\(218\) 605868. 0.863449
\(219\) 556614. 0.784231
\(220\) −138528. −0.192966
\(221\) 55692.0 0.0767030
\(222\) 293436. 0.399605
\(223\) −304736. −0.410357 −0.205178 0.978725i \(-0.565777\pi\)
−0.205178 + 0.978725i \(0.565777\pi\)
\(224\) 0 0
\(225\) 239679. 0.315627
\(226\) −1.32088e6 −1.72025
\(227\) −288588. −0.371718 −0.185859 0.982576i \(-0.559507\pi\)
−0.185859 + 0.982576i \(0.559507\pi\)
\(228\) −96624.0 −0.123097
\(229\) −772190. −0.973051 −0.486525 0.873666i \(-0.661736\pi\)
−0.486525 + 0.873666i \(0.661736\pi\)
\(230\) 1.96560e6 2.45005
\(231\) 0 0
\(232\) −914256. −1.11519
\(233\) 252234. 0.304378 0.152189 0.988351i \(-0.451368\pi\)
0.152189 + 0.988351i \(0.451368\pi\)
\(234\) −214812. −0.256460
\(235\) −1.08576e6 −1.28252
\(236\) −109968. −0.128525
\(237\) −591984. −0.684603
\(238\) 0 0
\(239\) −1.45114e6 −1.64329 −0.821643 0.570002i \(-0.806942\pi\)
−0.821643 + 0.570002i \(0.806942\pi\)
\(240\) 797472. 0.893691
\(241\) 146398. 0.162365 0.0811825 0.996699i \(-0.474130\pi\)
0.0811825 + 0.996699i \(0.474130\pi\)
\(242\) −216510. −0.237651
\(243\) 59049.0 0.0641500
\(244\) −197912. −0.212813
\(245\) 0 0
\(246\) 429948. 0.452979
\(247\) −1.18633e6 −1.23726
\(248\) −13440.0 −0.0138762
\(249\) −361692. −0.369692
\(250\) −77688.0 −0.0786147
\(251\) −607860. −0.609003 −0.304501 0.952512i \(-0.598490\pi\)
−0.304501 + 0.952512i \(0.598490\pi\)
\(252\) 0 0
\(253\) 1.86480e6 1.83160
\(254\) 445920. 0.433683
\(255\) −88452.0 −0.0851838
\(256\) 387328. 0.369385
\(257\) −95586.0 −0.0902737 −0.0451369 0.998981i \(-0.514372\pi\)
−0.0451369 + 0.998981i \(0.514372\pi\)
\(258\) 622296. 0.582033
\(259\) 0 0
\(260\) −137904. −0.126515
\(261\) −440802. −0.400537
\(262\) −931896. −0.838715
\(263\) −2.20034e6 −1.96156 −0.980779 0.195121i \(-0.937490\pi\)
−0.980779 + 0.195121i \(0.937490\pi\)
\(264\) 671328. 0.592823
\(265\) 748332. 0.654605
\(266\) 0 0
\(267\) 71766.0 0.0616085
\(268\) −237424. −0.201924
\(269\) −1.77025e6 −1.49160 −0.745801 0.666169i \(-0.767933\pi\)
−0.745801 + 0.666169i \(0.767933\pi\)
\(270\) 341172. 0.284816
\(271\) 223504. 0.184868 0.0924341 0.995719i \(-0.470535\pi\)
0.0924341 + 0.995719i \(0.470535\pi\)
\(272\) −143136. −0.117308
\(273\) 0 0
\(274\) 1.58548e6 1.27580
\(275\) 1.31380e6 1.04760
\(276\) 151200. 0.119476
\(277\) −342778. −0.268419 −0.134210 0.990953i \(-0.542850\pi\)
−0.134210 + 0.990953i \(0.542850\pi\)
\(278\) 1.34767e6 1.04586
\(279\) −6480.00 −0.00498384
\(280\) 0 0
\(281\) 480378. 0.362925 0.181463 0.983398i \(-0.441917\pi\)
0.181463 + 0.983398i \(0.441917\pi\)
\(282\) −751680. −0.562873
\(283\) 29980.0 0.0222518 0.0111259 0.999938i \(-0.496458\pi\)
0.0111259 + 0.999938i \(0.496458\pi\)
\(284\) 128160. 0.0942880
\(285\) 1.88417e6 1.37407
\(286\) −1.17749e6 −0.851219
\(287\) 0 0
\(288\) 116640. 0.0828641
\(289\) −1.40398e6 −0.988819
\(290\) −2.54686e6 −1.77832
\(291\) 1.29296e6 0.895060
\(292\) 247384. 0.169791
\(293\) 198066. 0.134785 0.0673924 0.997727i \(-0.478532\pi\)
0.0673924 + 0.997727i \(0.478532\pi\)
\(294\) 0 0
\(295\) 2.14438e6 1.43465
\(296\) −912912. −0.605619
\(297\) 323676. 0.212921
\(298\) 492444. 0.321230
\(299\) 1.85640e6 1.20086
\(300\) 106524. 0.0683352
\(301\) 0 0
\(302\) 1.72219e6 1.08659
\(303\) 24354.0 0.0152393
\(304\) 3.04902e6 1.89224
\(305\) 3.85928e6 2.37551
\(306\) −61236.0 −0.0373855
\(307\) 1.04564e6 0.633191 0.316595 0.948561i \(-0.397460\pi\)
0.316595 + 0.948561i \(0.397460\pi\)
\(308\) 0 0
\(309\) −1.18591e6 −0.706572
\(310\) −37440.0 −0.0221275
\(311\) −1.83718e6 −1.07708 −0.538542 0.842598i \(-0.681025\pi\)
−0.538542 + 0.842598i \(0.681025\pi\)
\(312\) 668304. 0.388676
\(313\) 365494. 0.210872 0.105436 0.994426i \(-0.466376\pi\)
0.105436 + 0.994426i \(0.466376\pi\)
\(314\) 779268. 0.446029
\(315\) 0 0
\(316\) −263104. −0.148221
\(317\) −28338.0 −0.0158388 −0.00791938 0.999969i \(-0.502521\pi\)
−0.00791938 + 0.999969i \(0.502521\pi\)
\(318\) 518076. 0.287293
\(319\) −2.41625e6 −1.32943
\(320\) −2.16154e6 −1.18001
\(321\) −1.16024e6 −0.628473
\(322\) 0 0
\(323\) −338184. −0.180363
\(324\) 26244.0 0.0138889
\(325\) 1.30788e6 0.686845
\(326\) −3.33170e6 −1.73629
\(327\) −908802. −0.470002
\(328\) −1.33762e6 −0.686510
\(329\) 0 0
\(330\) 1.87013e6 0.945337
\(331\) 1.93392e6 0.970214 0.485107 0.874455i \(-0.338781\pi\)
0.485107 + 0.874455i \(0.338781\pi\)
\(332\) −160752. −0.0800408
\(333\) −440154. −0.217517
\(334\) 261072. 0.128054
\(335\) 4.62977e6 2.25397
\(336\) 0 0
\(337\) −1.88817e6 −0.905664 −0.452832 0.891596i \(-0.649586\pi\)
−0.452832 + 0.891596i \(0.649586\pi\)
\(338\) 1.05557e6 0.502570
\(339\) 1.98131e6 0.936384
\(340\) −39312.0 −0.0184428
\(341\) −35520.0 −0.0165420
\(342\) 1.30442e6 0.603050
\(343\) 0 0
\(344\) −1.93603e6 −0.882097
\(345\) −2.94840e6 −1.33364
\(346\) −109980. −0.0493882
\(347\) 2.91937e6 1.30156 0.650782 0.759264i \(-0.274441\pi\)
0.650782 + 0.759264i \(0.274441\pi\)
\(348\) −195912. −0.0867187
\(349\) 780682. 0.343092 0.171546 0.985176i \(-0.445124\pi\)
0.171546 + 0.985176i \(0.445124\pi\)
\(350\) 0 0
\(351\) 322218. 0.139599
\(352\) 639360. 0.275036
\(353\) −1.33437e6 −0.569954 −0.284977 0.958534i \(-0.591986\pi\)
−0.284977 + 0.958534i \(0.591986\pi\)
\(354\) 1.48457e6 0.629639
\(355\) −2.49912e6 −1.05249
\(356\) 31896.0 0.0133386
\(357\) 0 0
\(358\) 919944. 0.379362
\(359\) 1.01743e6 0.416648 0.208324 0.978060i \(-0.433199\pi\)
0.208324 + 0.978060i \(0.433199\pi\)
\(360\) −1.06142e6 −0.431651
\(361\) 4.72776e6 1.90936
\(362\) −2.29240e6 −0.919429
\(363\) 324765. 0.129361
\(364\) 0 0
\(365\) −4.82399e6 −1.89528
\(366\) 2.67181e6 1.04257
\(367\) −837680. −0.324648 −0.162324 0.986737i \(-0.551899\pi\)
−0.162324 + 0.986737i \(0.551899\pi\)
\(368\) −4.77120e6 −1.83657
\(369\) −644922. −0.246571
\(370\) −2.54311e6 −0.965742
\(371\) 0 0
\(372\) −2880.00 −0.00107903
\(373\) −1.51993e6 −0.565655 −0.282827 0.959171i \(-0.591272\pi\)
−0.282827 + 0.959171i \(0.591272\pi\)
\(374\) −335664. −0.124087
\(375\) 116532. 0.0427924
\(376\) 2.33856e6 0.853059
\(377\) −2.40536e6 −0.871620
\(378\) 0 0
\(379\) 2.64465e6 0.945737 0.472869 0.881133i \(-0.343219\pi\)
0.472869 + 0.881133i \(0.343219\pi\)
\(380\) 837408. 0.297494
\(381\) −668880. −0.236067
\(382\) 1.64045e6 0.575180
\(383\) −2.01336e6 −0.701333 −0.350667 0.936500i \(-0.614045\pi\)
−0.350667 + 0.936500i \(0.614045\pi\)
\(384\) −1.91117e6 −0.661410
\(385\) 0 0
\(386\) −921612. −0.314833
\(387\) −933444. −0.316819
\(388\) 574648. 0.193786
\(389\) −726234. −0.243334 −0.121667 0.992571i \(-0.538824\pi\)
−0.121667 + 0.992571i \(0.538824\pi\)
\(390\) 1.86170e6 0.619796
\(391\) 529200. 0.175056
\(392\) 0 0
\(393\) 1.39784e6 0.456538
\(394\) −926532. −0.300691
\(395\) 5.13053e6 1.65451
\(396\) 143856. 0.0460988
\(397\) −4.57578e6 −1.45710 −0.728549 0.684993i \(-0.759805\pi\)
−0.728549 + 0.684993i \(0.759805\pi\)
\(398\) −2.20114e6 −0.696529
\(399\) 0 0
\(400\) −3.36142e6 −1.05045
\(401\) −33870.0 −0.0105185 −0.00525926 0.999986i \(-0.501674\pi\)
−0.00525926 + 0.999986i \(0.501674\pi\)
\(402\) 3.20522e6 0.989221
\(403\) −35360.0 −0.0108455
\(404\) 10824.0 0.00329940
\(405\) −511758. −0.155034
\(406\) 0 0
\(407\) −2.41270e6 −0.721966
\(408\) 190512. 0.0566594
\(409\) 5.86178e6 1.73269 0.866346 0.499444i \(-0.166462\pi\)
0.866346 + 0.499444i \(0.166462\pi\)
\(410\) −3.72622e6 −1.09473
\(411\) −2.37821e6 −0.694459
\(412\) −527072. −0.152977
\(413\) 0 0
\(414\) −2.04120e6 −0.585308
\(415\) 3.13466e6 0.893451
\(416\) 636480. 0.180323
\(417\) −2.02151e6 −0.569292
\(418\) 7.15018e6 2.00159
\(419\) −302748. −0.0842454 −0.0421227 0.999112i \(-0.513412\pi\)
−0.0421227 + 0.999112i \(0.513412\pi\)
\(420\) 0 0
\(421\) −5.36708e6 −1.47582 −0.737909 0.674900i \(-0.764187\pi\)
−0.737909 + 0.674900i \(0.764187\pi\)
\(422\) −3.12146e6 −0.853252
\(423\) 1.12752e6 0.306389
\(424\) −1.61179e6 −0.435406
\(425\) 372834. 0.100125
\(426\) −1.73016e6 −0.461915
\(427\) 0 0
\(428\) −515664. −0.136068
\(429\) 1.76623e6 0.463345
\(430\) −5.39323e6 −1.40662
\(431\) 1.17706e6 0.305214 0.152607 0.988287i \(-0.451233\pi\)
0.152607 + 0.988287i \(0.451233\pi\)
\(432\) −828144. −0.213499
\(433\) 3.66249e6 0.938766 0.469383 0.882995i \(-0.344476\pi\)
0.469383 + 0.882995i \(0.344476\pi\)
\(434\) 0 0
\(435\) 3.82028e6 0.967994
\(436\) −403912. −0.101758
\(437\) −1.12728e7 −2.82376
\(438\) −3.33968e6 −0.831802
\(439\) 2.53674e6 0.628225 0.314113 0.949386i \(-0.398293\pi\)
0.314113 + 0.949386i \(0.398293\pi\)
\(440\) −5.81818e6 −1.43270
\(441\) 0 0
\(442\) −334152. −0.0813558
\(443\) 6.01504e6 1.45623 0.728113 0.685457i \(-0.240397\pi\)
0.728113 + 0.685457i \(0.240397\pi\)
\(444\) −195624. −0.0470939
\(445\) −621972. −0.148892
\(446\) 1.82842e6 0.435249
\(447\) −738666. −0.174856
\(448\) 0 0
\(449\) 5.65965e6 1.32487 0.662436 0.749119i \(-0.269523\pi\)
0.662436 + 0.749119i \(0.269523\pi\)
\(450\) −1.43807e6 −0.334773
\(451\) −3.53513e6 −0.818397
\(452\) 880584. 0.202733
\(453\) −2.58329e6 −0.591463
\(454\) 1.73153e6 0.394267
\(455\) 0 0
\(456\) −4.05821e6 −0.913949
\(457\) −6.46159e6 −1.44727 −0.723634 0.690184i \(-0.757530\pi\)
−0.723634 + 0.690184i \(0.757530\pi\)
\(458\) 4.63314e6 1.03208
\(459\) 91854.0 0.0203501
\(460\) −1.31040e6 −0.288742
\(461\) 3.37353e6 0.739320 0.369660 0.929167i \(-0.379474\pi\)
0.369660 + 0.929167i \(0.379474\pi\)
\(462\) 0 0
\(463\) −4.54974e6 −0.986358 −0.493179 0.869928i \(-0.664165\pi\)
−0.493179 + 0.869928i \(0.664165\pi\)
\(464\) 6.18211e6 1.33304
\(465\) 56160.0 0.0120447
\(466\) −1.51340e6 −0.322842
\(467\) −2.01136e6 −0.426773 −0.213386 0.976968i \(-0.568449\pi\)
−0.213386 + 0.976968i \(0.568449\pi\)
\(468\) 143208. 0.0302240
\(469\) 0 0
\(470\) 6.51456e6 1.36032
\(471\) −1.16890e6 −0.242787
\(472\) −4.61866e6 −0.954247
\(473\) −5.11666e6 −1.05156
\(474\) 3.55190e6 0.726132
\(475\) −7.94196e6 −1.61508
\(476\) 0 0
\(477\) −777114. −0.156383
\(478\) 8.70682e6 1.74297
\(479\) 7.60402e6 1.51427 0.757137 0.653257i \(-0.226598\pi\)
0.757137 + 0.653257i \(0.226598\pi\)
\(480\) −1.01088e6 −0.200261
\(481\) −2.40183e6 −0.473347
\(482\) −878388. −0.172214
\(483\) 0 0
\(484\) 144340. 0.0280074
\(485\) −1.12056e7 −2.16313
\(486\) −354294. −0.0680414
\(487\) 673112. 0.128607 0.0643035 0.997930i \(-0.479517\pi\)
0.0643035 + 0.997930i \(0.479517\pi\)
\(488\) −8.31230e6 −1.58005
\(489\) 4.99756e6 0.945117
\(490\) 0 0
\(491\) −2.47170e6 −0.462692 −0.231346 0.972872i \(-0.574313\pi\)
−0.231346 + 0.972872i \(0.574313\pi\)
\(492\) −286632. −0.0533841
\(493\) −685692. −0.127061
\(494\) 7.11797e6 1.31232
\(495\) −2.80519e6 −0.514576
\(496\) 90880.0 0.0165869
\(497\) 0 0
\(498\) 2.17015e6 0.392118
\(499\) 6.08152e6 1.09335 0.546677 0.837343i \(-0.315892\pi\)
0.546677 + 0.837343i \(0.315892\pi\)
\(500\) 51792.0 0.00926483
\(501\) −391608. −0.0697039
\(502\) 3.64716e6 0.645945
\(503\) 846216. 0.149129 0.0745644 0.997216i \(-0.476243\pi\)
0.0745644 + 0.997216i \(0.476243\pi\)
\(504\) 0 0
\(505\) −211068. −0.0368293
\(506\) −1.11888e7 −1.94271
\(507\) −1.58336e6 −0.273565
\(508\) −297280. −0.0511101
\(509\) 7.66785e6 1.31183 0.655917 0.754833i \(-0.272282\pi\)
0.655917 + 0.754833i \(0.272282\pi\)
\(510\) 530712. 0.0903511
\(511\) 0 0
\(512\) 4.47130e6 0.753804
\(513\) −1.95664e6 −0.328259
\(514\) 573516. 0.0957498
\(515\) 1.02779e7 1.70760
\(516\) −414864. −0.0685933
\(517\) 6.18048e6 1.01694
\(518\) 0 0
\(519\) 164970. 0.0268835
\(520\) −5.79197e6 −0.939329
\(521\) 9.68938e6 1.56387 0.781937 0.623357i \(-0.214232\pi\)
0.781937 + 0.623357i \(0.214232\pi\)
\(522\) 2.64481e6 0.424833
\(523\) 7.51678e6 1.20165 0.600824 0.799381i \(-0.294839\pi\)
0.600824 + 0.799381i \(0.294839\pi\)
\(524\) 621264. 0.0988435
\(525\) 0 0
\(526\) 1.32021e7 2.08055
\(527\) −10080.0 −0.00158101
\(528\) −4.53946e6 −0.708629
\(529\) 1.12037e7 1.74069
\(530\) −4.48999e6 −0.694314
\(531\) −2.22685e6 −0.342732
\(532\) 0 0
\(533\) −3.51920e6 −0.536570
\(534\) −430596. −0.0653457
\(535\) 1.00554e7 1.51886
\(536\) −9.97181e6 −1.49921
\(537\) −1.37992e6 −0.206499
\(538\) 1.06215e7 1.58208
\(539\) 0 0
\(540\) −227448. −0.0335659
\(541\) 7.34325e6 1.07869 0.539343 0.842086i \(-0.318673\pi\)
0.539343 + 0.842086i \(0.318673\pi\)
\(542\) −1.34102e6 −0.196082
\(543\) 3.43859e6 0.500474
\(544\) 181440. 0.0262867
\(545\) 7.87628e6 1.13587
\(546\) 0 0
\(547\) 2.18296e6 0.311945 0.155973 0.987761i \(-0.450149\pi\)
0.155973 + 0.987761i \(0.450149\pi\)
\(548\) −1.05698e6 −0.150355
\(549\) −4.00772e6 −0.567501
\(550\) −7.88278e6 −1.11115
\(551\) 1.46063e7 2.04957
\(552\) 6.35040e6 0.887061
\(553\) 0 0
\(554\) 2.05667e6 0.284702
\(555\) 3.81467e6 0.525683
\(556\) −898448. −0.123255
\(557\) 1.25466e7 1.71351 0.856755 0.515724i \(-0.172477\pi\)
0.856755 + 0.515724i \(0.172477\pi\)
\(558\) 38880.0 0.00528617
\(559\) −5.09361e6 −0.689439
\(560\) 0 0
\(561\) 503496. 0.0675443
\(562\) −2.88227e6 −0.384940
\(563\) −5.15972e6 −0.686050 −0.343025 0.939326i \(-0.611451\pi\)
−0.343025 + 0.939326i \(0.611451\pi\)
\(564\) 501120. 0.0663352
\(565\) −1.71714e7 −2.26300
\(566\) −179880. −0.0236016
\(567\) 0 0
\(568\) 5.38272e6 0.700053
\(569\) 1.17452e7 1.52083 0.760414 0.649439i \(-0.224996\pi\)
0.760414 + 0.649439i \(0.224996\pi\)
\(570\) −1.13050e7 −1.45742
\(571\) −7.54728e6 −0.968725 −0.484362 0.874867i \(-0.660948\pi\)
−0.484362 + 0.874867i \(0.660948\pi\)
\(572\) 784992. 0.100317
\(573\) −2.46067e6 −0.313089
\(574\) 0 0
\(575\) 1.24278e7 1.56756
\(576\) 2.24467e6 0.281901
\(577\) −9.28483e6 −1.16101 −0.580503 0.814258i \(-0.697144\pi\)
−0.580503 + 0.814258i \(0.697144\pi\)
\(578\) 8.42389e6 1.04880
\(579\) 1.38242e6 0.171373
\(580\) 1.69790e6 0.209577
\(581\) 0 0
\(582\) −7.75775e6 −0.949354
\(583\) −4.25974e6 −0.519053
\(584\) 1.03901e7 1.26063
\(585\) −2.79256e6 −0.337374
\(586\) −1.18840e6 −0.142961
\(587\) −1.47623e6 −0.176831 −0.0884155 0.996084i \(-0.528180\pi\)
−0.0884155 + 0.996084i \(0.528180\pi\)
\(588\) 0 0
\(589\) 214720. 0.0255026
\(590\) −1.28663e7 −1.52168
\(591\) 1.38980e6 0.163675
\(592\) 6.17302e6 0.723925
\(593\) 1.24007e7 1.44813 0.724067 0.689729i \(-0.242270\pi\)
0.724067 + 0.689729i \(0.242270\pi\)
\(594\) −1.94206e6 −0.225837
\(595\) 0 0
\(596\) −328296. −0.0378573
\(597\) 3.30170e6 0.379142
\(598\) −1.11384e7 −1.27371
\(599\) −3.69127e6 −0.420348 −0.210174 0.977664i \(-0.567403\pi\)
−0.210174 + 0.977664i \(0.567403\pi\)
\(600\) 4.47401e6 0.507363
\(601\) −9.12223e6 −1.03018 −0.515092 0.857135i \(-0.672242\pi\)
−0.515092 + 0.857135i \(0.672242\pi\)
\(602\) 0 0
\(603\) −4.80784e6 −0.538464
\(604\) −1.14813e6 −0.128055
\(605\) −2.81463e6 −0.312632
\(606\) −146124. −0.0161637
\(607\) 5.67914e6 0.625620 0.312810 0.949816i \(-0.398730\pi\)
0.312810 + 0.949816i \(0.398730\pi\)
\(608\) −3.86496e6 −0.424020
\(609\) 0 0
\(610\) −2.31557e7 −2.51961
\(611\) 6.15264e6 0.666743
\(612\) 40824.0 0.00440592
\(613\) −1.40106e7 −1.50593 −0.752966 0.658060i \(-0.771377\pi\)
−0.752966 + 0.658060i \(0.771377\pi\)
\(614\) −6.27382e6 −0.671600
\(615\) 5.58932e6 0.595897
\(616\) 0 0
\(617\) −253686. −0.0268277 −0.0134139 0.999910i \(-0.504270\pi\)
−0.0134139 + 0.999910i \(0.504270\pi\)
\(618\) 7.11547e6 0.749433
\(619\) −4.30034e6 −0.451103 −0.225552 0.974231i \(-0.572418\pi\)
−0.225552 + 0.974231i \(0.572418\pi\)
\(620\) 24960.0 0.00260775
\(621\) 3.06180e6 0.318602
\(622\) 1.10231e7 1.14242
\(623\) 0 0
\(624\) −4.51901e6 −0.464603
\(625\) −1.02568e7 −1.05030
\(626\) −2.19296e6 −0.223664
\(627\) −1.07253e7 −1.08953
\(628\) −519512. −0.0525650
\(629\) −684684. −0.0690023
\(630\) 0 0
\(631\) 1.04150e7 1.04132 0.520662 0.853763i \(-0.325685\pi\)
0.520662 + 0.853763i \(0.325685\pi\)
\(632\) −1.10504e7 −1.10048
\(633\) 4.68220e6 0.464451
\(634\) 170028. 0.0167995
\(635\) 5.79696e6 0.570514
\(636\) −345384. −0.0338579
\(637\) 0 0
\(638\) 1.44975e7 1.41007
\(639\) 2.59524e6 0.251435
\(640\) 1.65635e7 1.59846
\(641\) 4.52714e6 0.435190 0.217595 0.976039i \(-0.430179\pi\)
0.217595 + 0.976039i \(0.430179\pi\)
\(642\) 6.96146e6 0.666596
\(643\) −1.49687e7 −1.42776 −0.713882 0.700266i \(-0.753065\pi\)
−0.713882 + 0.700266i \(0.753065\pi\)
\(644\) 0 0
\(645\) 8.08985e6 0.765669
\(646\) 2.02910e6 0.191304
\(647\) 1.73020e7 1.62493 0.812465 0.583010i \(-0.198125\pi\)
0.812465 + 0.583010i \(0.198125\pi\)
\(648\) 1.10225e6 0.103120
\(649\) −1.22064e7 −1.13757
\(650\) −7.84727e6 −0.728509
\(651\) 0 0
\(652\) 2.22114e6 0.204624
\(653\) 4.07470e6 0.373949 0.186975 0.982365i \(-0.440132\pi\)
0.186975 + 0.982365i \(0.440132\pi\)
\(654\) 5.45281e6 0.498513
\(655\) −1.21146e7 −1.10334
\(656\) 9.04483e6 0.820618
\(657\) 5.00953e6 0.452776
\(658\) 0 0
\(659\) −3.79475e6 −0.340384 −0.170192 0.985411i \(-0.554439\pi\)
−0.170192 + 0.985411i \(0.554439\pi\)
\(660\) −1.24675e6 −0.111409
\(661\) −1.64261e7 −1.46228 −0.731142 0.682225i \(-0.761012\pi\)
−0.731142 + 0.682225i \(0.761012\pi\)
\(662\) −1.16035e7 −1.02907
\(663\) 501228. 0.0442845
\(664\) −6.75158e6 −0.594272
\(665\) 0 0
\(666\) 2.64092e6 0.230712
\(667\) −2.28564e7 −1.98927
\(668\) −174048. −0.0150913
\(669\) −2.74262e6 −0.236920
\(670\) −2.77786e7 −2.39069
\(671\) −2.19682e7 −1.88360
\(672\) 0 0
\(673\) 5.50675e6 0.468660 0.234330 0.972157i \(-0.424710\pi\)
0.234330 + 0.972157i \(0.424710\pi\)
\(674\) 1.13290e7 0.960602
\(675\) 2.15711e6 0.182227
\(676\) −703716. −0.0592285
\(677\) −1.83957e7 −1.54257 −0.771286 0.636488i \(-0.780386\pi\)
−0.771286 + 0.636488i \(0.780386\pi\)
\(678\) −1.18879e7 −0.993185
\(679\) 0 0
\(680\) −1.65110e6 −0.136931
\(681\) −2.59729e6 −0.214612
\(682\) 213120. 0.0175454
\(683\) 1.75835e6 0.144229 0.0721146 0.997396i \(-0.477025\pi\)
0.0721146 + 0.997396i \(0.477025\pi\)
\(684\) −869616. −0.0710702
\(685\) 2.06112e7 1.67833
\(686\) 0 0
\(687\) −6.94971e6 −0.561791
\(688\) 1.30913e7 1.05441
\(689\) −4.24055e6 −0.340309
\(690\) 1.76904e7 1.41454
\(691\) 5.36314e6 0.427291 0.213646 0.976911i \(-0.431466\pi\)
0.213646 + 0.976911i \(0.431466\pi\)
\(692\) 73320.0 0.00582046
\(693\) 0 0
\(694\) −1.75162e7 −1.38052
\(695\) 1.75197e7 1.37583
\(696\) −8.22830e6 −0.643854
\(697\) −1.00321e6 −0.0782187
\(698\) −4.68409e6 −0.363904
\(699\) 2.27011e6 0.175733
\(700\) 0 0
\(701\) −2.12606e7 −1.63411 −0.817054 0.576561i \(-0.804394\pi\)
−0.817054 + 0.576561i \(0.804394\pi\)
\(702\) −1.93331e6 −0.148067
\(703\) 1.45849e7 1.11305
\(704\) 1.23041e7 0.935662
\(705\) −9.77184e6 −0.740463
\(706\) 8.00622e6 0.604527
\(707\) 0 0
\(708\) −989712. −0.0742037
\(709\) 2.07729e6 0.155196 0.0775980 0.996985i \(-0.475275\pi\)
0.0775980 + 0.996985i \(0.475275\pi\)
\(710\) 1.49947e7 1.11633
\(711\) −5.32786e6 −0.395256
\(712\) 1.33963e6 0.0990343
\(713\) −336000. −0.0247523
\(714\) 0 0
\(715\) −1.53073e7 −1.11979
\(716\) −613296. −0.0447082
\(717\) −1.30602e7 −0.948752
\(718\) −6.10459e6 −0.441922
\(719\) −4.23619e6 −0.305600 −0.152800 0.988257i \(-0.548829\pi\)
−0.152800 + 0.988257i \(0.548829\pi\)
\(720\) 7.17725e6 0.515973
\(721\) 0 0
\(722\) −2.83665e7 −2.02518
\(723\) 1.31758e6 0.0937415
\(724\) 1.52826e6 0.108356
\(725\) −1.61029e7 −1.13778
\(726\) −1.94859e6 −0.137208
\(727\) −2.14524e7 −1.50536 −0.752678 0.658389i \(-0.771238\pi\)
−0.752678 + 0.658389i \(0.771238\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 2.89439e7 2.01025
\(731\) −1.45202e6 −0.100503
\(732\) −1.78121e6 −0.122867
\(733\) 1.48892e7 1.02355 0.511777 0.859118i \(-0.328987\pi\)
0.511777 + 0.859118i \(0.328987\pi\)
\(734\) 5.02608e6 0.344341
\(735\) 0 0
\(736\) 6.04800e6 0.411545
\(737\) −2.63541e7 −1.78722
\(738\) 3.86953e6 0.261528
\(739\) 6.99324e6 0.471050 0.235525 0.971868i \(-0.424319\pi\)
0.235525 + 0.971868i \(0.424319\pi\)
\(740\) 1.69541e6 0.113814
\(741\) −1.06770e7 −0.714335
\(742\) 0 0
\(743\) 1.90428e6 0.126549 0.0632745 0.997996i \(-0.479846\pi\)
0.0632745 + 0.997996i \(0.479846\pi\)
\(744\) −120960. −0.00801142
\(745\) 6.40177e6 0.422581
\(746\) 9.11958e6 0.599968
\(747\) −3.25523e6 −0.213442
\(748\) 223776. 0.0146238
\(749\) 0 0
\(750\) −699192. −0.0453882
\(751\) 1.95361e7 1.26398 0.631988 0.774978i \(-0.282239\pi\)
0.631988 + 0.774978i \(0.282239\pi\)
\(752\) −1.58131e7 −1.01970
\(753\) −5.47074e6 −0.351608
\(754\) 1.44322e7 0.924493
\(755\) 2.23885e7 1.42941
\(756\) 0 0
\(757\) 1.25183e6 0.0793973 0.0396986 0.999212i \(-0.487360\pi\)
0.0396986 + 0.999212i \(0.487360\pi\)
\(758\) −1.58679e7 −1.00311
\(759\) 1.67832e7 1.05748
\(760\) 3.51711e7 2.20878
\(761\) −2.04472e7 −1.27989 −0.639944 0.768422i \(-0.721042\pi\)
−0.639944 + 0.768422i \(0.721042\pi\)
\(762\) 4.01328e6 0.250387
\(763\) 0 0
\(764\) −1.09363e6 −0.0677857
\(765\) −796068. −0.0491809
\(766\) 1.20802e7 0.743876
\(767\) −1.21515e7 −0.745831
\(768\) 3.48595e6 0.213264
\(769\) −2.21064e6 −0.134804 −0.0674020 0.997726i \(-0.521471\pi\)
−0.0674020 + 0.997726i \(0.521471\pi\)
\(770\) 0 0
\(771\) −860274. −0.0521196
\(772\) 614408. 0.0371034
\(773\) −1.29151e7 −0.777405 −0.388703 0.921363i \(-0.627077\pi\)
−0.388703 + 0.921363i \(0.627077\pi\)
\(774\) 5.60066e6 0.336037
\(775\) −236720. −0.0141573
\(776\) 2.41352e7 1.43879
\(777\) 0 0
\(778\) 4.35740e6 0.258095
\(779\) 2.13700e7 1.26171
\(780\) −1.24114e6 −0.0730437
\(781\) 1.42258e7 0.834541
\(782\) −3.17520e6 −0.185675
\(783\) −3.96722e6 −0.231250
\(784\) 0 0
\(785\) 1.01305e7 0.586754
\(786\) −8.38706e6 −0.484232
\(787\) 1.35499e7 0.779830 0.389915 0.920851i \(-0.372504\pi\)
0.389915 + 0.920851i \(0.372504\pi\)
\(788\) 617688. 0.0354367
\(789\) −1.98031e7 −1.13251
\(790\) −3.07832e7 −1.75487
\(791\) 0 0
\(792\) 6.04195e6 0.342266
\(793\) −2.18693e7 −1.23496
\(794\) 2.74547e7 1.54549
\(795\) 6.73499e6 0.377937
\(796\) 1.46742e6 0.0820867
\(797\) 2.45956e7 1.37155 0.685776 0.727813i \(-0.259463\pi\)
0.685776 + 0.727813i \(0.259463\pi\)
\(798\) 0 0
\(799\) 1.75392e6 0.0971948
\(800\) 4.26096e6 0.235387
\(801\) 645894. 0.0355697
\(802\) 203220. 0.0111566
\(803\) 2.74596e7 1.50282
\(804\) −2.13682e6 −0.116581
\(805\) 0 0
\(806\) 212160. 0.0115034
\(807\) −1.59322e7 −0.861177
\(808\) 454608. 0.0244968
\(809\) 1.55237e7 0.833920 0.416960 0.908925i \(-0.363095\pi\)
0.416960 + 0.908925i \(0.363095\pi\)
\(810\) 3.07055e6 0.164438
\(811\) 2.66262e7 1.42153 0.710766 0.703429i \(-0.248349\pi\)
0.710766 + 0.703429i \(0.248349\pi\)
\(812\) 0 0
\(813\) 2.01154e6 0.106734
\(814\) 1.44762e7 0.765760
\(815\) −4.33122e7 −2.28410
\(816\) −1.28822e6 −0.0677276
\(817\) 3.09304e7 1.62118
\(818\) −3.51707e7 −1.83780
\(819\) 0 0
\(820\) 2.48414e6 0.129016
\(821\) −1.23891e7 −0.641477 −0.320739 0.947168i \(-0.603931\pi\)
−0.320739 + 0.947168i \(0.603931\pi\)
\(822\) 1.42693e7 0.736585
\(823\) −3.65630e6 −0.188166 −0.0940831 0.995564i \(-0.529992\pi\)
−0.0940831 + 0.995564i \(0.529992\pi\)
\(824\) −2.21370e7 −1.13580
\(825\) 1.18242e7 0.604833
\(826\) 0 0
\(827\) 2.80463e7 1.42597 0.712987 0.701178i \(-0.247342\pi\)
0.712987 + 0.701178i \(0.247342\pi\)
\(828\) 1.36080e6 0.0689792
\(829\) −2.11153e7 −1.06712 −0.533558 0.845763i \(-0.679145\pi\)
−0.533558 + 0.845763i \(0.679145\pi\)
\(830\) −1.88080e7 −0.947648
\(831\) −3.08500e6 −0.154972
\(832\) 1.22487e7 0.613454
\(833\) 0 0
\(834\) 1.21290e7 0.603826
\(835\) 3.39394e6 0.168456
\(836\) −4.76678e6 −0.235890
\(837\) −58320.0 −0.00287742
\(838\) 1.81649e6 0.0893557
\(839\) −1.33947e7 −0.656944 −0.328472 0.944514i \(-0.606534\pi\)
−0.328472 + 0.944514i \(0.606534\pi\)
\(840\) 0 0
\(841\) 9.10422e6 0.443867
\(842\) 3.22025e7 1.56534
\(843\) 4.32340e6 0.209535
\(844\) 2.08098e6 0.100557
\(845\) 1.37225e7 0.661135
\(846\) −6.76512e6 −0.324975
\(847\) 0 0
\(848\) 1.08988e7 0.520461
\(849\) 269820. 0.0128471
\(850\) −2.23700e6 −0.106199
\(851\) −2.28228e7 −1.08030
\(852\) 1.15344e6 0.0544372
\(853\) −3.01513e7 −1.41884 −0.709420 0.704786i \(-0.751043\pi\)
−0.709420 + 0.704786i \(0.751043\pi\)
\(854\) 0 0
\(855\) 1.69575e7 0.793317
\(856\) −2.16579e7 −1.01026
\(857\) −2.39894e7 −1.11575 −0.557875 0.829925i \(-0.688383\pi\)
−0.557875 + 0.829925i \(0.688383\pi\)
\(858\) −1.05974e7 −0.491452
\(859\) 8.87576e6 0.410414 0.205207 0.978719i \(-0.434213\pi\)
0.205207 + 0.978719i \(0.434213\pi\)
\(860\) 3.59549e6 0.165772
\(861\) 0 0
\(862\) −7.06234e6 −0.323728
\(863\) −8.71286e6 −0.398230 −0.199115 0.979976i \(-0.563807\pi\)
−0.199115 + 0.979976i \(0.563807\pi\)
\(864\) 1.04976e6 0.0478416
\(865\) −1.42974e6 −0.0649706
\(866\) −2.19750e7 −0.995711
\(867\) −1.26358e7 −0.570895
\(868\) 0 0
\(869\) −2.92045e7 −1.31190
\(870\) −2.29217e7 −1.02671
\(871\) −2.62354e7 −1.17177
\(872\) −1.69643e7 −0.755518
\(873\) 1.16366e7 0.516763
\(874\) 6.76368e7 2.99505
\(875\) 0 0
\(876\) 2.22646e6 0.0980288
\(877\) −2.95788e7 −1.29862 −0.649310 0.760524i \(-0.724942\pi\)
−0.649310 + 0.760524i \(0.724942\pi\)
\(878\) −1.52205e7 −0.666333
\(879\) 1.78259e6 0.0778180
\(880\) 3.93420e7 1.71257
\(881\) −2.45670e7 −1.06638 −0.533190 0.845995i \(-0.679007\pi\)
−0.533190 + 0.845995i \(0.679007\pi\)
\(882\) 0 0
\(883\) 1.45682e7 0.628788 0.314394 0.949293i \(-0.398199\pi\)
0.314394 + 0.949293i \(0.398199\pi\)
\(884\) 222768. 0.00958787
\(885\) 1.92994e7 0.828295
\(886\) −3.60902e7 −1.54456
\(887\) −1.61714e7 −0.690141 −0.345070 0.938577i \(-0.612145\pi\)
−0.345070 + 0.938577i \(0.612145\pi\)
\(888\) −8.21621e6 −0.349654
\(889\) 0 0
\(890\) 3.73183e6 0.157924
\(891\) 2.91308e6 0.122930
\(892\) −1.21894e6 −0.0512946
\(893\) −3.73613e7 −1.56781
\(894\) 4.43200e6 0.185462
\(895\) 1.19593e7 0.499054
\(896\) 0 0
\(897\) 1.67076e7 0.693319
\(898\) −3.39579e7 −1.40524
\(899\) 435360. 0.0179659
\(900\) 958716. 0.0394533
\(901\) −1.20884e6 −0.0496087
\(902\) 2.12108e7 0.868041
\(903\) 0 0
\(904\) 3.69845e7 1.50522
\(905\) −2.98011e7 −1.20952
\(906\) 1.54997e7 0.627341
\(907\) 3.14446e7 1.26919 0.634596 0.772844i \(-0.281167\pi\)
0.634596 + 0.772844i \(0.281167\pi\)
\(908\) −1.15435e6 −0.0464648
\(909\) 219186. 0.00879839
\(910\) 0 0
\(911\) 1.51427e7 0.604514 0.302257 0.953227i \(-0.402260\pi\)
0.302257 + 0.953227i \(0.402260\pi\)
\(912\) 2.74412e7 1.09249
\(913\) −1.78435e7 −0.708439
\(914\) 3.87695e7 1.53506
\(915\) 3.47336e7 1.37150
\(916\) −3.08876e6 −0.121631
\(917\) 0 0
\(918\) −551124. −0.0215845
\(919\) 4.14876e7 1.62043 0.810214 0.586134i \(-0.199351\pi\)
0.810214 + 0.586134i \(0.199351\pi\)
\(920\) −5.50368e7 −2.14380
\(921\) 9.41072e6 0.365573
\(922\) −2.02412e7 −0.784167
\(923\) 1.41617e7 0.547155
\(924\) 0 0
\(925\) −1.60792e7 −0.617889
\(926\) 2.72985e7 1.04619
\(927\) −1.06732e7 −0.407939
\(928\) −7.83648e6 −0.298711
\(929\) 1.78495e7 0.678556 0.339278 0.940686i \(-0.389817\pi\)
0.339278 + 0.940686i \(0.389817\pi\)
\(930\) −336960. −0.0127753
\(931\) 0 0
\(932\) 1.00894e6 0.0380473
\(933\) −1.65346e7 −0.621855
\(934\) 1.20681e7 0.452661
\(935\) −4.36363e6 −0.163237
\(936\) 6.01474e6 0.224402
\(937\) −2.96399e7 −1.10288 −0.551439 0.834215i \(-0.685921\pi\)
−0.551439 + 0.834215i \(0.685921\pi\)
\(938\) 0 0
\(939\) 3.28945e6 0.121747
\(940\) −4.34304e6 −0.160315
\(941\) 3.22282e7 1.18648 0.593242 0.805024i \(-0.297848\pi\)
0.593242 + 0.805024i \(0.297848\pi\)
\(942\) 7.01341e6 0.257515
\(943\) −3.34404e7 −1.22459
\(944\) 3.12309e7 1.14066
\(945\) 0 0
\(946\) 3.06999e7 1.11535
\(947\) 4.84885e7 1.75697 0.878484 0.477772i \(-0.158556\pi\)
0.878484 + 0.477772i \(0.158556\pi\)
\(948\) −2.36794e6 −0.0855754
\(949\) 2.73359e7 0.985300
\(950\) 4.76517e7 1.71305
\(951\) −255042. −0.00914451
\(952\) 0 0
\(953\) −2.03264e7 −0.724983 −0.362491 0.931987i \(-0.618074\pi\)
−0.362491 + 0.931987i \(0.618074\pi\)
\(954\) 4.66268e6 0.165869
\(955\) 2.13258e7 0.756654
\(956\) −5.80454e6 −0.205411
\(957\) −2.17462e7 −0.767546
\(958\) −4.56241e7 −1.60613
\(959\) 0 0
\(960\) −1.94538e7 −0.681282
\(961\) −2.86228e7 −0.999776
\(962\) 1.44110e7 0.502060
\(963\) −1.04422e7 −0.362849
\(964\) 585592. 0.0202956
\(965\) −1.19810e7 −0.414165
\(966\) 0 0
\(967\) −3.66292e6 −0.125968 −0.0629841 0.998015i \(-0.520062\pi\)
−0.0629841 + 0.998015i \(0.520062\pi\)
\(968\) 6.06228e6 0.207945
\(969\) −3.04366e6 −0.104132
\(970\) 6.72338e7 2.29434
\(971\) −1.48741e6 −0.0506271 −0.0253136 0.999680i \(-0.508058\pi\)
−0.0253136 + 0.999680i \(0.508058\pi\)
\(972\) 236196. 0.00801875
\(973\) 0 0
\(974\) −4.03867e6 −0.136408
\(975\) 1.17709e7 0.396550
\(976\) 5.62070e7 1.88871
\(977\) 4.07930e7 1.36725 0.683627 0.729831i \(-0.260401\pi\)
0.683627 + 0.729831i \(0.260401\pi\)
\(978\) −2.99853e7 −1.00245
\(979\) 3.54046e6 0.118060
\(980\) 0 0
\(981\) −8.17922e6 −0.271356
\(982\) 1.48302e7 0.490759
\(983\) 9.26326e6 0.305759 0.152880 0.988245i \(-0.451145\pi\)
0.152880 + 0.988245i \(0.451145\pi\)
\(984\) −1.20385e7 −0.396357
\(985\) −1.20449e7 −0.395561
\(986\) 4.11415e6 0.134768
\(987\) 0 0
\(988\) −4.74531e6 −0.154658
\(989\) −4.84008e7 −1.57348
\(990\) 1.68312e7 0.545790
\(991\) −5.22051e7 −1.68861 −0.844303 0.535866i \(-0.819985\pi\)
−0.844303 + 0.535866i \(0.819985\pi\)
\(992\) −115200. −0.00371684
\(993\) 1.74052e7 0.560153
\(994\) 0 0
\(995\) −2.86148e7 −0.916289
\(996\) −1.44677e6 −0.0462116
\(997\) 1.86609e7 0.594560 0.297280 0.954790i \(-0.403921\pi\)
0.297280 + 0.954790i \(0.403921\pi\)
\(998\) −3.64891e7 −1.15968
\(999\) −3.96139e6 −0.125584
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 147.6.a.b.1.1 1
3.2 odd 2 441.6.a.j.1.1 1
7.2 even 3 147.6.e.i.67.1 2
7.3 odd 6 147.6.e.j.79.1 2
7.4 even 3 147.6.e.i.79.1 2
7.5 odd 6 147.6.e.j.67.1 2
7.6 odd 2 21.6.a.a.1.1 1
21.20 even 2 63.6.a.d.1.1 1
28.27 even 2 336.6.a.r.1.1 1
35.13 even 4 525.6.d.b.274.2 2
35.27 even 4 525.6.d.b.274.1 2
35.34 odd 2 525.6.a.d.1.1 1
84.83 odd 2 1008.6.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.6.a.a.1.1 1 7.6 odd 2
63.6.a.d.1.1 1 21.20 even 2
147.6.a.b.1.1 1 1.1 even 1 trivial
147.6.e.i.67.1 2 7.2 even 3
147.6.e.i.79.1 2 7.4 even 3
147.6.e.j.67.1 2 7.5 odd 6
147.6.e.j.79.1 2 7.3 odd 6
336.6.a.r.1.1 1 28.27 even 2
441.6.a.j.1.1 1 3.2 odd 2
525.6.a.d.1.1 1 35.34 odd 2
525.6.d.b.274.1 2 35.27 even 4
525.6.d.b.274.2 2 35.13 even 4
1008.6.a.c.1.1 1 84.83 odd 2