Defining parameters
| Level: | \( N \) | \(=\) | \( 147 = 3 \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 147.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 15 \) | ||
| Sturm bound: | \(112\) | ||
| Trace bound: | \(4\) | ||
| Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(147))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 102 | 35 | 67 |
| Cusp forms | 86 | 35 | 51 |
| Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(24\) | \(9\) | \(15\) | \(20\) | \(9\) | \(11\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(-\) | \(26\) | \(9\) | \(17\) | \(22\) | \(9\) | \(13\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(-\) | \(27\) | \(10\) | \(17\) | \(23\) | \(10\) | \(13\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(+\) | \(25\) | \(7\) | \(18\) | \(21\) | \(7\) | \(14\) | \(4\) | \(0\) | \(4\) | |||
| Plus space | \(+\) | \(49\) | \(16\) | \(33\) | \(41\) | \(16\) | \(25\) | \(8\) | \(0\) | \(8\) | ||||
| Minus space | \(-\) | \(53\) | \(19\) | \(34\) | \(45\) | \(19\) | \(26\) | \(8\) | \(0\) | \(8\) | ||||
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(147))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(147))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(147)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 2}\)