Properties

Label 147.6.a
Level $147$
Weight $6$
Character orbit 147.a
Rep. character $\chi_{147}(1,\cdot)$
Character field $\Q$
Dimension $35$
Newform subspaces $15$
Sturm bound $112$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 147.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 15 \)
Sturm bound: \(112\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(147))\).

Total New Old
Modular forms 102 35 67
Cusp forms 86 35 51
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(24\)\(9\)\(15\)\(20\)\(9\)\(11\)\(4\)\(0\)\(4\)
\(+\)\(-\)\(-\)\(26\)\(9\)\(17\)\(22\)\(9\)\(13\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(-\)\(27\)\(10\)\(17\)\(23\)\(10\)\(13\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(+\)\(25\)\(7\)\(18\)\(21\)\(7\)\(14\)\(4\)\(0\)\(4\)
Plus space\(+\)\(49\)\(16\)\(33\)\(41\)\(16\)\(25\)\(8\)\(0\)\(8\)
Minus space\(-\)\(53\)\(19\)\(34\)\(45\)\(19\)\(26\)\(8\)\(0\)\(8\)

Trace form

\( 35 q - 2 q^{2} - 9 q^{3} + 624 q^{4} - 38 q^{5} - 126 q^{6} - 552 q^{8} + 2835 q^{9} + 1128 q^{10} + 920 q^{11} - 828 q^{12} - 550 q^{13} + 450 q^{15} + 11196 q^{16} + 2286 q^{17} - 162 q^{18} - 3844 q^{19}+ \cdots + 74520 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(147))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 7
147.6.a.a 147.a 1.a $1$ $23.576$ \(\Q\) None 3.6.a.a \(-6\) \(-9\) \(-6\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-6q^{2}-9q^{3}+4q^{4}-6q^{5}+54q^{6}+\cdots\)
147.6.a.b 147.a 1.a $1$ $23.576$ \(\Q\) None 21.6.a.a \(-6\) \(9\) \(-78\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-6q^{2}+9q^{3}+4q^{4}-78q^{5}-54q^{6}+\cdots\)
147.6.a.c 147.a 1.a $1$ $23.576$ \(\Q\) None 21.6.e.a \(-2\) \(-9\) \(11\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}-9q^{3}-28q^{4}+11q^{5}+18q^{6}+\cdots\)
147.6.a.d 147.a 1.a $1$ $23.576$ \(\Q\) None 21.6.e.a \(-2\) \(9\) \(-11\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+9q^{3}-28q^{4}-11q^{5}-18q^{6}+\cdots\)
147.6.a.e 147.a 1.a $1$ $23.576$ \(\Q\) None 21.6.a.b \(1\) \(9\) \(34\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+9q^{3}-31q^{4}+34q^{5}+9q^{6}+\cdots\)
147.6.a.f 147.a 1.a $1$ $23.576$ \(\Q\) None 21.6.a.c \(5\) \(-9\) \(-94\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+5q^{2}-9q^{3}-7q^{4}-94q^{5}-45q^{6}+\cdots\)
147.6.a.g 147.a 1.a $1$ $23.576$ \(\Q\) None 21.6.a.d \(10\) \(-9\) \(106\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+10q^{2}-9q^{3}+68q^{4}+106q^{5}+\cdots\)
147.6.a.h 147.a 1.a $2$ $23.576$ \(\Q(\sqrt{193}) \) None 147.6.a.h \(-3\) \(-18\) \(72\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{2}-9q^{3}+(17+3\beta )q^{4}+\cdots\)
147.6.a.i 147.a 1.a $2$ $23.576$ \(\Q(\sqrt{249}) \) None 21.6.e.b \(-3\) \(-18\) \(-33\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{2}-9q^{3}+(31+3\beta )q^{4}+\cdots\)
147.6.a.j 147.a 1.a $2$ $23.576$ \(\Q(\sqrt{193}) \) None 147.6.a.h \(-3\) \(18\) \(-72\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{2}+9q^{3}+(17+3\beta )q^{4}+\cdots\)
147.6.a.k 147.a 1.a $2$ $23.576$ \(\Q(\sqrt{249}) \) None 21.6.e.b \(-3\) \(18\) \(33\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{2}+9q^{3}+(31+3\beta )q^{4}+\cdots\)
147.6.a.l 147.a 1.a $4$ $23.576$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 21.6.e.c \(3\) \(-36\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}-9q^{3}+(18-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
147.6.a.m 147.a 1.a $4$ $23.576$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 21.6.e.c \(3\) \(36\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+9q^{3}+(18-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
147.6.a.n 147.a 1.a $6$ $23.576$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 147.6.a.n \(2\) \(-54\) \(-100\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{2}-9q^{3}+(5^{2}-\beta _{1}+\beta _{4})q^{4}+\cdots\)
147.6.a.o 147.a 1.a $6$ $23.576$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 147.6.a.n \(2\) \(54\) \(100\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{2}+9q^{3}+(5^{2}-\beta _{1}+\beta _{4})q^{4}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(147))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(147)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 2}\)