Properties

Label 147.4.e.n
Level $147$
Weight $4$
Character orbit 147.e
Analytic conductor $8.673$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 147.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.67328077084\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.9924270768.1
Defining polynomial: \(x^{6} - x^{5} + 25 x^{4} + 12 x^{3} + 582 x^{2} - 144 x + 36\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{1} q^{2} + ( -3 + 3 \beta_{4} ) q^{3} + ( -8 + \beta_{1} + \beta_{2} + 8 \beta_{4} + \beta_{5} ) q^{4} + ( -\beta_{1} - \beta_{3} + 4 \beta_{4} + \beta_{5} ) q^{5} -3 \beta_{2} q^{6} + ( 10 - 9 \beta_{2} - \beta_{3} ) q^{8} -9 \beta_{4} q^{9} +O(q^{10})\) \( q -\beta_{1} q^{2} + ( -3 + 3 \beta_{4} ) q^{3} + ( -8 + \beta_{1} + \beta_{2} + 8 \beta_{4} + \beta_{5} ) q^{4} + ( -\beta_{1} - \beta_{3} + 4 \beta_{4} + \beta_{5} ) q^{5} -3 \beta_{2} q^{6} + ( 10 - 9 \beta_{2} - \beta_{3} ) q^{8} -9 \beta_{4} q^{9} + ( -22 - 11 \beta_{1} - 11 \beta_{2} + 22 \beta_{4} + \beta_{5} ) q^{10} + ( -12 - \beta_{1} - \beta_{2} + 12 \beta_{4} - 3 \beta_{5} ) q^{11} + ( -3 \beta_{1} + 3 \beta_{3} - 24 \beta_{4} - 3 \beta_{5} ) q^{12} + ( -19 + 5 \beta_{2} - \beta_{3} ) q^{13} + ( -12 - 3 \beta_{2} + 3 \beta_{3} ) q^{15} + ( -19 \beta_{1} + \beta_{3} - 74 \beta_{4} - \beta_{5} ) q^{16} + ( 16 - 16 \beta_{4} - 4 \beta_{5} ) q^{17} + ( 9 \beta_{1} + 9 \beta_{2} ) q^{18} + ( -7 \beta_{1} + \beta_{3} - 65 \beta_{4} - \beta_{5} ) q^{19} + ( -150 - 11 \beta_{2} + 3 \beta_{3} ) q^{20} + ( 2 + 13 \beta_{2} + \beta_{3} ) q^{22} + ( 24 \beta_{1} - 4 \beta_{3} - 80 \beta_{4} + 4 \beta_{5} ) q^{23} + ( -30 + 27 \beta_{1} + 27 \beta_{2} + 30 \beta_{4} + 3 \beta_{5} ) q^{24} + ( -53 - 29 \beta_{1} - 29 \beta_{2} + 53 \beta_{4} + \beta_{5} ) q^{25} + ( 16 \beta_{1} - 5 \beta_{3} + 86 \beta_{4} + 5 \beta_{5} ) q^{26} + 27 q^{27} + ( 26 + 25 \beta_{2} - 5 \beta_{3} ) q^{29} + ( 33 \beta_{1} + 3 \beta_{3} - 66 \beta_{4} - 3 \beta_{5} ) q^{30} + ( -39 - 22 \beta_{1} - 22 \beta_{2} + 39 \beta_{4} + 2 \beta_{5} ) q^{31} + ( -218 + 29 \beta_{1} + 29 \beta_{2} + 218 \beta_{4} + 11 \beta_{5} ) q^{32} + ( 3 \beta_{1} - 9 \beta_{3} - 36 \beta_{4} + 9 \beta_{5} ) q^{33} + ( 24 + 48 \beta_{2} ) q^{34} + ( 72 - 9 \beta_{2} - 9 \beta_{3} ) q^{36} + ( -19 \beta_{1} + \beta_{3} - 81 \beta_{4} - \beta_{5} ) q^{37} + ( -106 + 80 \beta_{1} + 80 \beta_{2} + 106 \beta_{4} + 7 \beta_{5} ) q^{38} + ( 57 - 15 \beta_{1} - 15 \beta_{2} - 57 \beta_{4} + 3 \beta_{5} ) q^{39} + ( 75 \beta_{1} + 3 \beta_{3} - 18 \beta_{4} - 3 \beta_{5} ) q^{40} + ( -82 - 2 \beta_{2} - 14 \beta_{3} ) q^{41} + ( 143 + 69 \beta_{2} + 3 \beta_{3} ) q^{43} + ( 11 \beta_{1} + 11 \beta_{3} + 298 \beta_{4} - 11 \beta_{5} ) q^{44} + ( 36 + 9 \beta_{1} + 9 \beta_{2} - 36 \beta_{4} - 9 \beta_{5} ) q^{45} + ( 360 + 24 \beta_{1} + 24 \beta_{2} - 360 \beta_{4} - 24 \beta_{5} ) q^{46} + ( -72 \beta_{1} + 28 \beta_{3} - 46 \beta_{4} - 28 \beta_{5} ) q^{47} + ( 222 - 57 \beta_{2} - 3 \beta_{3} ) q^{48} + ( -470 - 32 \beta_{2} + 29 \beta_{3} ) q^{50} + ( -12 \beta_{3} + 48 \beta_{4} + 12 \beta_{5} ) q^{51} + ( 74 - 102 \beta_{1} - 102 \beta_{2} - 74 \beta_{4} - 24 \beta_{5} ) q^{52} + ( -154 - 69 \beta_{1} - 69 \beta_{2} + 154 \beta_{4} - 11 \beta_{5} ) q^{53} -27 \beta_{1} q^{54} + ( 350 + 19 \beta_{2} + 25 \beta_{3} ) q^{55} + ( 195 - 21 \beta_{2} - 3 \beta_{3} ) q^{57} + ( -41 \beta_{1} - 25 \beta_{3} + 430 \beta_{4} + 25 \beta_{5} ) q^{58} + ( 358 - 69 \beta_{1} - 69 \beta_{2} - 358 \beta_{4} + 29 \beta_{5} ) q^{59} + ( 450 + 33 \beta_{1} + 33 \beta_{2} - 450 \beta_{4} - 9 \beta_{5} ) q^{60} + ( -100 \beta_{1} - 20 \beta_{3} + 10 \beta_{4} + 20 \beta_{5} ) q^{61} + ( -364 - 33 \beta_{2} + 22 \beta_{3} ) q^{62} + ( -194 - 183 \beta_{2} - 21 \beta_{3} ) q^{64} + ( -50 \beta_{1} + 18 \beta_{3} + 174 \beta_{4} - 18 \beta_{5} ) q^{65} + ( -6 - 39 \beta_{1} - 39 \beta_{2} + 6 \beta_{4} - 3 \beta_{5} ) q^{66} + ( 215 + 17 \beta_{1} + 17 \beta_{2} - 215 \beta_{4} + 47 \beta_{5} ) q^{67} + ( 24 \beta_{1} - 16 \beta_{3} + 640 \beta_{4} + 16 \beta_{5} ) q^{68} + ( 240 + 72 \beta_{2} + 12 \beta_{3} ) q^{69} + ( 66 - 120 \beta_{2} - 12 \beta_{3} ) q^{71} + ( -81 \beta_{1} + 9 \beta_{3} - 90 \beta_{4} - 9 \beta_{5} ) q^{72} + ( 363 + 101 \beta_{1} + 101 \beta_{2} - 363 \beta_{4} + 23 \beta_{5} ) q^{73} + ( -298 + 108 \beta_{1} + 108 \beta_{2} + 298 \beta_{4} + 19 \beta_{5} ) q^{74} + ( 87 \beta_{1} + 3 \beta_{3} - 159 \beta_{4} - 3 \beta_{5} ) q^{75} + ( 718 - 186 \beta_{2} - 72 \beta_{3} ) q^{76} + ( -258 + 48 \beta_{2} + 15 \beta_{3} ) q^{78} + ( 36 \beta_{1} + 48 \beta_{3} - 299 \beta_{4} - 48 \beta_{5} ) q^{79} + ( 18 - 121 \beta_{1} - 121 \beta_{2} - 18 \beta_{4} - 51 \beta_{5} ) q^{80} + ( -81 + 81 \beta_{4} ) q^{81} + ( -32 \beta_{1} + 2 \beta_{3} + 52 \beta_{4} - 2 \beta_{5} ) q^{82} + ( -156 + 51 \beta_{2} - 27 \beta_{3} ) q^{83} + ( 624 + 72 \beta_{2} ) q^{85} + ( -50 \beta_{1} - 69 \beta_{3} + 1086 \beta_{4} + 69 \beta_{5} ) q^{86} + ( -78 - 75 \beta_{1} - 75 \beta_{2} + 78 \beta_{4} + 15 \beta_{5} ) q^{87} + ( 258 - 117 \beta_{1} - 117 \beta_{2} - 258 \beta_{4} - 3 \beta_{5} ) q^{88} + ( 170 \beta_{1} - 22 \beta_{3} + 532 \beta_{4} + 22 \beta_{5} ) q^{89} + ( 198 + 99 \beta_{2} - 9 \beta_{3} ) q^{90} + ( -112 + 336 \beta_{2} - 56 \beta_{3} ) q^{92} + ( 66 \beta_{1} + 6 \beta_{3} - 117 \beta_{4} - 6 \beta_{5} ) q^{93} + ( -984 + 342 \beta_{1} + 342 \beta_{2} + 984 \beta_{4} + 72 \beta_{5} ) q^{94} + ( 246 + 2 \beta_{1} + 2 \beta_{2} - 246 \beta_{4} - 54 \beta_{5} ) q^{95} + ( -87 \beta_{1} + 33 \beta_{3} - 654 \beta_{4} - 33 \beta_{5} ) q^{96} + ( -24 - 53 \beta_{2} + 49 \beta_{3} ) q^{97} + ( 108 + 9 \beta_{2} + 27 \beta_{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - q^{2} - 9q^{3} - 25q^{4} + 11q^{5} + 6q^{6} + 78q^{8} - 27q^{9} + O(q^{10}) \) \( 6q - q^{2} - 9q^{3} - 25q^{4} + 11q^{5} + 6q^{6} + 78q^{8} - 27q^{9} - 55q^{10} - 35q^{11} - 75q^{12} - 124q^{13} - 66q^{15} - 241q^{16} + 48q^{17} - 9q^{18} - 202q^{19} - 878q^{20} - 14q^{22} - 216q^{23} - 117q^{24} - 130q^{25} + 274q^{26} + 162q^{27} + 106q^{29} - 165q^{30} - 95q^{31} - 683q^{32} - 105q^{33} + 48q^{34} + 450q^{36} - 262q^{37} - 398q^{38} + 186q^{39} + 21q^{40} - 488q^{41} + 720q^{43} + 905q^{44} + 99q^{45} + 1056q^{46} - 210q^{47} + 1446q^{48} - 2756q^{50} + 144q^{51} + 324q^{52} - 393q^{53} - 27q^{54} + 2062q^{55} + 1212q^{57} + 1249q^{58} + 1143q^{59} + 1317q^{60} - 70q^{61} - 2118q^{62} - 798q^{64} + 472q^{65} + 21q^{66} + 628q^{67} + 1944q^{68} + 1296q^{69} + 636q^{71} - 351q^{72} + 988q^{73} - 1002q^{74} - 390q^{75} + 4680q^{76} - 1644q^{78} - 861q^{79} + 175q^{80} - 243q^{81} + 124q^{82} - 1038q^{83} + 3600q^{85} + 3208q^{86} - 159q^{87} + 891q^{88} + 1766q^{89} + 990q^{90} - 1344q^{92} - 285q^{93} - 3294q^{94} + 736q^{95} - 2049q^{96} - 38q^{97} + 630q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{6} - x^{5} + 25 x^{4} + 12 x^{3} + 582 x^{2} - 144 x + 36\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{5} - 25 \nu^{4} + 625 \nu^{3} - 582 \nu^{2} + 144 \nu - 3600 \)\()/14406\)
\(\beta_{3}\)\(=\)\((\)\( -25 \nu^{5} + 625 \nu^{4} - 1219 \nu^{3} + 14550 \nu^{2} - 3600 \nu + 234060 \)\()/14406\)
\(\beta_{4}\)\(=\)\((\)\( 100 \nu^{5} - 99 \nu^{4} + 2475 \nu^{3} + 1825 \nu^{2} + 57618 \nu + 150 \)\()/14406\)
\(\beta_{5}\)\(=\)\((\)\( -1601 \nu^{5} + 1609 \nu^{4} - 40225 \nu^{3} - 14212 \nu^{2} - 936438 \nu + 231696 \)\()/14406\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{5} + 16 \beta_{4} + \beta_{2} + \beta_{1} - 16\)
\(\nu^{3}\)\(=\)\(\beta_{3} + 25 \beta_{2} - 10\)
\(\nu^{4}\)\(=\)\(-25 \beta_{5} - 394 \beta_{4} + 25 \beta_{3} - 43 \beta_{1}\)
\(\nu^{5}\)\(=\)\(-43 \beta_{5} - 538 \beta_{4} - 637 \beta_{2} - 637 \beta_{1} + 538\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(1\) \(-\beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
2.65415 + 4.59712i
0.124036 + 0.214837i
−2.27818 3.94593i
2.65415 4.59712i
0.124036 0.214837i
−2.27818 + 3.94593i
−2.65415 4.59712i −1.50000 + 2.59808i −10.0890 + 17.4746i 2.78070 + 4.81631i 15.9249 0 64.6443 −4.50000 7.79423i 14.7608 25.5664i
67.2 −0.124036 0.214837i −1.50000 + 2.59808i 3.96923 6.87491i −6.21730 10.7687i 0.744216 0 −3.95388 −4.50000 7.79423i −1.54234 + 2.67141i
67.3 2.27818 + 3.94593i −1.50000 + 2.59808i −6.38024 + 11.0509i 8.93660 + 15.4786i −13.6691 0 −21.6905 −4.50000 7.79423i −40.7184 + 70.5264i
79.1 −2.65415 + 4.59712i −1.50000 2.59808i −10.0890 17.4746i 2.78070 4.81631i 15.9249 0 64.6443 −4.50000 + 7.79423i 14.7608 + 25.5664i
79.2 −0.124036 + 0.214837i −1.50000 2.59808i 3.96923 + 6.87491i −6.21730 + 10.7687i 0.744216 0 −3.95388 −4.50000 + 7.79423i −1.54234 2.67141i
79.3 2.27818 3.94593i −1.50000 2.59808i −6.38024 11.0509i 8.93660 15.4786i −13.6691 0 −21.6905 −4.50000 + 7.79423i −40.7184 70.5264i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 79.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 147.4.e.n 6
3.b odd 2 1 441.4.e.w 6
7.b odd 2 1 21.4.e.b 6
7.c even 3 1 147.4.a.m 3
7.c even 3 1 inner 147.4.e.n 6
7.d odd 6 1 21.4.e.b 6
7.d odd 6 1 147.4.a.l 3
21.c even 2 1 63.4.e.c 6
21.g even 6 1 63.4.e.c 6
21.g even 6 1 441.4.a.s 3
21.h odd 6 1 441.4.a.t 3
21.h odd 6 1 441.4.e.w 6
28.d even 2 1 336.4.q.k 6
28.f even 6 1 336.4.q.k 6
28.f even 6 1 2352.4.a.ci 3
28.g odd 6 1 2352.4.a.cg 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.e.b 6 7.b odd 2 1
21.4.e.b 6 7.d odd 6 1
63.4.e.c 6 21.c even 2 1
63.4.e.c 6 21.g even 6 1
147.4.a.l 3 7.d odd 6 1
147.4.a.m 3 7.c even 3 1
147.4.e.n 6 1.a even 1 1 trivial
147.4.e.n 6 7.c even 3 1 inner
336.4.q.k 6 28.d even 2 1
336.4.q.k 6 28.f even 6 1
441.4.a.s 3 21.g even 6 1
441.4.a.t 3 21.h odd 6 1
441.4.e.w 6 3.b odd 2 1
441.4.e.w 6 21.h odd 6 1
2352.4.a.cg 3 28.g odd 6 1
2352.4.a.ci 3 28.f even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(147, [\chi])\):

\( T_{2}^{6} + T_{2}^{5} + 25 T_{2}^{4} - 12 T_{2}^{3} + 582 T_{2}^{2} + 144 T_{2} + 36 \)
\( T_{5}^{6} - 11 T_{5}^{5} + 313 T_{5}^{4} - 360 T_{5}^{3} + 50460 T_{5}^{2} - 237312 T_{5} + 1527696 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 36 + 144 T + 582 T^{2} - 12 T^{3} + 25 T^{4} + T^{5} + T^{6} \)
$3$ \( ( 9 + 3 T + T^{2} )^{3} \)
$5$ \( 1527696 - 237312 T + 50460 T^{2} - 360 T^{3} + 313 T^{4} - 11 T^{5} + T^{6} \)
$7$ \( T^{6} \)
$11$ \( 91470096 - 13083552 T + 1536684 T^{2} - 67008 T^{3} + 2593 T^{4} + 35 T^{5} + T^{6} \)
$13$ \( ( -18452 + 425 T + 62 T^{2} + T^{3} )^{2} \)
$17$ \( 12745506816 - 270950400 T + 11179008 T^{2} - 110592 T^{3} + 4704 T^{4} - 48 T^{5} + T^{6} \)
$19$ \( 54664310416 + 2871346924 T + 103594553 T^{2} + 2013154 T^{3} + 28523 T^{4} + 202 T^{5} + T^{6} \)
$23$ \( 2498119335936 + 1062125568 T + 341849088 T^{2} + 3015936 T^{3} + 47328 T^{4} + 216 T^{5} + T^{6} \)
$29$ \( ( -824976 - 20472 T - 53 T^{2} + T^{3} )^{2} \)
$31$ \( 139783329 + 118241823 T + 101143186 T^{2} - 926449 T^{3} + 19026 T^{4} + 95 T^{5} + T^{6} \)
$37$ \( 2415919104 + 692502528 T + 185622097 T^{2} + 3593014 T^{3} + 54555 T^{4} + 262 T^{5} + T^{6} \)
$41$ \( ( 300384 - 18780 T + 244 T^{2} + T^{3} )^{2} \)
$43$ \( ( 18269746 - 72363 T - 360 T^{2} + T^{3} )^{2} \)
$47$ \( 26205471480384 - 1261946958048 T + 59695121376 T^{2} - 62006616 T^{3} + 290616 T^{4} + 210 T^{5} + T^{6} \)
$53$ \( 1100208565649664 + 2677964032512 T + 19553872752 T^{2} + 34609536 T^{3} + 235185 T^{4} + 393 T^{5} + T^{6} \)
$59$ \( 10094008708475136 + 13372818322176 T + 132552677808 T^{2} - 353075760 T^{3} + 1173345 T^{4} - 1143 T^{5} + T^{6} \)
$61$ \( 7162406161000000 + 28850707900000 T + 122136980000 T^{2} + 145399000 T^{3} + 345800 T^{4} + 70 T^{5} + T^{6} \)
$67$ \( 783608160972004 + 8536829868926 T + 75422826113 T^{2} + 247502768 T^{3} + 699347 T^{4} - 628 T^{5} + T^{6} \)
$71$ \( ( -28535976 - 330804 T - 318 T^{2} + T^{3} )^{2} \)
$73$ \( 20508278645865924 - 623666998890 T + 141507598609 T^{2} - 282111496 T^{3} + 980499 T^{4} - 988 T^{5} + T^{6} \)
$79$ \( 37619060662457569 + 50021533268637 T + 233509331958 T^{2} + 165859913 T^{3} + 999222 T^{4} + 861 T^{5} + T^{6} \)
$83$ \( ( -47916036 - 131616 T + 519 T^{2} + T^{3} )^{2} \)
$89$ \( 169118164647936 + 3614222868480 T + 100205551104 T^{2} - 516815808 T^{3} + 2840836 T^{4} - 1766 T^{5} + T^{6} \)
$97$ \( ( -44776452 - 569600 T + 19 T^{2} + T^{3} )^{2} \)
show more
show less