Properties

Label 147.4.e.l.79.2
Level $147$
Weight $4$
Character 147.79
Analytic conductor $8.673$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,4,Mod(67,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.67");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 147.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.67328077084\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.2
Root \(2.13746 - 0.656712i\) of defining polynomial
Character \(\chi\) \(=\) 147.79
Dual form 147.4.e.l.67.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.63746 - 4.56821i) q^{2} +(-1.50000 - 2.59808i) q^{3} +(-9.91238 - 17.1687i) q^{4} +(-5.27492 + 9.13642i) q^{5} -15.8248 q^{6} -62.3746 q^{8} +(-4.50000 + 7.79423i) q^{9} +O(q^{10})\) \(q+(2.63746 - 4.56821i) q^{2} +(-1.50000 - 2.59808i) q^{3} +(-9.91238 - 17.1687i) q^{4} +(-5.27492 + 9.13642i) q^{5} -15.8248 q^{6} -62.3746 q^{8} +(-4.50000 + 7.79423i) q^{9} +(27.8248 + 48.1939i) q^{10} +(-17.3746 - 30.0937i) q^{11} +(-29.7371 + 51.5062i) q^{12} -37.2990 q^{13} +31.6495 q^{15} +(-85.2114 + 147.590i) q^{16} +(5.27492 + 9.13642i) q^{17} +(23.7371 + 41.1139i) q^{18} +(29.2990 - 50.7474i) q^{19} +209.148 q^{20} -183.299 q^{22} +(62.6736 - 108.554i) q^{23} +(93.5619 + 162.054i) q^{24} +(6.85050 + 11.8654i) q^{25} +(-98.3746 + 170.390i) q^{26} +27.0000 q^{27} -35.4020 q^{29} +(83.4743 - 144.582i) q^{30} +(-145.897 - 252.701i) q^{31} +(199.985 + 346.384i) q^{32} +(-52.1238 + 90.2810i) q^{33} +55.6495 q^{34} +178.423 q^{36} +(129.949 - 225.077i) q^{37} +(-154.550 - 267.688i) q^{38} +(55.9485 + 96.9057i) q^{39} +(329.021 - 569.881i) q^{40} -338.248 q^{41} +6.80397 q^{43} +(-344.447 + 596.599i) q^{44} +(-47.4743 - 82.2278i) q^{45} +(-330.598 - 572.613i) q^{46} +(-125.347 + 217.108i) q^{47} +511.268 q^{48} +72.2716 q^{50} +(15.8248 - 27.4093i) q^{51} +(369.722 + 640.377i) q^{52} +(268.450 + 464.969i) q^{53} +(71.2114 - 123.342i) q^{54} +366.598 q^{55} -175.794 q^{57} +(-93.3713 + 161.724i) q^{58} +(17.9452 + 31.0820i) q^{59} +(-313.722 - 543.382i) q^{60} +(-28.8970 + 50.0511i) q^{61} -1539.19 q^{62} +746.423 q^{64} +(196.749 - 340.780i) q^{65} +(274.949 + 476.225i) q^{66} +(-240.846 - 417.157i) q^{67} +(104.574 - 181.127i) q^{68} -376.042 q^{69} +363.752 q^{71} +(280.686 - 486.162i) q^{72} +(-290.650 - 503.420i) q^{73} +(-685.468 - 1187.26i) q^{74} +(20.5515 - 35.5962i) q^{75} -1161.69 q^{76} +590.248 q^{78} +(346.846 - 600.754i) q^{79} +(-898.966 - 1557.05i) q^{80} +(-40.5000 - 70.1481i) q^{81} +(-892.114 + 1545.19i) q^{82} +1334.39 q^{83} -111.299 q^{85} +(17.9452 - 31.0820i) q^{86} +(53.1030 + 91.9771i) q^{87} +(1083.73 + 1877.08i) q^{88} +(176.519 - 305.740i) q^{89} -500.846 q^{90} -2484.98 q^{92} +(-437.691 + 758.103i) q^{93} +(661.196 + 1145.23i) q^{94} +(309.100 + 535.376i) q^{95} +(599.954 - 1039.15i) q^{96} +1445.88 q^{97} +312.743 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{2} - 6 q^{3} - 17 q^{4} - 6 q^{5} - 18 q^{6} - 174 q^{8} - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 3 q^{2} - 6 q^{3} - 17 q^{4} - 6 q^{5} - 18 q^{6} - 174 q^{8} - 18 q^{9} + 66 q^{10} + 6 q^{11} - 51 q^{12} + 32 q^{13} + 36 q^{15} - 137 q^{16} + 6 q^{17} + 27 q^{18} - 64 q^{19} + 444 q^{20} - 552 q^{22} - 6 q^{23} + 261 q^{24} + 118 q^{25} - 318 q^{26} + 108 q^{27} - 504 q^{29} + 198 q^{30} - 40 q^{31} + 279 q^{32} + 18 q^{33} + 132 q^{34} + 306 q^{36} + 248 q^{37} - 588 q^{38} - 48 q^{39} + 546 q^{40} - 900 q^{41} + 752 q^{43} - 804 q^{44} - 54 q^{45} - 960 q^{46} + 12 q^{47} + 822 q^{48} - 330 q^{50} + 18 q^{51} + 890 q^{52} + 1104 q^{53} + 81 q^{54} + 1104 q^{55} + 384 q^{57} + 306 q^{58} - 804 q^{59} - 666 q^{60} + 428 q^{61} - 4224 q^{62} + 2578 q^{64} + 636 q^{65} + 828 q^{66} - 148 q^{67} + 222 q^{68} + 36 q^{69} + 1908 q^{71} + 783 q^{72} - 1072 q^{73} - 1398 q^{74} + 354 q^{75} - 3016 q^{76} + 1908 q^{78} + 572 q^{79} - 1950 q^{80} - 162 q^{81} - 1530 q^{82} + 3888 q^{83} - 264 q^{85} - 804 q^{86} + 756 q^{87} + 1164 q^{88} - 366 q^{89} - 1188 q^{90} - 5712 q^{92} - 120 q^{93} + 1920 q^{94} + 1176 q^{95} + 837 q^{96} + 1616 q^{97} - 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.63746 4.56821i 0.932482 1.61511i 0.153420 0.988161i \(-0.450971\pi\)
0.779063 0.626946i \(-0.215695\pi\)
\(3\) −1.50000 2.59808i −0.288675 0.500000i
\(4\) −9.91238 17.1687i −1.23905 2.14609i
\(5\) −5.27492 + 9.13642i −0.471803 + 0.817187i −0.999480 0.0322587i \(-0.989730\pi\)
0.527677 + 0.849445i \(0.323063\pi\)
\(6\) −15.8248 −1.07674
\(7\) 0 0
\(8\) −62.3746 −2.75659
\(9\) −4.50000 + 7.79423i −0.166667 + 0.288675i
\(10\) 27.8248 + 48.1939i 0.879896 + 1.52402i
\(11\) −17.3746 30.0937i −0.476240 0.824871i 0.523390 0.852093i \(-0.324667\pi\)
−0.999629 + 0.0272223i \(0.991334\pi\)
\(12\) −29.7371 + 51.5062i −0.715364 + 1.23905i
\(13\) −37.2990 −0.795760 −0.397880 0.917437i \(-0.630254\pi\)
−0.397880 + 0.917437i \(0.630254\pi\)
\(14\) 0 0
\(15\) 31.6495 0.544791
\(16\) −85.2114 + 147.590i −1.33143 + 2.30610i
\(17\) 5.27492 + 9.13642i 0.0752562 + 0.130348i 0.901198 0.433408i \(-0.142689\pi\)
−0.825941 + 0.563756i \(0.809356\pi\)
\(18\) 23.7371 + 41.1139i 0.310827 + 0.538369i
\(19\) 29.2990 50.7474i 0.353771 0.612750i −0.633136 0.774041i \(-0.718232\pi\)
0.986907 + 0.161291i \(0.0515658\pi\)
\(20\) 209.148 2.33834
\(21\) 0 0
\(22\) −183.299 −1.77634
\(23\) 62.6736 108.554i 0.568189 0.984132i −0.428556 0.903515i \(-0.640978\pi\)
0.996745 0.0806171i \(-0.0256891\pi\)
\(24\) 93.5619 + 162.054i 0.795760 + 1.37830i
\(25\) 6.85050 + 11.8654i 0.0548040 + 0.0949233i
\(26\) −98.3746 + 170.390i −0.742032 + 1.28524i
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −35.4020 −0.226689 −0.113345 0.993556i \(-0.536156\pi\)
−0.113345 + 0.993556i \(0.536156\pi\)
\(30\) 83.4743 144.582i 0.508008 0.879896i
\(31\) −145.897 252.701i −0.845286 1.46408i −0.885372 0.464883i \(-0.846096\pi\)
0.0400859 0.999196i \(-0.487237\pi\)
\(32\) 199.985 + 346.384i 1.10477 + 1.91352i
\(33\) −52.1238 + 90.2810i −0.274957 + 0.476240i
\(34\) 55.6495 0.280700
\(35\) 0 0
\(36\) 178.423 0.826031
\(37\) 129.949 225.077i 0.577389 1.00007i −0.418388 0.908268i \(-0.637405\pi\)
0.995778 0.0917993i \(-0.0292618\pi\)
\(38\) −154.550 267.688i −0.659771 1.14276i
\(39\) 55.9485 + 96.9057i 0.229716 + 0.397880i
\(40\) 329.021 569.881i 1.30057 2.25265i
\(41\) −338.248 −1.28842 −0.644212 0.764847i \(-0.722815\pi\)
−0.644212 + 0.764847i \(0.722815\pi\)
\(42\) 0 0
\(43\) 6.80397 0.0241301 0.0120651 0.999927i \(-0.496159\pi\)
0.0120651 + 0.999927i \(0.496159\pi\)
\(44\) −344.447 + 596.599i −1.18017 + 2.04411i
\(45\) −47.4743 82.2278i −0.157268 0.272396i
\(46\) −330.598 572.613i −1.05965 1.83537i
\(47\) −125.347 + 217.108i −0.389016 + 0.673796i −0.992317 0.123717i \(-0.960518\pi\)
0.603301 + 0.797513i \(0.293852\pi\)
\(48\) 511.268 1.53740
\(49\) 0 0
\(50\) 72.2716 0.204415
\(51\) 15.8248 27.4093i 0.0434492 0.0752562i
\(52\) 369.722 + 640.377i 0.985984 + 1.70777i
\(53\) 268.450 + 464.969i 0.695745 + 1.20507i 0.969929 + 0.243388i \(0.0782588\pi\)
−0.274184 + 0.961677i \(0.588408\pi\)
\(54\) 71.2114 123.342i 0.179456 0.310827i
\(55\) 366.598 0.898765
\(56\) 0 0
\(57\) −175.794 −0.408500
\(58\) −93.3713 + 161.724i −0.211384 + 0.366127i
\(59\) 17.9452 + 31.0820i 0.0395977 + 0.0685853i 0.885145 0.465315i \(-0.154059\pi\)
−0.845547 + 0.533900i \(0.820726\pi\)
\(60\) −313.722 543.382i −0.675022 1.16917i
\(61\) −28.8970 + 50.0511i −0.0606538 + 0.105056i −0.894758 0.446552i \(-0.852652\pi\)
0.834104 + 0.551607i \(0.185985\pi\)
\(62\) −1539.19 −3.15286
\(63\) 0 0
\(64\) 746.423 1.45786
\(65\) 196.749 340.780i 0.375442 0.650285i
\(66\) 274.949 + 476.225i 0.512785 + 0.888170i
\(67\) −240.846 417.157i −0.439164 0.760654i 0.558462 0.829530i \(-0.311392\pi\)
−0.997625 + 0.0688767i \(0.978059\pi\)
\(68\) 104.574 181.127i 0.186492 0.323013i
\(69\) −376.042 −0.656088
\(70\) 0 0
\(71\) 363.752 0.608021 0.304010 0.952669i \(-0.401674\pi\)
0.304010 + 0.952669i \(0.401674\pi\)
\(72\) 280.686 486.162i 0.459432 0.795760i
\(73\) −290.650 503.420i −0.465999 0.807135i 0.533247 0.845960i \(-0.320972\pi\)
−0.999246 + 0.0388253i \(0.987638\pi\)
\(74\) −685.468 1187.26i −1.07681 1.86509i
\(75\) 20.5515 35.5962i 0.0316411 0.0548040i
\(76\) −1161.69 −1.75336
\(77\) 0 0
\(78\) 590.248 0.856825
\(79\) 346.846 600.754i 0.493964 0.855571i −0.506012 0.862527i \(-0.668881\pi\)
0.999976 + 0.00695559i \(0.00221405\pi\)
\(80\) −898.966 1557.05i −1.25634 2.17605i
\(81\) −40.5000 70.1481i −0.0555556 0.0962250i
\(82\) −892.114 + 1545.19i −1.20143 + 2.08094i
\(83\) 1334.39 1.76468 0.882341 0.470611i \(-0.155967\pi\)
0.882341 + 0.470611i \(0.155967\pi\)
\(84\) 0 0
\(85\) −111.299 −0.142024
\(86\) 17.9452 31.0820i 0.0225009 0.0389728i
\(87\) 53.1030 + 91.9771i 0.0654395 + 0.113345i
\(88\) 1083.73 + 1877.08i 1.31280 + 2.27383i
\(89\) 176.519 305.740i 0.210236 0.364139i −0.741552 0.670895i \(-0.765910\pi\)
0.951788 + 0.306756i \(0.0992435\pi\)
\(90\) −500.846 −0.586597
\(91\) 0 0
\(92\) −2484.98 −2.81605
\(93\) −437.691 + 758.103i −0.488026 + 0.845286i
\(94\) 661.196 + 1145.23i 0.725502 + 1.25661i
\(95\) 309.100 + 535.376i 0.333821 + 0.578194i
\(96\) 599.954 1039.15i 0.637839 1.10477i
\(97\) 1445.88 1.51347 0.756735 0.653722i \(-0.226793\pi\)
0.756735 + 0.653722i \(0.226793\pi\)
\(98\) 0 0
\(99\) 312.743 0.317493
\(100\) 135.809 235.229i 0.135809 0.235229i
\(101\) −237.426 411.234i −0.233909 0.405142i 0.725046 0.688700i \(-0.241818\pi\)
−0.958955 + 0.283558i \(0.908485\pi\)
\(102\) −83.4743 144.582i −0.0810312 0.140350i
\(103\) 999.794 1731.69i 0.956433 1.65659i 0.225380 0.974271i \(-0.427638\pi\)
0.731053 0.682320i \(-0.239029\pi\)
\(104\) 2326.51 2.19359
\(105\) 0 0
\(106\) 2832.10 2.59508
\(107\) −583.368 + 1010.42i −0.527068 + 0.912909i 0.472434 + 0.881366i \(0.343375\pi\)
−0.999502 + 0.0315431i \(0.989958\pi\)
\(108\) −267.634 463.556i −0.238455 0.413016i
\(109\) 668.588 + 1158.03i 0.587515 + 1.01761i 0.994557 + 0.104196i \(0.0332270\pi\)
−0.407042 + 0.913410i \(0.633440\pi\)
\(110\) 966.887 1674.70i 0.838082 1.45160i
\(111\) −779.691 −0.666712
\(112\) 0 0
\(113\) 906.578 0.754723 0.377361 0.926066i \(-0.376831\pi\)
0.377361 + 0.926066i \(0.376831\pi\)
\(114\) −463.650 + 803.064i −0.380919 + 0.659771i
\(115\) 661.196 + 1145.23i 0.536146 + 0.928633i
\(116\) 350.918 + 607.807i 0.280878 + 0.486496i
\(117\) 167.846 290.717i 0.132627 0.229716i
\(118\) 189.319 0.147697
\(119\) 0 0
\(120\) −1974.12 −1.50177
\(121\) 61.7475 106.950i 0.0463918 0.0803530i
\(122\) 152.429 + 264.015i 0.113117 + 0.195925i
\(123\) 507.371 + 878.793i 0.371936 + 0.644212i
\(124\) −2892.37 + 5009.74i −2.09470 + 3.62813i
\(125\) −1463.27 −1.04703
\(126\) 0 0
\(127\) −1714.89 −1.19820 −0.599101 0.800674i \(-0.704475\pi\)
−0.599101 + 0.800674i \(0.704475\pi\)
\(128\) 368.782 638.749i 0.254656 0.441078i
\(129\) −10.2060 17.6772i −0.00696577 0.0120651i
\(130\) −1037.84 1797.58i −0.700186 1.21276i
\(131\) −235.306 + 407.561i −0.156937 + 0.271823i −0.933763 0.357893i \(-0.883495\pi\)
0.776826 + 0.629716i \(0.216829\pi\)
\(132\) 2066.68 1.36274
\(133\) 0 0
\(134\) −2540.88 −1.63805
\(135\) −142.423 + 246.683i −0.0907985 + 0.157268i
\(136\) −329.021 569.881i −0.207451 0.359315i
\(137\) 221.955 + 384.438i 0.138415 + 0.239742i 0.926897 0.375316i \(-0.122466\pi\)
−0.788482 + 0.615058i \(0.789132\pi\)
\(138\) −991.794 + 1717.84i −0.611791 + 1.05965i
\(139\) 1669.98 1.01904 0.509518 0.860460i \(-0.329824\pi\)
0.509518 + 0.860460i \(0.329824\pi\)
\(140\) 0 0
\(141\) 752.083 0.449197
\(142\) 959.382 1661.70i 0.566969 0.982019i
\(143\) 648.055 + 1122.46i 0.378972 + 0.656400i
\(144\) −766.902 1328.31i −0.443809 0.768700i
\(145\) 186.743 323.448i 0.106953 0.185247i
\(146\) −3066.30 −1.73814
\(147\) 0 0
\(148\) −5152.39 −2.86165
\(149\) −371.935 + 644.211i −0.204497 + 0.354200i −0.949973 0.312334i \(-0.898889\pi\)
0.745475 + 0.666534i \(0.232223\pi\)
\(150\) −108.407 187.767i −0.0590095 0.102207i
\(151\) −303.382 525.473i −0.163503 0.283195i 0.772620 0.634869i \(-0.218946\pi\)
−0.936123 + 0.351674i \(0.885613\pi\)
\(152\) −1827.51 + 3165.35i −0.975203 + 1.68910i
\(153\) −94.9485 −0.0501708
\(154\) 0 0
\(155\) 3078.38 1.59523
\(156\) 1109.17 1921.13i 0.569258 0.985984i
\(157\) −1557.39 2697.48i −0.791678 1.37123i −0.924927 0.380144i \(-0.875875\pi\)
0.133250 0.991083i \(-0.457459\pi\)
\(158\) −1829.58 3168.93i −0.921226 1.59561i
\(159\) 805.350 1394.91i 0.401688 0.695745i
\(160\) −4219.61 −2.08493
\(161\) 0 0
\(162\) −427.268 −0.207218
\(163\) −1206.54 + 2089.78i −0.579774 + 1.00420i 0.415730 + 0.909488i \(0.363526\pi\)
−0.995505 + 0.0947109i \(0.969807\pi\)
\(164\) 3352.84 + 5807.28i 1.59642 + 2.76508i
\(165\) −549.897 952.450i −0.259451 0.449382i
\(166\) 3519.40 6095.79i 1.64553 2.85015i
\(167\) −610.475 −0.282874 −0.141437 0.989947i \(-0.545172\pi\)
−0.141437 + 0.989947i \(0.545172\pi\)
\(168\) 0 0
\(169\) −805.784 −0.366766
\(170\) −293.547 + 508.437i −0.132435 + 0.229385i
\(171\) 263.691 + 456.726i 0.117924 + 0.204250i
\(172\) −67.4435 116.816i −0.0298984 0.0517855i
\(173\) −1896.90 + 3285.54i −0.833636 + 1.44390i 0.0615006 + 0.998107i \(0.480411\pi\)
−0.895136 + 0.445792i \(0.852922\pi\)
\(174\) 560.228 0.244085
\(175\) 0 0
\(176\) 5922.05 2.53631
\(177\) 53.8356 93.2460i 0.0228618 0.0395977i
\(178\) −931.124 1612.75i −0.392082 0.679107i
\(179\) 1402.34 + 2428.92i 0.585562 + 1.01422i 0.994805 + 0.101798i \(0.0324596\pi\)
−0.409243 + 0.912426i \(0.634207\pi\)
\(180\) −941.165 + 1630.15i −0.389724 + 0.675022i
\(181\) 3106.04 1.27553 0.637763 0.770232i \(-0.279860\pi\)
0.637763 + 0.770232i \(0.279860\pi\)
\(182\) 0 0
\(183\) 173.382 0.0700370
\(184\) −3909.24 + 6771.00i −1.56627 + 2.71285i
\(185\) 1370.94 + 2374.53i 0.544828 + 0.943670i
\(186\) 2308.78 + 3998.93i 0.910152 + 1.57643i
\(187\) 183.299 317.483i 0.0716800 0.124153i
\(188\) 4969.95 1.92804
\(189\) 0 0
\(190\) 3260.95 1.24513
\(191\) −130.976 + 226.857i −0.0496182 + 0.0859413i −0.889768 0.456413i \(-0.849134\pi\)
0.840150 + 0.542355i \(0.182467\pi\)
\(192\) −1119.63 1939.26i −0.420847 0.728928i
\(193\) −2025.54 3508.33i −0.755447 1.30847i −0.945152 0.326632i \(-0.894086\pi\)
0.189704 0.981841i \(-0.439247\pi\)
\(194\) 3813.44 6605.07i 1.41128 2.44442i
\(195\) −1180.50 −0.433523
\(196\) 0 0
\(197\) −2874.83 −1.03971 −0.519855 0.854254i \(-0.674014\pi\)
−0.519855 + 0.854254i \(0.674014\pi\)
\(198\) 824.846 1428.67i 0.296057 0.512785i
\(199\) 1533.49 + 2656.07i 0.546261 + 0.946151i 0.998526 + 0.0542680i \(0.0172825\pi\)
−0.452266 + 0.891883i \(0.649384\pi\)
\(200\) −427.297 740.100i −0.151072 0.261665i
\(201\) −722.537 + 1251.47i −0.253551 + 0.439164i
\(202\) −2504.81 −0.872463
\(203\) 0 0
\(204\) −627.444 −0.215342
\(205\) 1784.23 3090.37i 0.607882 1.05288i
\(206\) −5273.83 9134.54i −1.78371 3.08948i
\(207\) 564.062 + 976.985i 0.189396 + 0.328044i
\(208\) 3178.30 5504.98i 1.05950 1.83510i
\(209\) −2036.23 −0.673919
\(210\) 0 0
\(211\) 595.422 0.194268 0.0971340 0.995271i \(-0.469032\pi\)
0.0971340 + 0.995271i \(0.469032\pi\)
\(212\) 5321.96 9217.90i 1.72412 2.98626i
\(213\) −545.629 945.057i −0.175520 0.304010i
\(214\) 3077.22 + 5329.90i 0.982964 + 1.70254i
\(215\) −35.8904 + 62.1640i −0.0113847 + 0.0197188i
\(216\) −1684.11 −0.530507
\(217\) 0 0
\(218\) 7053.49 2.19139
\(219\) −871.949 + 1510.26i −0.269045 + 0.465999i
\(220\) −3633.86 6294.03i −1.11361 1.92883i
\(221\) −196.749 340.780i −0.0598859 0.103725i
\(222\) −2056.40 + 3561.79i −0.621697 + 1.07681i
\(223\) −3779.79 −1.13504 −0.567520 0.823360i \(-0.692097\pi\)
−0.567520 + 0.823360i \(0.692097\pi\)
\(224\) 0 0
\(225\) −123.309 −0.0365360
\(226\) 2391.06 4141.44i 0.703766 1.21896i
\(227\) −913.809 1582.76i −0.267188 0.462783i 0.700947 0.713214i \(-0.252761\pi\)
−0.968135 + 0.250431i \(0.919428\pi\)
\(228\) 1742.54 + 3018.16i 0.506150 + 0.876678i
\(229\) 425.125 736.338i 0.122677 0.212483i −0.798146 0.602465i \(-0.794185\pi\)
0.920823 + 0.389982i \(0.127519\pi\)
\(230\) 6975.51 1.99979
\(231\) 0 0
\(232\) 2208.18 0.624890
\(233\) 3295.55 5708.06i 0.926604 1.60492i 0.137642 0.990482i \(-0.456048\pi\)
0.788962 0.614443i \(-0.210619\pi\)
\(234\) −885.371 1533.51i −0.247344 0.428413i
\(235\) −1322.39 2290.45i −0.367078 0.635798i
\(236\) 355.759 616.193i 0.0981269 0.169961i
\(237\) −2081.07 −0.570381
\(238\) 0 0
\(239\) −182.556 −0.0494083 −0.0247042 0.999695i \(-0.507864\pi\)
−0.0247042 + 0.999695i \(0.507864\pi\)
\(240\) −2696.90 + 4671.16i −0.725350 + 1.25634i
\(241\) −761.949 1319.73i −0.203657 0.352745i 0.746047 0.665894i \(-0.231950\pi\)
−0.949704 + 0.313149i \(0.898616\pi\)
\(242\) −325.713 564.152i −0.0865191 0.149856i
\(243\) −121.500 + 210.444i −0.0320750 + 0.0555556i
\(244\) 1145.75 0.300612
\(245\) 0 0
\(246\) 5352.68 1.38730
\(247\) −1092.82 + 1892.83i −0.281517 + 0.487602i
\(248\) 9100.27 + 15762.1i 2.33011 + 4.03587i
\(249\) −2001.59 3466.85i −0.509420 0.882341i
\(250\) −3859.32 + 6684.54i −0.976339 + 1.69107i
\(251\) 2357.73 0.592903 0.296451 0.955048i \(-0.404197\pi\)
0.296451 + 0.955048i \(0.404197\pi\)
\(252\) 0 0
\(253\) −4355.71 −1.08238
\(254\) −4522.94 + 7833.97i −1.11730 + 1.93522i
\(255\) 166.949 + 289.163i 0.0409989 + 0.0710122i
\(256\) 1040.40 + 1802.02i 0.254003 + 0.439946i
\(257\) −1391.27 + 2409.76i −0.337686 + 0.584890i −0.983997 0.178185i \(-0.942978\pi\)
0.646311 + 0.763074i \(0.276311\pi\)
\(258\) −107.671 −0.0259818
\(259\) 0 0
\(260\) −7801.01 −1.86076
\(261\) 159.309 275.931i 0.0377815 0.0654395i
\(262\) 1241.22 + 2149.85i 0.292682 + 0.506940i
\(263\) −1021.89 1769.97i −0.239591 0.414984i 0.721006 0.692929i \(-0.243680\pi\)
−0.960597 + 0.277945i \(0.910347\pi\)
\(264\) 3251.20 5631.24i 0.757945 1.31280i
\(265\) −5664.21 −1.31302
\(266\) 0 0
\(267\) −1059.11 −0.242759
\(268\) −4774.70 + 8270.03i −1.08829 + 1.88497i
\(269\) −1726.42 2990.24i −0.391307 0.677763i 0.601315 0.799012i \(-0.294644\pi\)
−0.992622 + 0.121248i \(0.961310\pi\)
\(270\) 751.268 + 1301.23i 0.169336 + 0.293299i
\(271\) −1322.15 + 2290.02i −0.296364 + 0.513318i −0.975301 0.220879i \(-0.929108\pi\)
0.678937 + 0.734196i \(0.262441\pi\)
\(272\) −1797.93 −0.400793
\(273\) 0 0
\(274\) 2341.59 0.516280
\(275\) 238.049 412.313i 0.0521996 0.0904124i
\(276\) 3727.47 + 6456.16i 0.812924 + 1.40803i
\(277\) −1339.74 2320.50i −0.290604 0.503341i 0.683349 0.730092i \(-0.260523\pi\)
−0.973953 + 0.226751i \(0.927190\pi\)
\(278\) 4404.50 7628.82i 0.950232 1.64585i
\(279\) 2626.15 0.563524
\(280\) 0 0
\(281\) −1019.69 −0.216476 −0.108238 0.994125i \(-0.534521\pi\)
−0.108238 + 0.994125i \(0.534521\pi\)
\(282\) 1983.59 3435.68i 0.418869 0.725502i
\(283\) −216.103 374.301i −0.0453922 0.0786216i 0.842437 0.538795i \(-0.181120\pi\)
−0.887829 + 0.460174i \(0.847787\pi\)
\(284\) −3605.65 6245.17i −0.753366 1.30487i
\(285\) 927.299 1606.13i 0.192731 0.333821i
\(286\) 6836.87 1.41354
\(287\) 0 0
\(288\) −3599.72 −0.736513
\(289\) 2400.85 4158.40i 0.488673 0.846406i
\(290\) −985.051 1706.16i −0.199463 0.345480i
\(291\) −2168.82 3756.50i −0.436901 0.756735i
\(292\) −5762.05 + 9980.17i −1.15479 + 2.00016i
\(293\) −2245.92 −0.447809 −0.223904 0.974611i \(-0.571880\pi\)
−0.223904 + 0.974611i \(0.571880\pi\)
\(294\) 0 0
\(295\) −378.638 −0.0747293
\(296\) −8105.48 + 14039.1i −1.59163 + 2.75678i
\(297\) −469.114 812.529i −0.0916523 0.158747i
\(298\) 1961.93 + 3398.16i 0.381381 + 0.660571i
\(299\) −2337.66 + 4048.95i −0.452142 + 0.783133i
\(300\) −814.856 −0.156819
\(301\) 0 0
\(302\) −3200.63 −0.609853
\(303\) −712.278 + 1233.70i −0.135047 + 0.233909i
\(304\) 4993.22 + 8648.51i 0.942042 + 1.63166i
\(305\) −304.859 528.031i −0.0572333 0.0991310i
\(306\) −250.423 + 433.745i −0.0467834 + 0.0810312i
\(307\) −3197.08 −0.594354 −0.297177 0.954822i \(-0.596045\pi\)
−0.297177 + 0.954822i \(0.596045\pi\)
\(308\) 0 0
\(309\) −5998.76 −1.10439
\(310\) 8119.10 14062.7i 1.48753 2.57647i
\(311\) 1677.80 + 2906.04i 0.305915 + 0.529860i 0.977465 0.211100i \(-0.0677045\pi\)
−0.671550 + 0.740959i \(0.734371\pi\)
\(312\) −3489.77 6044.45i −0.633234 1.09679i
\(313\) 1128.20 1954.09i 0.203736 0.352881i −0.745993 0.665954i \(-0.768025\pi\)
0.949729 + 0.313072i \(0.101358\pi\)
\(314\) −16430.2 −2.95290
\(315\) 0 0
\(316\) −13752.3 −2.44818
\(317\) 3069.59 5316.69i 0.543866 0.942004i −0.454811 0.890588i \(-0.650293\pi\)
0.998677 0.0514158i \(-0.0163734\pi\)
\(318\) −4248.16 7358.02i −0.749135 1.29754i
\(319\) 615.095 + 1065.38i 0.107958 + 0.186989i
\(320\) −3937.32 + 6819.64i −0.687821 + 1.19134i
\(321\) 3500.21 0.608606
\(322\) 0 0
\(323\) 618.199 0.106494
\(324\) −802.902 + 1390.67i −0.137672 + 0.238455i
\(325\) −255.517 442.568i −0.0436108 0.0755362i
\(326\) 6364.38 + 11023.4i 1.08126 + 1.87280i
\(327\) 2005.76 3474.09i 0.339202 0.587515i
\(328\) 21098.0 3.55166
\(329\) 0 0
\(330\) −5801.32 −0.967734
\(331\) −3514.91 + 6088.00i −0.583676 + 1.01096i 0.411363 + 0.911472i \(0.365053\pi\)
−0.995039 + 0.0994849i \(0.968280\pi\)
\(332\) −13227.0 22909.8i −2.18652 3.78717i
\(333\) 1169.54 + 2025.70i 0.192463 + 0.333356i
\(334\) −1610.10 + 2788.78i −0.263775 + 0.456872i
\(335\) 5081.76 0.828795
\(336\) 0 0
\(337\) 10328.4 1.66951 0.834757 0.550619i \(-0.185608\pi\)
0.834757 + 0.550619i \(0.185608\pi\)
\(338\) −2125.22 + 3680.99i −0.342003 + 0.592366i
\(339\) −1359.87 2355.36i −0.217870 0.377361i
\(340\) 1103.24 + 1910.86i 0.175975 + 0.304797i
\(341\) −5069.80 + 8781.15i −0.805118 + 1.39450i
\(342\) 2781.90 0.439847
\(343\) 0 0
\(344\) −424.395 −0.0665170
\(345\) 1983.59 3435.68i 0.309544 0.536146i
\(346\) 10006.0 + 17330.9i 1.55470 + 2.69282i
\(347\) −983.768 1703.94i −0.152194 0.263608i 0.779840 0.625980i \(-0.215301\pi\)
−0.932034 + 0.362371i \(0.881967\pi\)
\(348\) 1052.75 1823.42i 0.162165 0.280878i
\(349\) −4365.46 −0.669564 −0.334782 0.942296i \(-0.608663\pi\)
−0.334782 + 0.942296i \(0.608663\pi\)
\(350\) 0 0
\(351\) −1007.07 −0.153144
\(352\) 6949.30 12036.5i 1.05227 1.82258i
\(353\) 3035.79 + 5258.15i 0.457731 + 0.792813i 0.998841 0.0481389i \(-0.0153290\pi\)
−0.541110 + 0.840952i \(0.681996\pi\)
\(354\) −283.978 491.865i −0.0426364 0.0738484i
\(355\) −1918.76 + 3323.40i −0.286866 + 0.496866i
\(356\) −6998.90 −1.04197
\(357\) 0 0
\(358\) 14794.4 2.18411
\(359\) −4819.02 + 8346.79i −0.708463 + 1.22709i 0.256965 + 0.966421i \(0.417278\pi\)
−0.965427 + 0.260673i \(0.916056\pi\)
\(360\) 2961.19 + 5128.93i 0.433523 + 0.750884i
\(361\) 1712.64 + 2966.37i 0.249692 + 0.432479i
\(362\) 8192.06 14189.1i 1.18941 2.06011i
\(363\) −370.485 −0.0535687
\(364\) 0 0
\(365\) 6132.61 0.879439
\(366\) 457.288 792.046i 0.0653083 0.113117i
\(367\) −261.362 452.693i −0.0371744 0.0643879i 0.846840 0.531848i \(-0.178502\pi\)
−0.884014 + 0.467460i \(0.845169\pi\)
\(368\) 10681.0 + 18500.0i 1.51301 + 2.62060i
\(369\) 1522.11 2636.38i 0.214737 0.371936i
\(370\) 14463.1 2.03217
\(371\) 0 0
\(372\) 17354.2 2.41875
\(373\) −1614.92 + 2797.12i −0.224175 + 0.388283i −0.956072 0.293133i \(-0.905302\pi\)
0.731896 + 0.681416i \(0.238636\pi\)
\(374\) −966.887 1674.70i −0.133681 0.231542i
\(375\) 2194.91 + 3801.69i 0.302252 + 0.523516i
\(376\) 7818.48 13542.0i 1.07236 1.85738i
\(377\) 1320.46 0.180390
\(378\) 0 0
\(379\) 6639.71 0.899892 0.449946 0.893056i \(-0.351443\pi\)
0.449946 + 0.893056i \(0.351443\pi\)
\(380\) 6127.82 10613.7i 0.827239 1.43282i
\(381\) 2572.33 + 4455.41i 0.345891 + 0.599101i
\(382\) 690.887 + 1196.65i 0.0925363 + 0.160278i
\(383\) 7112.22 12318.7i 0.948871 1.64349i 0.201063 0.979578i \(-0.435561\pi\)
0.747809 0.663914i \(-0.231106\pi\)
\(384\) −2212.69 −0.294052
\(385\) 0 0
\(386\) −21369.1 −2.81777
\(387\) −30.6179 + 53.0317i −0.00402169 + 0.00696577i
\(388\) −14332.1 24823.9i −1.87526 3.24805i
\(389\) −1460.91 2530.37i −0.190414 0.329807i 0.754973 0.655755i \(-0.227650\pi\)
−0.945388 + 0.325948i \(0.894316\pi\)
\(390\) −3113.51 + 5392.75i −0.404253 + 0.700186i
\(391\) 1322.39 0.171039
\(392\) 0 0
\(393\) 1411.83 0.181215
\(394\) −7582.24 + 13132.8i −0.969512 + 1.67924i
\(395\) 3659.16 + 6337.86i 0.466108 + 0.807322i
\(396\) −3100.02 5369.40i −0.393389 0.681369i
\(397\) −405.970 + 703.161i −0.0513226 + 0.0888933i −0.890545 0.454894i \(-0.849677\pi\)
0.839223 + 0.543788i \(0.183010\pi\)
\(398\) 16178.0 2.03751
\(399\) 0 0
\(400\) −2334.96 −0.291870
\(401\) −1169.32 + 2025.32i −0.145618 + 0.252218i −0.929603 0.368561i \(-0.879850\pi\)
0.783985 + 0.620780i \(0.213184\pi\)
\(402\) 3811.32 + 6601.40i 0.472864 + 0.819025i
\(403\) 5441.81 + 9425.50i 0.672645 + 1.16506i
\(404\) −4706.91 + 8152.61i −0.579648 + 1.00398i
\(405\) 854.537 0.104845
\(406\) 0 0
\(407\) −9031.21 −1.09990
\(408\) −987.062 + 1709.64i −0.119772 + 0.207451i
\(409\) 1363.79 + 2362.15i 0.164877 + 0.285576i 0.936612 0.350369i \(-0.113944\pi\)
−0.771734 + 0.635945i \(0.780610\pi\)
\(410\) −9411.65 16301.5i −1.13368 1.96359i
\(411\) 665.865 1153.31i 0.0799142 0.138415i
\(412\) −39641.3 −4.74026
\(413\) 0 0
\(414\) 5950.76 0.706435
\(415\) −7038.81 + 12191.6i −0.832582 + 1.44207i
\(416\) −7459.23 12919.8i −0.879132 1.52270i
\(417\) −2504.97 4338.74i −0.294170 0.509518i
\(418\) −5370.48 + 9301.94i −0.628418 + 1.08845i
\(419\) 13306.3 1.55144 0.775721 0.631076i \(-0.217386\pi\)
0.775721 + 0.631076i \(0.217386\pi\)
\(420\) 0 0
\(421\) −11007.5 −1.27428 −0.637138 0.770750i \(-0.719882\pi\)
−0.637138 + 0.770750i \(0.719882\pi\)
\(422\) 1570.40 2720.01i 0.181151 0.313763i
\(423\) −1128.12 1953.97i −0.129672 0.224599i
\(424\) −16744.5 29002.3i −1.91789 3.32187i
\(425\) −72.2716 + 125.178i −0.00824868 + 0.0142871i
\(426\) −5756.29 −0.654679
\(427\) 0 0
\(428\) 23130.2 2.61225
\(429\) 1944.16 3367.39i 0.218800 0.378972i
\(430\) 189.319 + 327.910i 0.0212320 + 0.0367749i
\(431\) 3262.81 + 5651.36i 0.364650 + 0.631592i 0.988720 0.149776i \(-0.0478553\pi\)
−0.624070 + 0.781368i \(0.714522\pi\)
\(432\) −2300.71 + 3984.94i −0.256233 + 0.443809i
\(433\) −11716.3 −1.30034 −0.650171 0.759788i \(-0.725303\pi\)
−0.650171 + 0.759788i \(0.725303\pi\)
\(434\) 0 0
\(435\) −1120.46 −0.123498
\(436\) 13254.6 22957.6i 1.45592 2.52172i
\(437\) −3672.55 6361.04i −0.402018 0.696315i
\(438\) 4599.46 + 7966.49i 0.501759 + 0.869072i
\(439\) 7305.69 12653.8i 0.794264 1.37571i −0.129042 0.991639i \(-0.541190\pi\)
0.923306 0.384066i \(-0.125476\pi\)
\(440\) −22866.4 −2.47753
\(441\) 0 0
\(442\) −2075.67 −0.223370
\(443\) 7619.89 13198.0i 0.817228 1.41548i −0.0904888 0.995897i \(-0.528843\pi\)
0.907717 0.419583i \(-0.137824\pi\)
\(444\) 7728.59 + 13386.3i 0.826087 + 1.43082i
\(445\) 1862.25 + 3225.51i 0.198380 + 0.343604i
\(446\) −9969.05 + 17266.9i −1.05840 + 1.83321i
\(447\) 2231.61 0.236133
\(448\) 0 0
\(449\) 10678.8 1.12241 0.561206 0.827676i \(-0.310338\pi\)
0.561206 + 0.827676i \(0.310338\pi\)
\(450\) −325.222 + 563.301i −0.0340692 + 0.0590095i
\(451\) 5876.91 + 10179.1i 0.613598 + 1.06278i
\(452\) −8986.34 15564.8i −0.935137 1.61971i
\(453\) −910.146 + 1576.42i −0.0943982 + 0.163503i
\(454\) −9640.53 −0.996592
\(455\) 0 0
\(456\) 10965.1 1.12607
\(457\) −2114.12 + 3661.76i −0.216399 + 0.374814i −0.953704 0.300746i \(-0.902764\pi\)
0.737306 + 0.675559i \(0.236098\pi\)
\(458\) −2242.50 3884.12i −0.228788 0.396273i
\(459\) 142.423 + 246.683i 0.0144831 + 0.0250854i
\(460\) 13108.0 22703.8i 1.32862 2.30124i
\(461\) 910.121 0.0919492 0.0459746 0.998943i \(-0.485361\pi\)
0.0459746 + 0.998943i \(0.485361\pi\)
\(462\) 0 0
\(463\) 4456.16 0.447290 0.223645 0.974671i \(-0.428204\pi\)
0.223645 + 0.974671i \(0.428204\pi\)
\(464\) 3016.65 5224.99i 0.301820 0.522768i
\(465\) −4617.57 7997.86i −0.460505 0.797617i
\(466\) −17383.8 30109.5i −1.72808 2.99313i
\(467\) 2214.71 3835.99i 0.219453 0.380104i −0.735188 0.677864i \(-0.762906\pi\)
0.954641 + 0.297759i \(0.0962393\pi\)
\(468\) −6654.99 −0.657323
\(469\) 0 0
\(470\) −13951.0 −1.36918
\(471\) −4672.18 + 8092.45i −0.457075 + 0.791678i
\(472\) −1119.32 1938.73i −0.109155 0.189062i
\(473\) −118.216 204.757i −0.0114917 0.0199043i
\(474\) −5488.74 + 9506.78i −0.531870 + 0.921226i
\(475\) 802.851 0.0775523
\(476\) 0 0
\(477\) −4832.10 −0.463830
\(478\) −481.485 + 833.957i −0.0460724 + 0.0797998i
\(479\) −1376.43 2384.04i −0.131296 0.227411i 0.792881 0.609377i \(-0.208580\pi\)
−0.924176 + 0.381966i \(0.875247\pi\)
\(480\) 6329.41 + 10962.9i 0.601869 + 1.04247i
\(481\) −4846.95 + 8395.16i −0.459463 + 0.795814i
\(482\) −8038.43 −0.759628
\(483\) 0 0
\(484\) −2448.26 −0.229927
\(485\) −7626.88 + 13210.1i −0.714060 + 1.23679i
\(486\) 640.902 + 1110.08i 0.0598188 + 0.103609i
\(487\) 335.299 + 580.755i 0.0311989 + 0.0540380i 0.881203 0.472738i \(-0.156734\pi\)
−0.850004 + 0.526776i \(0.823401\pi\)
\(488\) 1802.44 3121.92i 0.167198 0.289595i
\(489\) 7239.22 0.669466
\(490\) 0 0
\(491\) −8244.70 −0.757797 −0.378898 0.925438i \(-0.623697\pi\)
−0.378898 + 0.925438i \(0.623697\pi\)
\(492\) 10058.5 17421.8i 0.921692 1.59642i
\(493\) −186.743 323.448i −0.0170598 0.0295484i
\(494\) 5764.56 + 9984.50i 0.525019 + 0.909360i
\(495\) −1649.69 + 2857.35i −0.149794 + 0.259451i
\(496\) 49728.3 4.50175
\(497\) 0 0
\(498\) −21116.4 −1.90010
\(499\) −4082.46 + 7071.02i −0.366244 + 0.634353i −0.988975 0.148083i \(-0.952690\pi\)
0.622731 + 0.782436i \(0.286023\pi\)
\(500\) 14504.5 + 25122.5i 1.29732 + 2.24703i
\(501\) 915.713 + 1586.06i 0.0816587 + 0.141437i
\(502\) 6218.42 10770.6i 0.552872 0.957602i
\(503\) 8175.59 0.724715 0.362357 0.932039i \(-0.381972\pi\)
0.362357 + 0.932039i \(0.381972\pi\)
\(504\) 0 0
\(505\) 5009.61 0.441435
\(506\) −11488.0 + 19897.8i −1.00930 + 1.74815i
\(507\) 1208.68 + 2093.49i 0.105876 + 0.183383i
\(508\) 16998.6 + 29442.4i 1.48463 + 2.57145i
\(509\) 439.224 760.758i 0.0382480 0.0662475i −0.846268 0.532758i \(-0.821156\pi\)
0.884516 + 0.466510i \(0.154489\pi\)
\(510\) 1761.28 0.152923
\(511\) 0 0
\(512\) 16876.5 1.45673
\(513\) 791.073 1370.18i 0.0680833 0.117924i
\(514\) 7338.86 + 12711.3i 0.629773 + 1.09080i
\(515\) 10547.7 + 18269.1i 0.902496 + 1.56317i
\(516\) −202.331 + 350.447i −0.0172618 + 0.0298984i
\(517\) 8711.42 0.741060
\(518\) 0 0
\(519\) 11381.4 0.962600
\(520\) −12272.1 + 21256.0i −1.03494 + 1.79257i
\(521\) −5856.30 10143.4i −0.492455 0.852957i 0.507507 0.861647i \(-0.330567\pi\)
−0.999962 + 0.00869048i \(0.997234\pi\)
\(522\) −840.341 1455.51i −0.0704612 0.122042i
\(523\) 3670.91 6358.20i 0.306917 0.531596i −0.670769 0.741666i \(-0.734036\pi\)
0.977686 + 0.210070i \(0.0673692\pi\)
\(524\) 9329.75 0.777809
\(525\) 0 0
\(526\) −10780.8 −0.893659
\(527\) 1539.19 2665.95i 0.127226 0.220362i
\(528\) −8883.07 15385.9i −0.732171 1.26816i
\(529\) −1772.46 3069.99i −0.145678 0.252321i
\(530\) −14939.1 + 25875.3i −1.22437 + 2.12066i
\(531\) −323.014 −0.0263985
\(532\) 0 0
\(533\) 12616.3 1.02528
\(534\) −2793.37 + 4838.26i −0.226369 + 0.392082i
\(535\) −6154.44 10659.8i −0.497345 0.861426i
\(536\) 15022.6 + 26020.0i 1.21060 + 2.09681i
\(537\) 4207.01 7286.76i 0.338075 0.585562i
\(538\) −18213.4 −1.45955
\(539\) 0 0
\(540\) 5646.99 0.450015
\(541\) 7934.36 13742.7i 0.630545 1.09214i −0.356895 0.934144i \(-0.616165\pi\)
0.987440 0.157992i \(-0.0505020\pi\)
\(542\) 6974.21 + 12079.7i 0.552709 + 0.957319i
\(543\) −4659.07 8069.74i −0.368213 0.637763i
\(544\) −2109.80 + 3654.29i −0.166282 + 0.288008i
\(545\) −14107.0 −1.10877
\(546\) 0 0
\(547\) 2315.26 0.180975 0.0904875 0.995898i \(-0.471157\pi\)
0.0904875 + 0.995898i \(0.471157\pi\)
\(548\) 4400.21 7621.38i 0.343006 0.594104i
\(549\) −260.073 450.460i −0.0202179 0.0350185i
\(550\) −1255.69 2174.92i −0.0973505 0.168616i
\(551\) −1037.24 + 1796.56i −0.0801961 + 0.138904i
\(552\) 23455.4 1.80857
\(553\) 0 0
\(554\) −14134.1 −1.08393
\(555\) 4112.81 7123.59i 0.314557 0.544828i
\(556\) −16553.5 28671.5i −1.26263 2.18694i
\(557\) 2409.52 + 4173.42i 0.183294 + 0.317475i 0.943000 0.332792i \(-0.107991\pi\)
−0.759706 + 0.650266i \(0.774657\pi\)
\(558\) 6926.35 11996.8i 0.525476 0.910152i
\(559\) −253.781 −0.0192018
\(560\) 0 0
\(561\) −1099.79 −0.0827689
\(562\) −2689.39 + 4658.17i −0.201860 + 0.349631i
\(563\) −1270.43 2200.45i −0.0951017 0.164721i 0.814549 0.580094i \(-0.196984\pi\)
−0.909651 + 0.415373i \(0.863651\pi\)
\(564\) −7454.93 12912.3i −0.556577 0.964019i
\(565\) −4782.12 + 8282.88i −0.356081 + 0.616750i
\(566\) −2279.85 −0.169310
\(567\) 0 0
\(568\) −22688.9 −1.67607
\(569\) 12110.0 20975.1i 0.892227 1.54538i 0.0550275 0.998485i \(-0.482475\pi\)
0.837200 0.546898i \(-0.184191\pi\)
\(570\) −4891.43 8472.20i −0.359437 0.622564i
\(571\) 5886.04 + 10194.9i 0.431389 + 0.747188i 0.996993 0.0774891i \(-0.0246903\pi\)
−0.565604 + 0.824677i \(0.691357\pi\)
\(572\) 12847.5 22252.6i 0.939129 1.62662i
\(573\) 785.855 0.0572942
\(574\) 0 0
\(575\) 1717.38 0.124556
\(576\) −3358.90 + 5817.79i −0.242976 + 0.420847i
\(577\) −5292.13 9166.24i −0.381827 0.661344i 0.609496 0.792789i \(-0.291372\pi\)
−0.991324 + 0.131445i \(0.958038\pi\)
\(578\) −12664.3 21935.2i −0.911358 1.57852i
\(579\) −6076.61 + 10525.0i −0.436158 + 0.755447i
\(580\) −7404.25 −0.530077
\(581\) 0 0
\(582\) −22880.6 −1.62961
\(583\) 9328.42 16157.3i 0.662682 1.14780i
\(584\) 18129.1 + 31400.6i 1.28457 + 2.22494i
\(585\) 1770.74 + 3067.02i 0.125147 + 0.216762i
\(586\) −5923.52 + 10259.8i −0.417574 + 0.723259i
\(587\) −8712.63 −0.612621 −0.306311 0.951932i \(-0.599095\pi\)
−0.306311 + 0.951932i \(0.599095\pi\)
\(588\) 0 0
\(589\) −17098.6 −1.19615
\(590\) −998.641 + 1729.70i −0.0696838 + 0.120696i
\(591\) 4312.24 + 7469.02i 0.300139 + 0.519855i
\(592\) 22146.2 + 38358.3i 1.53750 + 2.66304i
\(593\) 7681.43 13304.6i 0.531937 0.921341i −0.467368 0.884063i \(-0.654798\pi\)
0.999305 0.0372786i \(-0.0118689\pi\)
\(594\) −4949.07 −0.341857
\(595\) 0 0
\(596\) 14747.0 1.01353
\(597\) 4600.46 7968.22i 0.315384 0.546261i
\(598\) 12331.0 + 21357.9i 0.843229 + 1.46052i
\(599\) −13001.9 22519.9i −0.886883 1.53613i −0.843540 0.537066i \(-0.819533\pi\)
−0.0433430 0.999060i \(-0.513801\pi\)
\(600\) −1281.89 + 2220.30i −0.0872216 + 0.151072i
\(601\) 20567.7 1.39596 0.697982 0.716115i \(-0.254082\pi\)
0.697982 + 0.716115i \(0.254082\pi\)
\(602\) 0 0
\(603\) 4335.22 0.292776
\(604\) −6014.48 + 10417.4i −0.405175 + 0.701783i
\(605\) 651.426 + 1128.30i 0.0437756 + 0.0758216i
\(606\) 3757.21 + 6507.68i 0.251858 + 0.436231i
\(607\) −9821.04 + 17010.5i −0.656711 + 1.13746i 0.324751 + 0.945800i \(0.394720\pi\)
−0.981462 + 0.191657i \(0.938614\pi\)
\(608\) 23437.4 1.56334
\(609\) 0 0
\(610\) −3216.21 −0.213476
\(611\) 4675.33 8097.90i 0.309564 0.536180i
\(612\) 941.165 + 1630.15i 0.0621640 + 0.107671i
\(613\) −4227.29 7321.89i −0.278530 0.482428i 0.692490 0.721428i \(-0.256514\pi\)
−0.971020 + 0.239000i \(0.923180\pi\)
\(614\) −8432.16 + 14604.9i −0.554225 + 0.959946i
\(615\) −10705.4 −0.701922
\(616\) 0 0
\(617\) −24168.4 −1.57696 −0.788479 0.615061i \(-0.789131\pi\)
−0.788479 + 0.615061i \(0.789131\pi\)
\(618\) −15821.5 + 27403.6i −1.02983 + 1.78371i
\(619\) 1018.78 + 1764.58i 0.0661523 + 0.114579i 0.897205 0.441615i \(-0.145594\pi\)
−0.831052 + 0.556194i \(0.812261\pi\)
\(620\) −30514.0 52851.9i −1.97657 3.42352i
\(621\) 1692.19 2930.95i 0.109348 0.189396i
\(622\) 17700.5 1.14104
\(623\) 0 0
\(624\) −19069.8 −1.22340
\(625\) 6862.33 11885.9i 0.439189 0.760698i
\(626\) −5951.14 10307.7i −0.379961 0.658111i
\(627\) 3054.35 + 5290.29i 0.194544 + 0.336960i
\(628\) −30874.9 + 53476.9i −1.96185 + 3.39803i
\(629\) 2741.87 0.173808
\(630\) 0 0
\(631\) 12339.5 0.778489 0.389244 0.921135i \(-0.372736\pi\)
0.389244 + 0.921135i \(0.372736\pi\)
\(632\) −21634.3 + 37471.8i −1.36166 + 2.35846i
\(633\) −893.133 1546.95i −0.0560803 0.0971340i
\(634\) −16191.9 28045.1i −1.01429 1.75680i
\(635\) 9045.89 15667.9i 0.565315 0.979154i
\(636\) −31931.7 −1.99084
\(637\) 0 0
\(638\) 6489.15 0.402677
\(639\) −1636.89 + 2835.17i −0.101337 + 0.175520i
\(640\) 3890.59 + 6738.70i 0.240295 + 0.416204i
\(641\) 5111.32 + 8853.06i 0.314953 + 0.545515i 0.979428 0.201796i \(-0.0646779\pi\)
−0.664474 + 0.747311i \(0.731345\pi\)
\(642\) 9231.65 15989.7i 0.567514 0.982964i
\(643\) −1211.75 −0.0743187 −0.0371594 0.999309i \(-0.511831\pi\)
−0.0371594 + 0.999309i \(0.511831\pi\)
\(644\) 0 0
\(645\) 215.342 0.0131459
\(646\) 1630.48 2824.07i 0.0993037 0.171999i
\(647\) 1408.61 + 2439.78i 0.0855922 + 0.148250i 0.905643 0.424040i \(-0.139388\pi\)
−0.820051 + 0.572290i \(0.806055\pi\)
\(648\) 2526.17 + 4375.46i 0.153144 + 0.265253i
\(649\) 623.581 1080.07i 0.0377160 0.0653260i
\(650\) −2695.66 −0.162665
\(651\) 0 0
\(652\) 47838.6 2.87347
\(653\) −10493.1 + 18174.6i −0.628831 + 1.08917i 0.358956 + 0.933355i \(0.383133\pi\)
−0.987787 + 0.155812i \(0.950201\pi\)
\(654\) −10580.2 18325.5i −0.632600 1.09569i
\(655\) −2482.44 4299.70i −0.148087 0.256494i
\(656\) 28822.5 49922.1i 1.71544 2.97124i
\(657\) 5231.69 0.310666
\(658\) 0 0
\(659\) −2384.09 −0.140927 −0.0704635 0.997514i \(-0.522448\pi\)
−0.0704635 + 0.997514i \(0.522448\pi\)
\(660\) −10901.6 + 18882.1i −0.642944 + 1.11361i
\(661\) 3788.55 + 6561.96i 0.222931 + 0.386128i 0.955697 0.294353i \(-0.0951042\pi\)
−0.732766 + 0.680481i \(0.761771\pi\)
\(662\) 18540.8 + 32113.7i 1.08854 + 1.88540i
\(663\) −590.248 + 1022.34i −0.0345751 + 0.0598859i
\(664\) −83232.2 −4.86451
\(665\) 0 0
\(666\) 12338.4 0.717874
\(667\) −2218.77 + 3843.02i −0.128802 + 0.223092i
\(668\) 6051.26 + 10481.1i 0.350494 + 0.607074i
\(669\) 5669.69 + 9820.19i 0.327658 + 0.567520i
\(670\) 13402.9 23214.6i 0.772837 1.33859i
\(671\) 2008.30 0.115543
\(672\) 0 0
\(673\) 11724.6 0.671547 0.335774 0.941943i \(-0.391002\pi\)
0.335774 + 0.941943i \(0.391002\pi\)
\(674\) 27240.8 47182.5i 1.55679 2.69644i
\(675\) 184.963 + 320.366i 0.0105470 + 0.0182680i
\(676\) 7987.23 + 13834.3i 0.454440 + 0.787113i
\(677\) −16152.1 + 27976.3i −0.916952 + 1.58821i −0.112935 + 0.993602i \(0.536025\pi\)
−0.804018 + 0.594606i \(0.797308\pi\)
\(678\) −14346.4 −0.812639
\(679\) 0 0
\(680\) 6942.23 0.391503
\(681\) −2741.43 + 4748.29i −0.154261 + 0.267188i
\(682\) 26742.8 + 46319.9i 1.50152 + 2.60070i
\(683\) −16683.6 28896.8i −0.934669 1.61889i −0.775223 0.631687i \(-0.782363\pi\)
−0.159446 0.987207i \(-0.550971\pi\)
\(684\) 5227.61 9054.49i 0.292226 0.506150i
\(685\) −4683.18 −0.261219
\(686\) 0 0
\(687\) −2550.75 −0.141655
\(688\) −579.776 + 1004.20i −0.0321275 + 0.0556465i
\(689\) −10012.9 17342.9i −0.553646 0.958943i
\(690\) −10463.3 18122.9i −0.577289 0.999894i
\(691\) 521.837 903.849i 0.0287288 0.0497598i −0.851304 0.524674i \(-0.824187\pi\)
0.880032 + 0.474914i \(0.157521\pi\)
\(692\) 75211.3 4.13166
\(693\) 0 0
\(694\) −10378.6 −0.567674
\(695\) −8809.01 + 15257.6i −0.480784 + 0.832742i
\(696\) −3312.28 5737.03i −0.180390 0.312445i
\(697\) −1784.23 3090.37i −0.0969619 0.167943i
\(698\) −11513.7 + 19942.4i −0.624357 + 1.08142i
\(699\) −19773.3 −1.06995
\(700\) 0 0
\(701\) −11305.7 −0.609143 −0.304572 0.952489i \(-0.598513\pi\)
−0.304572 + 0.952489i \(0.598513\pi\)
\(702\) −2656.11 + 4600.52i −0.142804 + 0.247344i
\(703\) −7614.72 13189.1i −0.408527 0.707590i
\(704\) −12968.8 22462.6i −0.694289 1.20254i
\(705\) −3967.18 + 6871.35i −0.211933 + 0.367078i
\(706\) 32027.1 1.70730
\(707\) 0 0
\(708\) −2134.55 −0.113307
\(709\) 6653.38 11524.0i 0.352430 0.610427i −0.634245 0.773132i \(-0.718689\pi\)
0.986675 + 0.162706i \(0.0520221\pi\)
\(710\) 10121.3 + 17530.6i 0.534995 + 0.926639i
\(711\) 3121.61 + 5406.79i 0.164655 + 0.285190i
\(712\) −11010.3 + 19070.4i −0.579535 + 1.00378i
\(713\) −36575.6 −1.92113
\(714\) 0 0
\(715\) −13673.7 −0.715201
\(716\) 27801.0 48152.8i 1.45108 2.51334i
\(717\) 273.835 + 474.296i 0.0142630 + 0.0247042i
\(718\) 25419.9 + 44028.6i 1.32126 + 2.28849i
\(719\) −5350.62 + 9267.55i −0.277531 + 0.480697i −0.970770 0.240010i \(-0.922849\pi\)
0.693240 + 0.720707i \(0.256183\pi\)
\(720\) 16181.4 0.837562
\(721\) 0 0
\(722\) 18068.0 0.931333
\(723\) −2285.85 + 3959.20i −0.117582 + 0.203657i
\(724\) −30788.3 53326.8i −1.58044 2.73740i
\(725\) −242.521 420.059i −0.0124235 0.0215181i
\(726\) −977.139 + 1692.45i −0.0499518 + 0.0865191i
\(727\) −2121.14 −0.108210 −0.0541051 0.998535i \(-0.517231\pi\)
−0.0541051 + 0.998535i \(0.517231\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 16174.5 28015.1i 0.820062 1.42039i
\(731\) 35.8904 + 62.1640i 0.00181594 + 0.00314531i
\(732\) −1718.63 2976.75i −0.0867792 0.150306i
\(733\) 10792.0 18692.3i 0.543809 0.941906i −0.454871 0.890557i \(-0.650315\pi\)
0.998681 0.0513484i \(-0.0163519\pi\)
\(734\) −2757.33 −0.138658
\(735\) 0 0
\(736\) 50135.0 2.51087
\(737\) −8369.18 + 14495.8i −0.418294 + 0.724507i
\(738\) −8029.02 13906.7i −0.400478 0.693648i
\(739\) 4972.61 + 8612.81i 0.247524 + 0.428724i 0.962838 0.270079i \(-0.0870497\pi\)
−0.715314 + 0.698803i \(0.753716\pi\)
\(740\) 27178.5 47074.5i 1.35013 2.33850i
\(741\) 6556.94 0.325068
\(742\) 0 0
\(743\) 2867.01 0.141562 0.0707808 0.997492i \(-0.477451\pi\)
0.0707808 + 0.997492i \(0.477451\pi\)
\(744\) 27300.8 47286.4i 1.34529 2.33011i
\(745\) −3923.86 6796.32i −0.192965 0.334225i
\(746\) 8518.57 + 14754.6i 0.418079 + 0.724134i
\(747\) −6004.76 + 10400.6i −0.294114 + 0.509420i
\(748\) −7267.71 −0.355259
\(749\) 0 0
\(750\) 23155.9 1.12738
\(751\) 5412.05 9373.94i 0.262967 0.455473i −0.704062 0.710139i \(-0.748632\pi\)
0.967029 + 0.254666i \(0.0819655\pi\)
\(752\) −21362.0 37000.1i −1.03589 1.79422i
\(753\) −3536.60 6125.56i −0.171156 0.296451i
\(754\) 3482.66 6032.14i 0.168211 0.291349i
\(755\) 6401.26 0.308564
\(756\) 0 0
\(757\) −14512.0 −0.696761 −0.348381 0.937353i \(-0.613268\pi\)
−0.348381 + 0.937353i \(0.613268\pi\)
\(758\) 17512.0 30331.6i 0.839134 1.45342i
\(759\) 6533.57 + 11316.5i 0.312455 + 0.541188i
\(760\) −19280.0 33393.9i −0.920208 1.59385i
\(761\) 16537.9 28644.5i 0.787778 1.36447i −0.139547 0.990215i \(-0.544565\pi\)
0.927325 0.374256i \(-0.122102\pi\)
\(762\) 27137.7 1.29015
\(763\) 0 0
\(764\) 5193.13 0.245917
\(765\) 500.846 867.490i 0.0236707 0.0409989i
\(766\) −37516.4 64980.3i −1.76961 3.06506i
\(767\) −669.338 1159.33i −0.0315103 0.0545774i
\(768\) 3121.19 5406.06i 0.146649 0.254003i
\(769\) 6728.44 0.315518 0.157759 0.987478i \(-0.449573\pi\)
0.157759 + 0.987478i \(0.449573\pi\)
\(770\) 0 0
\(771\) 8347.65 0.389926
\(772\) −40155.8 + 69551.8i