Properties

Label 147.4.e.l.79.1
Level $147$
Weight $4$
Character 147.79
Analytic conductor $8.673$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,4,Mod(67,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.67");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 147.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.67328077084\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.1
Root \(-1.63746 + 1.52274i\) of defining polynomial
Character \(\chi\) \(=\) 147.79
Dual form 147.4.e.l.67.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.13746 + 1.97014i) q^{2} +(-1.50000 - 2.59808i) q^{3} +(1.41238 + 2.44631i) q^{4} +(2.27492 - 3.94027i) q^{5} +6.82475 q^{6} -24.6254 q^{8} +(-4.50000 + 7.79423i) q^{9} +O(q^{10})\) \(q+(-1.13746 + 1.97014i) q^{2} +(-1.50000 - 2.59808i) q^{3} +(1.41238 + 2.44631i) q^{4} +(2.27492 - 3.94027i) q^{5} +6.82475 q^{6} -24.6254 q^{8} +(-4.50000 + 7.79423i) q^{9} +(5.17525 + 8.96379i) q^{10} +(20.3746 + 35.2898i) q^{11} +(4.23713 - 7.33892i) q^{12} +53.2990 q^{13} -13.6495 q^{15} +(16.7114 - 28.9450i) q^{16} +(-2.27492 - 3.94027i) q^{17} +(-10.2371 - 17.7312i) q^{18} +(-61.2990 + 106.173i) q^{19} +12.8522 q^{20} -92.7010 q^{22} +(-65.6736 + 113.750i) q^{23} +(36.9381 + 63.9787i) q^{24} +(52.1495 + 90.3256i) q^{25} +(-60.6254 + 105.006i) q^{26} +27.0000 q^{27} -216.598 q^{29} +(15.5257 - 26.8914i) q^{30} +(125.897 + 218.060i) q^{31} +(-60.4846 - 104.762i) q^{32} +(61.1238 - 105.869i) q^{33} +10.3505 q^{34} -25.4228 q^{36} +(-5.94851 + 10.3031i) q^{37} +(-139.450 - 241.535i) q^{38} +(-79.9485 - 138.475i) q^{39} +(-56.0208 + 97.0308i) q^{40} -111.752 q^{41} +369.196 q^{43} +(-57.5531 + 99.6850i) q^{44} +(20.4743 + 35.4624i) q^{45} +(-149.402 - 258.772i) q^{46} +(131.347 - 227.500i) q^{47} -100.268 q^{48} -237.272 q^{50} +(-6.82475 + 11.8208i) q^{51} +(75.2782 + 130.386i) q^{52} +(283.550 + 491.123i) q^{53} +(-30.7114 + 53.1937i) q^{54} +185.402 q^{55} +367.794 q^{57} +(246.371 - 426.728i) q^{58} +(-419.945 - 727.366i) q^{59} +(-19.2782 - 33.3909i) q^{60} +(242.897 - 420.710i) q^{61} -572.811 q^{62} +542.577 q^{64} +(121.251 - 210.013i) q^{65} +(139.051 + 240.844i) q^{66} +(166.846 + 288.985i) q^{67} +(6.42608 - 11.1303i) q^{68} +394.042 q^{69} +590.248 q^{71} +(110.814 - 191.936i) q^{72} +(-245.350 - 424.960i) q^{73} +(-13.5324 - 23.4387i) q^{74} +(156.449 - 270.977i) q^{75} -346.309 q^{76} +363.752 q^{78} +(-60.8455 + 105.388i) q^{79} +(-76.0340 - 131.695i) q^{80} +(-40.5000 - 70.1481i) q^{81} +(127.114 - 220.168i) q^{82} +609.608 q^{83} -20.7010 q^{85} +(-419.945 + 727.366i) q^{86} +(324.897 + 562.738i) q^{87} +(-501.733 - 869.026i) q^{88} +(-359.519 + 622.705i) q^{89} -93.1545 q^{90} -371.023 q^{92} +(377.691 - 654.180i) q^{93} +(298.804 + 517.544i) q^{94} +(278.900 + 483.070i) q^{95} +(-181.454 + 314.287i) q^{96} -637.877 q^{97} -366.743 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{2} - 6 q^{3} - 17 q^{4} - 6 q^{5} - 18 q^{6} - 174 q^{8} - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 3 q^{2} - 6 q^{3} - 17 q^{4} - 6 q^{5} - 18 q^{6} - 174 q^{8} - 18 q^{9} + 66 q^{10} + 6 q^{11} - 51 q^{12} + 32 q^{13} + 36 q^{15} - 137 q^{16} + 6 q^{17} + 27 q^{18} - 64 q^{19} + 444 q^{20} - 552 q^{22} - 6 q^{23} + 261 q^{24} + 118 q^{25} - 318 q^{26} + 108 q^{27} - 504 q^{29} + 198 q^{30} - 40 q^{31} + 279 q^{32} + 18 q^{33} + 132 q^{34} + 306 q^{36} + 248 q^{37} - 588 q^{38} - 48 q^{39} + 546 q^{40} - 900 q^{41} + 752 q^{43} - 804 q^{44} - 54 q^{45} - 960 q^{46} + 12 q^{47} + 822 q^{48} - 330 q^{50} + 18 q^{51} + 890 q^{52} + 1104 q^{53} + 81 q^{54} + 1104 q^{55} + 384 q^{57} + 306 q^{58} - 804 q^{59} - 666 q^{60} + 428 q^{61} - 4224 q^{62} + 2578 q^{64} + 636 q^{65} + 828 q^{66} - 148 q^{67} + 222 q^{68} + 36 q^{69} + 1908 q^{71} + 783 q^{72} - 1072 q^{73} - 1398 q^{74} + 354 q^{75} - 3016 q^{76} + 1908 q^{78} + 572 q^{79} - 1950 q^{80} - 162 q^{81} - 1530 q^{82} + 3888 q^{83} - 264 q^{85} - 804 q^{86} + 756 q^{87} + 1164 q^{88} - 366 q^{89} - 1188 q^{90} - 5712 q^{92} - 120 q^{93} + 1920 q^{94} + 1176 q^{95} + 837 q^{96} + 1616 q^{97} - 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.13746 + 1.97014i −0.402152 + 0.696548i −0.993985 0.109512i \(-0.965071\pi\)
0.591833 + 0.806061i \(0.298404\pi\)
\(3\) −1.50000 2.59808i −0.288675 0.500000i
\(4\) 1.41238 + 2.44631i 0.176547 + 0.305788i
\(5\) 2.27492 3.94027i 0.203475 0.352429i −0.746171 0.665754i \(-0.768110\pi\)
0.949646 + 0.313326i \(0.101443\pi\)
\(6\) 6.82475 0.464366
\(7\) 0 0
\(8\) −24.6254 −1.08830
\(9\) −4.50000 + 7.79423i −0.166667 + 0.288675i
\(10\) 5.17525 + 8.96379i 0.163656 + 0.283460i
\(11\) 20.3746 + 35.2898i 0.558470 + 0.967298i 0.997624 + 0.0688867i \(0.0219447\pi\)
−0.439155 + 0.898412i \(0.644722\pi\)
\(12\) 4.23713 7.33892i 0.101929 0.176547i
\(13\) 53.2990 1.13711 0.568557 0.822644i \(-0.307502\pi\)
0.568557 + 0.822644i \(0.307502\pi\)
\(14\) 0 0
\(15\) −13.6495 −0.234952
\(16\) 16.7114 28.9450i 0.261115 0.452265i
\(17\) −2.27492 3.94027i −0.0324558 0.0562151i 0.849341 0.527844i \(-0.176999\pi\)
−0.881797 + 0.471629i \(0.843666\pi\)
\(18\) −10.2371 17.7312i −0.134051 0.232183i
\(19\) −61.2990 + 106.173i −0.740156 + 1.28199i 0.212269 + 0.977211i \(0.431915\pi\)
−0.952424 + 0.304776i \(0.901418\pi\)
\(20\) 12.8522 0.143691
\(21\) 0 0
\(22\) −92.7010 −0.898360
\(23\) −65.6736 + 113.750i −0.595387 + 1.03124i 0.398106 + 0.917340i \(0.369668\pi\)
−0.993492 + 0.113900i \(0.963666\pi\)
\(24\) 36.9381 + 63.9787i 0.314165 + 0.544150i
\(25\) 52.1495 + 90.3256i 0.417196 + 0.722605i
\(26\) −60.6254 + 105.006i −0.457293 + 0.792055i
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −216.598 −1.38694 −0.693470 0.720486i \(-0.743919\pi\)
−0.693470 + 0.720486i \(0.743919\pi\)
\(30\) 15.5257 26.8914i 0.0944867 0.163656i
\(31\) 125.897 + 218.060i 0.729412 + 1.26338i 0.957132 + 0.289652i \(0.0935396\pi\)
−0.227720 + 0.973727i \(0.573127\pi\)
\(32\) −60.4846 104.762i −0.334134 0.578736i
\(33\) 61.1238 105.869i 0.322433 0.558470i
\(34\) 10.3505 0.0522087
\(35\) 0 0
\(36\) −25.4228 −0.117698
\(37\) −5.94851 + 10.3031i −0.0264305 + 0.0457790i −0.878938 0.476936i \(-0.841747\pi\)
0.852508 + 0.522715i \(0.175081\pi\)
\(38\) −139.450 241.535i −0.595311 1.03111i
\(39\) −79.9485 138.475i −0.328257 0.568557i
\(40\) −56.0208 + 97.0308i −0.221442 + 0.383548i
\(41\) −111.752 −0.425678 −0.212839 0.977087i \(-0.568271\pi\)
−0.212839 + 0.977087i \(0.568271\pi\)
\(42\) 0 0
\(43\) 369.196 1.30935 0.654673 0.755912i \(-0.272806\pi\)
0.654673 + 0.755912i \(0.272806\pi\)
\(44\) −57.5531 + 99.6850i −0.197192 + 0.341547i
\(45\) 20.4743 + 35.4624i 0.0678249 + 0.117476i
\(46\) −149.402 258.772i −0.478872 0.829431i
\(47\) 131.347 227.500i 0.407637 0.706049i −0.586987 0.809596i \(-0.699686\pi\)
0.994624 + 0.103548i \(0.0330194\pi\)
\(48\) −100.268 −0.301510
\(49\) 0 0
\(50\) −237.272 −0.671105
\(51\) −6.82475 + 11.8208i −0.0187384 + 0.0324558i
\(52\) 75.2782 + 130.386i 0.200754 + 0.347716i
\(53\) 283.550 + 491.123i 0.734879 + 1.27285i 0.954777 + 0.297324i \(0.0960942\pi\)
−0.219898 + 0.975523i \(0.570572\pi\)
\(54\) −30.7114 + 53.1937i −0.0773943 + 0.134051i
\(55\) 185.402 0.454538
\(56\) 0 0
\(57\) 367.794 0.854658
\(58\) 246.371 426.728i 0.557761 0.966070i
\(59\) −419.945 727.366i −0.926648 1.60500i −0.788890 0.614535i \(-0.789344\pi\)
−0.137758 0.990466i \(-0.543990\pi\)
\(60\) −19.2782 33.3909i −0.0414801 0.0718457i
\(61\) 242.897 420.710i 0.509832 0.883056i −0.490103 0.871665i \(-0.663041\pi\)
0.999935 0.0113909i \(-0.00362593\pi\)
\(62\) −572.811 −1.17334
\(63\) 0 0
\(64\) 542.577 1.05972
\(65\) 121.251 210.013i 0.231374 0.400752i
\(66\) 139.051 + 240.844i 0.259334 + 0.449180i
\(67\) 166.846 + 288.985i 0.304230 + 0.526942i 0.977090 0.212828i \(-0.0682675\pi\)
−0.672859 + 0.739770i \(0.734934\pi\)
\(68\) 6.42608 11.1303i 0.0114599 0.0198492i
\(69\) 394.042 0.687493
\(70\) 0 0
\(71\) 590.248 0.986613 0.493306 0.869856i \(-0.335788\pi\)
0.493306 + 0.869856i \(0.335788\pi\)
\(72\) 110.814 191.936i 0.181383 0.314165i
\(73\) −245.350 424.960i −0.393371 0.681339i 0.599521 0.800359i \(-0.295358\pi\)
−0.992892 + 0.119020i \(0.962025\pi\)
\(74\) −13.5324 23.4387i −0.0212582 0.0368203i
\(75\) 156.449 270.977i 0.240868 0.417196i
\(76\) −346.309 −0.522689
\(77\) 0 0
\(78\) 363.752 0.528037
\(79\) −60.8455 + 105.388i −0.0866539 + 0.150089i −0.906095 0.423075i \(-0.860951\pi\)
0.819441 + 0.573164i \(0.194284\pi\)
\(80\) −76.0340 131.695i −0.106261 0.184049i
\(81\) −40.5000 70.1481i −0.0555556 0.0962250i
\(82\) 127.114 220.168i 0.171187 0.296505i
\(83\) 609.608 0.806183 0.403091 0.915160i \(-0.367936\pi\)
0.403091 + 0.915160i \(0.367936\pi\)
\(84\) 0 0
\(85\) −20.7010 −0.0264157
\(86\) −419.945 + 727.366i −0.526556 + 0.912023i
\(87\) 324.897 + 562.738i 0.400375 + 0.693470i
\(88\) −501.733 869.026i −0.607783 1.05271i
\(89\) −359.519 + 622.705i −0.428190 + 0.741648i −0.996712 0.0810204i \(-0.974182\pi\)
0.568522 + 0.822668i \(0.307515\pi\)
\(90\) −93.1545 −0.109104
\(91\) 0 0
\(92\) −371.023 −0.420455
\(93\) 377.691 654.180i 0.421126 0.729412i
\(94\) 298.804 + 517.544i 0.327865 + 0.567878i
\(95\) 278.900 + 483.070i 0.301206 + 0.521704i
\(96\) −181.454 + 314.287i −0.192912 + 0.334134i
\(97\) −637.877 −0.667697 −0.333849 0.942627i \(-0.608347\pi\)
−0.333849 + 0.942627i \(0.608347\pi\)
\(98\) 0 0
\(99\) −366.743 −0.372313
\(100\) −147.309 + 255.147i −0.147309 + 0.255147i
\(101\) −335.574 581.231i −0.330603 0.572620i 0.652028 0.758195i \(-0.273919\pi\)
−0.982630 + 0.185575i \(0.940585\pi\)
\(102\) −15.5257 26.8914i −0.0150714 0.0261043i
\(103\) 456.206 790.172i 0.436420 0.755902i −0.560990 0.827823i \(-0.689579\pi\)
0.997410 + 0.0719202i \(0.0229127\pi\)
\(104\) −1312.51 −1.23752
\(105\) 0 0
\(106\) −1290.10 −1.18213
\(107\) 58.3680 101.096i 0.0527350 0.0913397i −0.838453 0.544974i \(-0.816539\pi\)
0.891188 + 0.453634i \(0.149873\pi\)
\(108\) 38.1341 + 66.0503i 0.0339765 + 0.0588490i
\(109\) −418.588 725.016i −0.367830 0.637100i 0.621396 0.783497i \(-0.286566\pi\)
−0.989226 + 0.146396i \(0.953232\pi\)
\(110\) −210.887 + 365.267i −0.182794 + 0.316608i
\(111\) 35.6911 0.0305193
\(112\) 0 0
\(113\) −1086.58 −0.904572 −0.452286 0.891873i \(-0.649391\pi\)
−0.452286 + 0.891873i \(0.649391\pi\)
\(114\) −418.350 + 724.604i −0.343703 + 0.595311i
\(115\) 298.804 + 517.544i 0.242292 + 0.419663i
\(116\) −305.918 529.865i −0.244860 0.424110i
\(117\) −239.846 + 415.425i −0.189519 + 0.328257i
\(118\) 1910.68 1.49061
\(119\) 0 0
\(120\) 336.125 0.255699
\(121\) −164.748 + 285.351i −0.123777 + 0.214388i
\(122\) 552.571 + 957.080i 0.410061 + 0.710246i
\(123\) 167.629 + 290.341i 0.122883 + 0.212839i
\(124\) −355.628 + 615.965i −0.257551 + 0.446091i
\(125\) 1043.27 0.746505
\(126\) 0 0
\(127\) −537.113 −0.375284 −0.187642 0.982237i \(-0.560084\pi\)
−0.187642 + 0.982237i \(0.560084\pi\)
\(128\) −133.282 + 230.851i −0.0920357 + 0.159411i
\(129\) −553.794 959.199i −0.377976 0.654673i
\(130\) 275.836 + 477.761i 0.186095 + 0.322326i
\(131\) −748.694 + 1296.78i −0.499341 + 0.864885i −1.00000 0.000760253i \(-0.999758\pi\)
0.500658 + 0.865645i \(0.333091\pi\)
\(132\) 345.319 0.227698
\(133\) 0 0
\(134\) −759.120 −0.489388
\(135\) 61.4228 106.387i 0.0391587 0.0678249i
\(136\) 56.0208 + 97.0308i 0.0353216 + 0.0611789i
\(137\) 690.045 + 1195.19i 0.430325 + 0.745345i 0.996901 0.0786647i \(-0.0250657\pi\)
−0.566576 + 0.824009i \(0.691732\pi\)
\(138\) −448.206 + 776.315i −0.276477 + 0.478872i
\(139\) −141.980 −0.0866374 −0.0433187 0.999061i \(-0.513793\pi\)
−0.0433187 + 0.999061i \(0.513793\pi\)
\(140\) 0 0
\(141\) −788.083 −0.470699
\(142\) −671.382 + 1162.87i −0.396769 + 0.687223i
\(143\) 1085.95 + 1880.91i 0.635044 + 1.09993i
\(144\) 150.402 + 260.505i 0.0870385 + 0.150755i
\(145\) −492.743 + 853.455i −0.282207 + 0.488797i
\(146\) 1116.30 0.632781
\(147\) 0 0
\(148\) −33.6061 −0.0186649
\(149\) 971.935 1683.44i 0.534390 0.925590i −0.464803 0.885414i \(-0.653875\pi\)
0.999193 0.0401757i \(-0.0127918\pi\)
\(150\) 355.907 + 616.450i 0.193731 + 0.335553i
\(151\) 1327.38 + 2299.09i 0.715370 + 1.23906i 0.962817 + 0.270155i \(0.0870750\pi\)
−0.247447 + 0.968901i \(0.579592\pi\)
\(152\) 1509.51 2614.55i 0.805511 1.39519i
\(153\) 40.9485 0.0216372
\(154\) 0 0
\(155\) 1145.62 0.593668
\(156\) 225.835 391.157i 0.115905 0.200754i
\(157\) −832.608 1442.12i −0.423244 0.733081i 0.573010 0.819548i \(-0.305775\pi\)
−0.996255 + 0.0864675i \(0.972442\pi\)
\(158\) −138.419 239.748i −0.0696961 0.120717i
\(159\) 850.650 1473.37i 0.424282 0.734879i
\(160\) −550.390 −0.271951
\(161\) 0 0
\(162\) 184.268 0.0893672
\(163\) 16.5366 28.6422i 0.00794629 0.0137634i −0.862025 0.506866i \(-0.830804\pi\)
0.869971 + 0.493103i \(0.164137\pi\)
\(164\) −157.837 273.381i −0.0751522 0.130167i
\(165\) −278.103 481.688i −0.131214 0.227269i
\(166\) −693.404 + 1201.01i −0.324208 + 0.561545i
\(167\) 1654.48 0.766630 0.383315 0.923618i \(-0.374782\pi\)
0.383315 + 0.923618i \(0.374782\pi\)
\(168\) 0 0
\(169\) 643.784 0.293029
\(170\) 23.5465 40.7838i 0.0106232 0.0183998i
\(171\) −551.691 955.557i −0.246719 0.427329i
\(172\) 521.444 + 903.167i 0.231161 + 0.400383i
\(173\) −32.0954 + 55.5909i −0.0141050 + 0.0244306i −0.872992 0.487735i \(-0.837823\pi\)
0.858887 + 0.512166i \(0.171157\pi\)
\(174\) −1478.23 −0.644047
\(175\) 0 0
\(176\) 1361.95 0.583300
\(177\) −1259.84 + 2182.10i −0.535000 + 0.926648i
\(178\) −817.876 1416.60i −0.344396 0.596511i
\(179\) −1957.34 3390.21i −0.817309 1.41562i −0.907658 0.419711i \(-0.862132\pi\)
0.0903489 0.995910i \(-0.471202\pi\)
\(180\) −57.8347 + 100.173i −0.0239486 + 0.0414801i
\(181\) −2058.04 −0.845156 −0.422578 0.906327i \(-0.638875\pi\)
−0.422578 + 0.906327i \(0.638875\pi\)
\(182\) 0 0
\(183\) −1457.38 −0.588704
\(184\) 1617.24 2801.14i 0.647959 1.12230i
\(185\) 27.0647 + 46.8775i 0.0107559 + 0.0186297i
\(186\) 859.216 + 1488.21i 0.338714 + 0.586670i
\(187\) 92.7010 160.563i 0.0362512 0.0627889i
\(188\) 742.046 0.287869
\(189\) 0 0
\(190\) −1268.95 −0.484523
\(191\) −214.024 + 370.701i −0.0810798 + 0.140434i −0.903714 0.428137i \(-0.859170\pi\)
0.822634 + 0.568571i \(0.192504\pi\)
\(192\) −813.866 1409.66i −0.305915 0.529861i
\(193\) −802.463 1389.91i −0.299288 0.518382i 0.676685 0.736272i \(-0.263416\pi\)
−0.975973 + 0.217890i \(0.930082\pi\)
\(194\) 725.559 1256.70i 0.268516 0.465083i
\(195\) −727.505 −0.267168
\(196\) 0 0
\(197\) 3738.83 1.35218 0.676092 0.736817i \(-0.263672\pi\)
0.676092 + 0.736817i \(0.263672\pi\)
\(198\) 417.154 722.533i 0.149727 0.259334i
\(199\) 174.515 + 302.269i 0.0621660 + 0.107675i 0.895433 0.445196i \(-0.146866\pi\)
−0.833267 + 0.552870i \(0.813533\pi\)
\(200\) −1284.20 2224.31i −0.454034 0.786411i
\(201\) 500.537 866.955i 0.175647 0.304230i
\(202\) 1526.81 0.531810
\(203\) 0 0
\(204\) −38.5565 −0.0132328
\(205\) −254.228 + 440.335i −0.0866148 + 0.150021i
\(206\) 1037.83 + 1797.58i 0.351015 + 0.607976i
\(207\) −591.062 1023.75i −0.198462 0.343747i
\(208\) 890.700 1542.74i 0.296918 0.514277i
\(209\) −4995.77 −1.65342
\(210\) 0 0
\(211\) 2588.58 0.844574 0.422287 0.906462i \(-0.361227\pi\)
0.422287 + 0.906462i \(0.361227\pi\)
\(212\) −800.958 + 1387.30i −0.259481 + 0.449435i
\(213\) −885.371 1533.51i −0.284811 0.493306i
\(214\) 132.782 + 229.986i 0.0424150 + 0.0734649i
\(215\) 839.890 1454.73i 0.266419 0.461451i
\(216\) −664.886 −0.209443
\(217\) 0 0
\(218\) 1904.51 0.591695
\(219\) −736.051 + 1274.88i −0.227113 + 0.393371i
\(220\) 261.857 + 453.550i 0.0802473 + 0.138992i
\(221\) −121.251 210.013i −0.0369059 0.0639230i
\(222\) −40.5971 + 70.3162i −0.0122734 + 0.0212582i
\(223\) −3236.21 −0.971804 −0.485902 0.874013i \(-0.661509\pi\)
−0.485902 + 0.874013i \(0.661509\pi\)
\(224\) 0 0
\(225\) −938.691 −0.278131
\(226\) 1235.94 2140.71i 0.363776 0.630078i
\(227\) 2815.81 + 4877.12i 0.823312 + 1.42602i 0.903203 + 0.429215i \(0.141210\pi\)
−0.0798906 + 0.996804i \(0.525457\pi\)
\(228\) 519.463 + 899.737i 0.150887 + 0.261344i
\(229\) −1885.12 + 3265.13i −0.543985 + 0.942210i 0.454685 + 0.890652i \(0.349752\pi\)
−0.998670 + 0.0515573i \(0.983582\pi\)
\(230\) −1359.51 −0.389754
\(231\) 0 0
\(232\) 5333.82 1.50941
\(233\) 3280.45 5681.91i 0.922358 1.59757i 0.126602 0.991954i \(-0.459593\pi\)
0.795756 0.605618i \(-0.207074\pi\)
\(234\) −545.629 945.057i −0.152431 0.264018i
\(235\) −597.608 1035.09i −0.165888 0.287326i
\(236\) 1186.24 2054.63i 0.327194 0.566716i
\(237\) 365.073 0.100059
\(238\) 0 0
\(239\) −771.444 −0.208789 −0.104394 0.994536i \(-0.533290\pi\)
−0.104394 + 0.994536i \(0.533290\pi\)
\(240\) −228.102 + 395.084i −0.0613497 + 0.106261i
\(241\) −626.051 1084.35i −0.167334 0.289831i 0.770148 0.637866i \(-0.220183\pi\)
−0.937482 + 0.348035i \(0.886849\pi\)
\(242\) −374.787 649.150i −0.0995546 0.172434i
\(243\) −121.500 + 210.444i −0.0320750 + 0.0555556i
\(244\) 1372.25 0.360037
\(245\) 0 0
\(246\) −762.683 −0.197670
\(247\) −3267.18 + 5658.92i −0.841641 + 1.45777i
\(248\) −3100.27 5369.82i −0.793819 1.37493i
\(249\) −914.412 1583.81i −0.232725 0.403091i
\(250\) −1186.68 + 2055.39i −0.300209 + 0.519977i
\(251\) 5166.27 1.29917 0.649586 0.760288i \(-0.274942\pi\)
0.649586 + 0.760288i \(0.274942\pi\)
\(252\) 0 0
\(253\) −5352.29 −1.33002
\(254\) 610.944 1058.19i 0.150921 0.261403i
\(255\) 31.0515 + 53.7828i 0.00762557 + 0.0132079i
\(256\) 1867.10 + 3233.92i 0.455836 + 0.789531i
\(257\) −1383.73 + 2396.68i −0.335854 + 0.581716i −0.983648 0.180099i \(-0.942358\pi\)
0.647795 + 0.761815i \(0.275691\pi\)
\(258\) 2519.67 0.608015
\(259\) 0 0
\(260\) 685.007 0.163394
\(261\) 974.691 1688.21i 0.231157 0.400375i
\(262\) −1703.22 2950.06i −0.401623 0.695631i
\(263\) 2050.89 + 3552.25i 0.480849 + 0.832855i 0.999759 0.0219739i \(-0.00699507\pi\)
−0.518909 + 0.854829i \(0.673662\pi\)
\(264\) −1505.20 + 2607.08i −0.350903 + 0.607783i
\(265\) 2580.21 0.598117
\(266\) 0 0
\(267\) 2157.11 0.494432
\(268\) −471.297 + 816.311i −0.107422 + 0.186060i
\(269\) 3475.42 + 6019.60i 0.787732 + 1.36439i 0.927353 + 0.374187i \(0.122078\pi\)
−0.139621 + 0.990205i \(0.544588\pi\)
\(270\) 139.732 + 242.022i 0.0314956 + 0.0545519i
\(271\) 3570.15 6183.67i 0.800262 1.38609i −0.119182 0.992872i \(-0.538027\pi\)
0.919444 0.393222i \(-0.128639\pi\)
\(272\) −152.068 −0.0338988
\(273\) 0 0
\(274\) −3139.59 −0.692225
\(275\) −2125.05 + 3680.69i −0.465983 + 0.807106i
\(276\) 556.535 + 963.946i 0.121375 + 0.210227i
\(277\) −660.257 1143.60i −0.143217 0.248059i 0.785490 0.618875i \(-0.212411\pi\)
−0.928706 + 0.370816i \(0.879078\pi\)
\(278\) 161.497 279.720i 0.0348414 0.0603471i
\(279\) −2266.15 −0.486275
\(280\) 0 0
\(281\) −204.309 −0.0433738 −0.0216869 0.999765i \(-0.506904\pi\)
−0.0216869 + 0.999765i \(0.506904\pi\)
\(282\) 896.412 1552.63i 0.189293 0.327865i
\(283\) −487.897 845.062i −0.102482 0.177504i 0.810225 0.586120i \(-0.199345\pi\)
−0.912707 + 0.408615i \(0.866012\pi\)
\(284\) 833.651 + 1443.93i 0.174183 + 0.301695i
\(285\) 836.701 1449.21i 0.173901 0.301206i
\(286\) −4940.87 −1.02154
\(287\) 0 0
\(288\) 1088.72 0.222756
\(289\) 2446.15 4236.86i 0.497893 0.862376i
\(290\) −1120.95 1941.54i −0.226981 0.393142i
\(291\) 956.816 + 1657.25i 0.192748 + 0.333849i
\(292\) 693.054 1200.41i 0.138897 0.240577i
\(293\) 607.919 0.121212 0.0606058 0.998162i \(-0.480697\pi\)
0.0606058 + 0.998162i \(0.480697\pi\)
\(294\) 0 0
\(295\) −3821.36 −0.754198
\(296\) 146.485 253.719i 0.0287643 0.0498213i
\(297\) 550.114 + 952.825i 0.107478 + 0.186157i
\(298\) 2211.07 + 3829.69i 0.429812 + 0.744456i
\(299\) −3500.34 + 6062.76i −0.677023 + 1.17264i
\(300\) 883.856 0.170098
\(301\) 0 0
\(302\) −6039.37 −1.15075
\(303\) −1006.72 + 1743.69i −0.190873 + 0.330603i
\(304\) 2048.78 + 3548.60i 0.386532 + 0.669493i
\(305\) −1105.14 1914.16i −0.207476 0.359359i
\(306\) −46.5772 + 80.6741i −0.00870145 + 0.0150714i
\(307\) 8037.08 1.49414 0.747069 0.664747i \(-0.231461\pi\)
0.747069 + 0.664747i \(0.231461\pi\)
\(308\) 0 0
\(309\) −2737.24 −0.503935
\(310\) −1303.10 + 2257.03i −0.238745 + 0.413518i
\(311\) −2655.80 4599.98i −0.484234 0.838718i 0.515602 0.856828i \(-0.327568\pi\)
−0.999836 + 0.0181104i \(0.994235\pi\)
\(312\) 1968.77 + 3410.00i 0.357242 + 0.618761i
\(313\) 765.804 1326.41i 0.138293 0.239531i −0.788557 0.614961i \(-0.789172\pi\)
0.926851 + 0.375430i \(0.122505\pi\)
\(314\) 3788.23 0.680835
\(315\) 0 0
\(316\) −343.747 −0.0611939
\(317\) −2109.59 + 3653.92i −0.373775 + 0.647397i −0.990143 0.140061i \(-0.955270\pi\)
0.616368 + 0.787458i \(0.288603\pi\)
\(318\) 1935.16 + 3351.79i 0.341252 + 0.591066i
\(319\) −4413.09 7643.70i −0.774564 1.34158i
\(320\) 1234.32 2137.90i 0.215627 0.373476i
\(321\) −350.208 −0.0608931
\(322\) 0 0
\(323\) 557.801 0.0960893
\(324\) 114.402 198.151i 0.0196163 0.0339765i
\(325\) 2779.52 + 4814.26i 0.474400 + 0.821684i
\(326\) 37.6194 + 65.1587i 0.00639124 + 0.0110700i
\(327\) −1255.76 + 2175.05i −0.212367 + 0.367830i
\(328\) 2751.95 0.463265
\(329\) 0 0
\(330\) 1265.32 0.211072
\(331\) −4149.09 + 7186.44i −0.688987 + 1.19336i 0.283179 + 0.959067i \(0.408611\pi\)
−0.972166 + 0.234294i \(0.924722\pi\)
\(332\) 860.996 + 1491.29i 0.142329 + 0.246521i
\(333\) −53.5366 92.7281i −0.00881017 0.0152597i
\(334\) −1881.90 + 3259.54i −0.308302 + 0.533994i
\(335\) 1518.24 0.247613
\(336\) 0 0
\(337\) −4348.44 −0.702892 −0.351446 0.936208i \(-0.614310\pi\)
−0.351446 + 0.936208i \(0.614310\pi\)
\(338\) −732.278 + 1268.34i −0.117842 + 0.204109i
\(339\) 1629.87 + 2823.01i 0.261128 + 0.452286i
\(340\) −29.2376 50.6410i −0.00466362 0.00807763i
\(341\) −5130.20 + 8885.77i −0.814709 + 1.41112i
\(342\) 2510.10 0.396874
\(343\) 0 0
\(344\) −9091.60 −1.42496
\(345\) 896.412 1552.63i 0.139888 0.242292i
\(346\) −73.0145 126.465i −0.0113447 0.0196497i
\(347\) 4172.77 + 7227.45i 0.645550 + 1.11813i 0.984174 + 0.177204i \(0.0567053\pi\)
−0.338624 + 0.940922i \(0.609961\pi\)
\(348\) −917.753 + 1589.60i −0.141370 + 0.244860i
\(349\) −9982.54 −1.53110 −0.765549 0.643378i \(-0.777532\pi\)
−0.765549 + 0.643378i \(0.777532\pi\)
\(350\) 0 0
\(351\) 1439.07 0.218838
\(352\) 2464.70 4268.98i 0.373207 0.646414i
\(353\) −4400.79 7622.40i −0.663543 1.14929i −0.979678 0.200576i \(-0.935719\pi\)
0.316135 0.948714i \(-0.397615\pi\)
\(354\) −2866.02 4964.10i −0.430303 0.745307i
\(355\) 1342.76 2325.74i 0.200751 0.347711i
\(356\) −2031.10 −0.302383
\(357\) 0 0
\(358\) 8905.56 1.31473
\(359\) 262.019 453.831i 0.0385205 0.0667194i −0.846122 0.532989i \(-0.821069\pi\)
0.884643 + 0.466269i \(0.154402\pi\)
\(360\) −504.187 873.278i −0.0738139 0.127849i
\(361\) −4085.64 7076.53i −0.595661 1.03171i
\(362\) 2340.94 4054.63i 0.339881 0.588692i
\(363\) 988.485 0.142926
\(364\) 0 0
\(365\) −2232.61 −0.320165
\(366\) 1657.71 2871.24i 0.236749 0.410061i
\(367\) 3181.36 + 5510.28i 0.452495 + 0.783745i 0.998540 0.0540110i \(-0.0172006\pi\)
−0.546045 + 0.837756i \(0.683867\pi\)
\(368\) 2194.99 + 3801.84i 0.310929 + 0.538545i
\(369\) 502.886 871.024i 0.0709464 0.122883i
\(370\) −123.140 −0.0173020
\(371\) 0 0
\(372\) 2133.77 0.297394
\(373\) 5632.92 9756.50i 0.781935 1.35435i −0.148879 0.988855i \(-0.547566\pi\)
0.930813 0.365495i \(-0.119100\pi\)
\(374\) 210.887 + 365.267i 0.0291570 + 0.0505014i
\(375\) −1564.91 2710.50i −0.215497 0.373253i
\(376\) −3234.48 + 5602.28i −0.443632 + 0.768393i
\(377\) −11544.5 −1.57711
\(378\) 0 0
\(379\) −1151.71 −0.156094 −0.0780470 0.996950i \(-0.524868\pi\)
−0.0780470 + 0.996950i \(0.524868\pi\)
\(380\) −787.824 + 1364.55i −0.106354 + 0.184211i
\(381\) 805.669 + 1395.46i 0.108335 + 0.187642i
\(382\) −486.887 843.313i −0.0652129 0.112952i
\(383\) 75.7772 131.250i 0.0101097 0.0175106i −0.860926 0.508730i \(-0.830115\pi\)
0.871036 + 0.491219i \(0.163449\pi\)
\(384\) 799.692 0.106274
\(385\) 0 0
\(386\) 3651.08 0.481437
\(387\) −1661.38 + 2877.60i −0.218224 + 0.377976i
\(388\) −900.922 1560.44i −0.117880 0.204174i
\(389\) −2397.09 4151.88i −0.312435 0.541154i 0.666454 0.745546i \(-0.267811\pi\)
−0.978889 + 0.204393i \(0.934478\pi\)
\(390\) 827.507 1433.28i 0.107442 0.186095i
\(391\) 597.608 0.0772950
\(392\) 0 0
\(393\) 4492.17 0.576590
\(394\) −4252.76 + 7366.00i −0.543784 + 0.941862i
\(395\) 276.837 + 479.496i 0.0352638 + 0.0610786i
\(396\) −517.978 897.165i −0.0657308 0.113849i
\(397\) 2311.97 4004.45i 0.292278 0.506241i −0.682070 0.731287i \(-0.738920\pi\)
0.974348 + 0.225046i \(0.0722533\pi\)
\(398\) −794.014 −0.100001
\(399\) 0 0
\(400\) 3485.96 0.435745
\(401\) 1805.32 3126.90i 0.224821 0.389402i −0.731445 0.681901i \(-0.761154\pi\)
0.956266 + 0.292499i \(0.0944869\pi\)
\(402\) 1138.68 + 1972.25i 0.141274 + 0.244694i
\(403\) 6710.19 + 11622.4i 0.829425 + 1.43661i
\(404\) 947.913 1641.83i 0.116734 0.202189i
\(405\) −368.537 −0.0452166
\(406\) 0 0
\(407\) −484.794 −0.0590426
\(408\) 168.062 291.093i 0.0203930 0.0353216i
\(409\) −4479.79 7759.22i −0.541592 0.938065i −0.998813 0.0487118i \(-0.984488\pi\)
0.457221 0.889353i \(-0.348845\pi\)
\(410\) −578.347 1001.73i −0.0696647 0.120663i
\(411\) 2070.13 3585.58i 0.248448 0.430325i
\(412\) 2577.34 0.308195
\(413\) 0 0
\(414\) 2689.24 0.319248
\(415\) 1386.81 2402.02i 0.164038 0.284122i
\(416\) −3223.77 5583.74i −0.379948 0.658089i
\(417\) 212.970 + 368.875i 0.0250101 + 0.0433187i
\(418\) 5682.48 9842.34i 0.664926 1.15169i
\(419\) −7078.28 −0.825290 −0.412645 0.910892i \(-0.635395\pi\)
−0.412645 + 0.910892i \(0.635395\pi\)
\(420\) 0 0
\(421\) 11551.5 1.33725 0.668626 0.743599i \(-0.266883\pi\)
0.668626 + 0.743599i \(0.266883\pi\)
\(422\) −2944.40 + 5099.85i −0.339647 + 0.588286i
\(423\) 1182.12 + 2047.50i 0.135879 + 0.235350i
\(424\) −6982.53 12094.1i −0.799768 1.38524i
\(425\) 237.272 410.966i 0.0270809 0.0469054i
\(426\) 4028.29 0.458149
\(427\) 0 0
\(428\) 329.750 0.0372408
\(429\) 3257.84 5642.74i 0.366643 0.635044i
\(430\) 1910.68 + 3309.40i 0.214282 + 0.371147i
\(431\) 2032.19 + 3519.85i 0.227116 + 0.393377i 0.956952 0.290245i \(-0.0937370\pi\)
−0.729836 + 0.683622i \(0.760404\pi\)
\(432\) 451.207 781.514i 0.0502517 0.0870385i
\(433\) 17456.3 1.93740 0.968701 0.248229i \(-0.0798487\pi\)
0.968701 + 0.248229i \(0.0798487\pi\)
\(434\) 0 0
\(435\) 2956.46 0.325865
\(436\) 1182.41 2047.99i 0.129879 0.224956i
\(437\) −8051.45 13945.5i −0.881357 1.52656i
\(438\) −1674.46 2900.24i −0.182668 0.316390i
\(439\) −2297.69 + 3979.72i −0.249802 + 0.432669i −0.963471 0.267814i \(-0.913699\pi\)
0.713669 + 0.700483i \(0.247032\pi\)
\(440\) −4565.60 −0.494674
\(441\) 0 0
\(442\) 551.671 0.0593672
\(443\) 153.107 265.189i 0.0164206 0.0284413i −0.857698 0.514153i \(-0.828106\pi\)
0.874119 + 0.485712i \(0.161440\pi\)
\(444\) 50.4092 + 87.3113i 0.00538810 + 0.00933245i
\(445\) 1635.75 + 2833.21i 0.174252 + 0.301813i
\(446\) 3681.05 6375.77i 0.390813 0.676909i
\(447\) −5831.61 −0.617060
\(448\) 0 0
\(449\) 9229.22 0.970053 0.485026 0.874500i \(-0.338810\pi\)
0.485026 + 0.874500i \(0.338810\pi\)
\(450\) 1067.72 1849.35i 0.111851 0.193731i
\(451\) −2276.91 3943.72i −0.237728 0.411758i
\(452\) −1534.66 2658.10i −0.159700 0.276608i
\(453\) 3982.15 6897.28i 0.413019 0.715370i
\(454\) −12811.5 −1.32439
\(455\) 0 0
\(456\) −9057.08 −0.930124
\(457\) 5496.12 9519.55i 0.562577 0.974411i −0.434694 0.900578i \(-0.643143\pi\)
0.997271 0.0738330i \(-0.0235232\pi\)
\(458\) −4288.50 7427.90i −0.437530 0.757824i
\(459\) −61.4228 106.387i −0.00624612 0.0108186i
\(460\) −844.047 + 1461.93i −0.0855519 + 0.148180i
\(461\) 7387.88 0.746394 0.373197 0.927752i \(-0.378261\pi\)
0.373197 + 0.927752i \(0.378261\pi\)
\(462\) 0 0
\(463\) 10163.8 1.02020 0.510101 0.860114i \(-0.329608\pi\)
0.510101 + 0.860114i \(0.329608\pi\)
\(464\) −3619.65 + 6269.42i −0.362151 + 0.627264i
\(465\) −1718.43 2976.41i −0.171377 0.296834i
\(466\) 7462.75 + 12925.9i 0.741857 + 1.28493i
\(467\) 7907.29 13695.8i 0.783524 1.35710i −0.146353 0.989232i \(-0.546754\pi\)
0.929877 0.367871i \(-0.119913\pi\)
\(468\) −1355.01 −0.133836
\(469\) 0 0
\(470\) 2719.02 0.266849
\(471\) −2497.82 + 4326.36i −0.244360 + 0.423244i
\(472\) 10341.3 + 17911.7i 1.00847 + 1.74672i
\(473\) 7522.22 + 13028.9i 0.731230 + 1.26653i
\(474\) −415.256 + 719.244i −0.0402391 + 0.0696961i
\(475\) −12786.9 −1.23516
\(476\) 0 0
\(477\) −5103.90 −0.489919
\(478\) 877.485 1519.85i 0.0839649 0.145432i
\(479\) 722.427 + 1251.28i 0.0689113 + 0.119358i 0.898422 0.439132i \(-0.144714\pi\)
−0.829511 + 0.558490i \(0.811381\pi\)
\(480\) 825.585 + 1429.96i 0.0785055 + 0.135976i
\(481\) −317.050 + 549.146i −0.0300545 + 0.0520559i
\(482\) 2848.43 0.269175
\(483\) 0 0
\(484\) −930.742 −0.0874100
\(485\) −1451.12 + 2513.41i −0.135860 + 0.235316i
\(486\) −276.402 478.743i −0.0257981 0.0446836i
\(487\) 244.701 + 423.835i 0.0227689 + 0.0394369i 0.877185 0.480152i \(-0.159418\pi\)
−0.854416 + 0.519589i \(0.826085\pi\)
\(488\) −5981.44 + 10360.2i −0.554851 + 0.961029i
\(489\) −99.2195 −0.00917559
\(490\) 0 0
\(491\) −3941.30 −0.362257 −0.181129 0.983459i \(-0.557975\pi\)
−0.181129 + 0.983459i \(0.557975\pi\)
\(492\) −473.510 + 820.143i −0.0433891 + 0.0751522i
\(493\) 492.743 + 853.455i 0.0450142 + 0.0779669i
\(494\) −7432.56 12873.6i −0.676936 1.17249i
\(495\) −834.309 + 1445.07i −0.0757564 + 0.131214i
\(496\) 8415.65 0.761843
\(497\) 0 0
\(498\) 4160.42 0.374363
\(499\) −5.54470 + 9.60371i −0.000497425 + 0.000861565i −0.866274 0.499569i \(-0.833492\pi\)
0.865777 + 0.500431i \(0.166825\pi\)
\(500\) 1473.49 + 2552.16i 0.131793 + 0.228273i
\(501\) −2481.71 4298.45i −0.221307 0.383315i
\(502\) −5876.42 + 10178.3i −0.522465 + 0.904936i
\(503\) 7088.41 0.628343 0.314172 0.949366i \(-0.398273\pi\)
0.314172 + 0.949366i \(0.398273\pi\)
\(504\) 0 0
\(505\) −3053.61 −0.269077
\(506\) 6088.01 10544.7i 0.534871 0.926424i
\(507\) −965.676 1672.60i −0.0845901 0.146514i
\(508\) −758.605 1313.94i −0.0662553 0.114757i
\(509\) −8794.22 + 15232.0i −0.765810 + 1.32642i 0.174008 + 0.984744i \(0.444328\pi\)
−0.939817 + 0.341677i \(0.889005\pi\)
\(510\) −141.279 −0.0122666
\(511\) 0 0
\(512\) −10627.5 −0.917333
\(513\) −1655.07 + 2866.67i −0.142443 + 0.246719i
\(514\) −3147.86 5452.25i −0.270129 0.467877i
\(515\) −2075.66 3595.15i −0.177601 0.307614i
\(516\) 1564.33 2709.50i 0.133461 0.231161i
\(517\) 10704.6 0.910613
\(518\) 0 0
\(519\) 192.573 0.0162871
\(520\) −2985.85 + 5171.65i −0.251804 + 0.436138i
\(521\) 5823.30 + 10086.2i 0.489680 + 0.848151i 0.999929 0.0118758i \(-0.00378028\pi\)
−0.510249 + 0.860026i \(0.670447\pi\)
\(522\) 2217.34 + 3840.55i 0.185920 + 0.322023i
\(523\) −4482.91 + 7764.63i −0.374807 + 0.649185i −0.990298 0.138959i \(-0.955624\pi\)
0.615491 + 0.788144i \(0.288958\pi\)
\(524\) −4229.75 −0.352629
\(525\) 0 0
\(526\) −9331.22 −0.773499
\(527\) 572.811 992.137i 0.0473473 0.0820079i
\(528\) −2042.93 3538.45i −0.168384 0.291650i
\(529\) −2542.54 4403.81i −0.208970 0.361947i
\(530\) −2934.88 + 5083.36i −0.240534 + 0.416617i
\(531\) 7559.01 0.617765
\(532\) 0 0
\(533\) −5956.30 −0.484045
\(534\) −2453.63 + 4249.81i −0.198837 + 0.344396i
\(535\) −265.565 459.971i −0.0214605 0.0371706i
\(536\) −4108.64 7116.37i −0.331094 0.573471i
\(537\) −5872.01 + 10170.6i −0.471874 + 0.817309i
\(538\) −15812.6 −1.26715
\(539\) 0 0
\(540\) 347.008 0.0276534
\(541\) 97.6359 169.110i 0.00775914 0.0134392i −0.862120 0.506705i \(-0.830863\pi\)
0.869879 + 0.493265i \(0.164197\pi\)
\(542\) 8121.79 + 14067.3i 0.643654 + 1.11484i
\(543\) 3087.07 + 5346.95i 0.243975 + 0.422578i
\(544\) −275.195 + 476.652i −0.0216891 + 0.0375667i
\(545\) −3809.01 −0.299376
\(546\) 0 0
\(547\) −1399.26 −0.109375 −0.0546874 0.998504i \(-0.517416\pi\)
−0.0546874 + 0.998504i \(0.517416\pi\)
\(548\) −1949.21 + 3376.12i −0.151945 + 0.263177i
\(549\) 2186.07 + 3786.39i 0.169944 + 0.294352i
\(550\) −4834.31 8373.27i −0.374792 0.649159i
\(551\) 13277.2 22996.9i 1.02655 1.77804i
\(552\) −9703.44 −0.748199
\(553\) 0 0
\(554\) 3004.06 0.230380
\(555\) 81.1942 140.632i 0.00620991 0.0107559i
\(556\) −200.529 347.327i −0.0152956 0.0264927i
\(557\) −21.5233 37.2795i −0.00163730 0.00283588i 0.865206 0.501417i \(-0.167188\pi\)
−0.866843 + 0.498581i \(0.833855\pi\)
\(558\) 2577.65 4464.62i 0.195557 0.338714i
\(559\) 19677.8 1.48888
\(560\) 0 0
\(561\) −556.206 −0.0418592
\(562\) 232.393 402.516i 0.0174429 0.0302120i
\(563\) 9616.43 + 16656.1i 0.719865 + 1.24684i 0.961053 + 0.276365i \(0.0891298\pi\)
−0.241187 + 0.970479i \(0.577537\pi\)
\(564\) −1113.07 1927.89i −0.0831005 0.143934i
\(565\) −2471.88 + 4281.41i −0.184058 + 0.318797i
\(566\) 2219.85 0.164854
\(567\) 0 0
\(568\) −14535.1 −1.07373
\(569\) −2581.99 + 4472.14i −0.190233 + 0.329493i −0.945327 0.326123i \(-0.894258\pi\)
0.755094 + 0.655616i \(0.227591\pi\)
\(570\) 1903.43 + 3296.83i 0.139870 + 0.242261i
\(571\) 5115.96 + 8861.10i 0.374950 + 0.649432i 0.990319 0.138807i \(-0.0443267\pi\)
−0.615370 + 0.788238i \(0.710993\pi\)
\(572\) −3067.53 + 5313.11i −0.224230 + 0.388378i
\(573\) 1284.14 0.0936229
\(574\) 0 0
\(575\) −13699.4 −0.993572
\(576\) −2441.60 + 4228.97i −0.176620 + 0.305915i
\(577\) −8281.87 14344.6i −0.597537 1.03496i −0.993184 0.116561i \(-0.962813\pi\)
0.395647 0.918403i \(-0.370520\pi\)
\(578\) 5564.79 + 9638.49i 0.400458 + 0.693613i
\(579\) −2407.39 + 4169.72i −0.172794 + 0.299288i
\(580\) −2783.75 −0.199291
\(581\) 0 0
\(582\) −4353.35 −0.310055
\(583\) −11554.4 + 20012.8i −0.820815 + 1.42169i
\(584\) 6041.86 + 10464.8i 0.428106 + 0.741501i
\(585\) 1091.26 + 1890.11i 0.0771247 + 0.133584i
\(586\) −691.482 + 1197.68i −0.0487455 + 0.0844297i
\(587\) 16020.6 1.12648 0.563239 0.826294i \(-0.309555\pi\)
0.563239 + 0.826294i \(0.309555\pi\)
\(588\) 0 0
\(589\) −30869.4 −2.15951
\(590\) 4346.64 7528.60i 0.303302 0.525335i
\(591\) −5608.24 9713.76i −0.390342 0.676092i
\(592\) 198.816 + 344.359i 0.0138028 + 0.0239072i
\(593\) 3385.57 5863.98i 0.234450 0.406079i −0.724663 0.689104i \(-0.758004\pi\)
0.959113 + 0.283025i \(0.0913378\pi\)
\(594\) −2502.93 −0.172889
\(595\) 0 0
\(596\) 5490.95 0.377379
\(597\) 523.545 906.806i 0.0358916 0.0621660i
\(598\) −7962.98 13792.3i −0.544532 0.943158i
\(599\) −5535.11 9587.09i −0.377560 0.653953i 0.613147 0.789969i \(-0.289903\pi\)
−0.990707 + 0.136016i \(0.956570\pi\)
\(600\) −3852.61 + 6672.92i −0.262137 + 0.454034i
\(601\) −24187.7 −1.64166 −0.820830 0.571173i \(-0.806489\pi\)
−0.820830 + 0.571173i \(0.806489\pi\)
\(602\) 0 0
\(603\) −3003.22 −0.202820
\(604\) −3749.52 + 6494.37i −0.252593 + 0.437503i
\(605\) 749.574 + 1298.30i 0.0503711 + 0.0872453i
\(606\) −2290.21 3966.76i −0.153520 0.265905i
\(607\) 5037.04 8724.40i 0.336816 0.583382i −0.647016 0.762476i \(-0.723983\pi\)
0.983832 + 0.179095i \(0.0573168\pi\)
\(608\) 14830.6 0.989243
\(609\) 0 0
\(610\) 5028.21 0.333748
\(611\) 7000.67 12125.5i 0.463530 0.802858i
\(612\) 57.8347 + 100.173i 0.00381998 + 0.00661640i
\(613\) 5557.29 + 9625.51i 0.366161 + 0.634210i 0.988962 0.148171i \(-0.0473385\pi\)
−0.622800 + 0.782381i \(0.714005\pi\)
\(614\) −9141.84 + 15834.1i −0.600871 + 1.04074i
\(615\) 1525.37 0.100014
\(616\) 0 0
\(617\) 20496.4 1.33737 0.668683 0.743548i \(-0.266858\pi\)
0.668683 + 0.743548i \(0.266858\pi\)
\(618\) 3113.49 5392.73i 0.202659 0.351015i
\(619\) 8357.22 + 14475.1i 0.542658 + 0.939910i 0.998750 + 0.0499782i \(0.0159152\pi\)
−0.456093 + 0.889932i \(0.650751\pi\)
\(620\) 1618.05 + 2802.54i 0.104810 + 0.181537i
\(621\) −1773.19 + 3071.25i −0.114582 + 0.198462i
\(622\) 12083.5 0.778943
\(623\) 0 0
\(624\) −5344.20 −0.342851
\(625\) −4145.33 + 7179.92i −0.265301 + 0.459515i
\(626\) 1742.14 + 3017.48i 0.111230 + 0.192656i
\(627\) 7493.65 + 12979.4i 0.477301 + 0.826709i
\(628\) 2351.91 4073.63i 0.149445 0.258846i
\(629\) 54.1295 0.00343129
\(630\) 0 0
\(631\) 9168.53 0.578437 0.289218 0.957263i \(-0.406605\pi\)
0.289218 + 0.957263i \(0.406605\pi\)
\(632\) 1498.35 2595.21i 0.0943054 0.163342i
\(633\) −3882.87 6725.32i −0.243807 0.422287i
\(634\) −4799.15 8312.37i −0.300629 0.520704i
\(635\) −1221.89 + 2116.37i −0.0763608 + 0.132261i
\(636\) 4805.75 0.299623
\(637\) 0 0
\(638\) 20078.9 1.24597
\(639\) −2656.11 + 4600.52i −0.164435 + 0.284811i
\(640\) 606.411 + 1050.33i 0.0374539 + 0.0648721i
\(641\) 2136.68 + 3700.84i 0.131660 + 0.228041i 0.924316 0.381627i \(-0.124636\pi\)
−0.792657 + 0.609668i \(0.791303\pi\)
\(642\) 398.347 689.957i 0.0244883 0.0424150i
\(643\) 2955.75 0.181281 0.0906404 0.995884i \(-0.471109\pi\)
0.0906404 + 0.995884i \(0.471109\pi\)
\(644\) 0 0
\(645\) −5039.34 −0.307634
\(646\) −634.475 + 1098.94i −0.0386426 + 0.0669309i
\(647\) −11350.6 19659.8i −0.689704 1.19460i −0.971934 0.235256i \(-0.924407\pi\)
0.282229 0.959347i \(-0.408926\pi\)
\(648\) 997.329 + 1727.42i 0.0604611 + 0.104722i
\(649\) 17112.4 29639.6i 1.03501 1.79269i
\(650\) −12646.3 −0.763124
\(651\) 0 0
\(652\) 93.4235 0.00561158
\(653\) −768.907 + 1331.79i −0.0460791 + 0.0798113i −0.888145 0.459563i \(-0.848006\pi\)
0.842066 + 0.539375i \(0.181339\pi\)
\(654\) −2856.76 4948.05i −0.170808 0.295847i
\(655\) 3406.44 + 5900.12i 0.203207 + 0.351964i
\(656\) −1867.54 + 3234.67i −0.111151 + 0.192519i
\(657\) 4416.31 0.262248
\(658\) 0 0
\(659\) 12338.1 0.729323 0.364661 0.931140i \(-0.381185\pi\)
0.364661 + 0.931140i \(0.381185\pi\)
\(660\) 785.572 1360.65i 0.0463308 0.0802473i
\(661\) −922.548 1597.90i −0.0542859 0.0940259i 0.837605 0.546276i \(-0.183955\pi\)
−0.891891 + 0.452250i \(0.850622\pi\)
\(662\) −9438.84 16348.6i −0.554156 0.959826i
\(663\) −363.752 + 630.038i −0.0213077 + 0.0369059i
\(664\) −15011.8 −0.877369
\(665\) 0 0
\(666\) 243.583 0.0141721
\(667\) 14224.8 24638.0i 0.825765 1.43027i
\(668\) 2336.74 + 4047.35i 0.135346 + 0.234426i
\(669\) 4854.31 + 8407.91i 0.280536 + 0.485902i
\(670\) −1726.93 + 2991.14i −0.0995780 + 0.172474i
\(671\) 19795.7 1.13890
\(672\) 0 0
\(673\) 23955.4 1.37208 0.686041 0.727563i \(-0.259347\pi\)
0.686041 + 0.727563i \(0.259347\pi\)
\(674\) 4946.17 8567.02i 0.282670 0.489598i
\(675\) 1408.04 + 2438.79i 0.0802894 + 0.139065i
\(676\) 909.265 + 1574.89i 0.0517333 + 0.0896048i
\(677\) 1839.13 3185.46i 0.104407 0.180838i −0.809089 0.587686i \(-0.800039\pi\)
0.913496 + 0.406848i \(0.133372\pi\)
\(678\) −7415.63 −0.420052
\(679\) 0 0
\(680\) 509.771 0.0287482
\(681\) 8447.43 14631.4i 0.475339 0.823312i
\(682\) −11670.8 20214.4i −0.655275 1.13497i
\(683\) −2195.43 3802.60i −0.122996 0.213034i 0.797952 0.602721i \(-0.205917\pi\)
−0.920948 + 0.389686i \(0.872583\pi\)
\(684\) 1558.39 2699.21i 0.0871148 0.150887i
\(685\) 6279.18 0.350241
\(686\) 0 0
\(687\) 11310.7 0.628140
\(688\) 6169.78 10686.4i 0.341890 0.592171i
\(689\) 15112.9 + 26176.4i 0.835641 + 1.44737i
\(690\) 2039.26 + 3532.11i 0.112512 + 0.194877i
\(691\) −5185.84 + 8982.13i −0.285497 + 0.494496i −0.972730 0.231942i \(-0.925492\pi\)
0.687232 + 0.726438i \(0.258825\pi\)
\(692\) −181.323 −0.00996081
\(693\) 0 0
\(694\) −18985.4 −1.03844
\(695\) −322.993 + 559.440i −0.0176285 + 0.0305335i
\(696\) −8000.72 13857.7i −0.435728 0.754703i
\(697\) 254.228 + 440.335i 0.0138157 + 0.0239295i
\(698\) 11354.7 19667.0i 0.615734 1.06648i
\(699\) −19682.7 −1.06505
\(700\) 0 0
\(701\) 109.675 0.00590922 0.00295461 0.999996i \(-0.499060\pi\)
0.00295461 + 0.999996i \(0.499060\pi\)
\(702\) −1636.89 + 2835.17i −0.0880061 + 0.152431i
\(703\) −729.275 1263.14i −0.0391254 0.0677672i
\(704\) 11054.8 + 19147.5i 0.591822 + 1.02507i
\(705\) −1792.82 + 3105.26i −0.0957754 + 0.165888i
\(706\) 20022.9 1.06738
\(707\) 0 0
\(708\) −7117.45 −0.377811
\(709\) −13459.4 + 23312.3i −0.712944 + 1.23486i 0.250803 + 0.968038i \(0.419306\pi\)
−0.963747 + 0.266818i \(0.914028\pi\)
\(710\) 3054.68 + 5290.86i 0.161465 + 0.279665i
\(711\) −547.610 948.488i −0.0288846 0.0500296i
\(712\) 8853.31 15334.4i 0.466000 0.807135i
\(713\) −33072.4 −1.73713
\(714\) 0 0
\(715\) 9881.74 0.516862
\(716\) 5528.99 9576.50i 0.288587 0.499847i
\(717\) 1157.17 + 2004.27i 0.0602721 + 0.104394i
\(718\) 596.072 + 1032.43i 0.0309822 + 0.0536627i
\(719\) −7585.38 + 13138.3i −0.393445 + 0.681466i −0.992901 0.118941i \(-0.962050\pi\)
0.599457 + 0.800407i \(0.295383\pi\)
\(720\) 1368.61 0.0708405
\(721\) 0 0
\(722\) 18589.0 0.958185
\(723\) −1878.15 + 3253.06i −0.0966104 + 0.167334i
\(724\) −2906.73 5034.61i −0.149210 0.258439i
\(725\) −11295.5 19564.3i −0.578626 1.00221i
\(726\) −1124.36 + 1947.45i −0.0574779 + 0.0995546i
\(727\) −33286.9 −1.69813 −0.849066 0.528288i \(-0.822834\pi\)
−0.849066 + 0.528288i \(0.822834\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 2539.50 4398.54i 0.128755 0.223010i
\(731\) −839.890 1454.73i −0.0424959 0.0736050i
\(732\) −2058.37 3565.20i −0.103934 0.180019i
\(733\) −10272.0 + 17791.7i −0.517607 + 0.896521i 0.482184 + 0.876070i \(0.339844\pi\)
−0.999791 + 0.0204512i \(0.993490\pi\)
\(734\) −14474.7 −0.727888
\(735\) 0 0
\(736\) 15889.0 0.795755
\(737\) −6798.82 + 11775.9i −0.339807 + 0.588563i
\(738\) 1144.02 + 1981.51i 0.0570625 + 0.0988351i
\(739\) −17178.6 29754.2i −0.855109 1.48109i −0.876544 0.481321i \(-0.840157\pi\)
0.0214356 0.999770i \(-0.493176\pi\)
\(740\) −76.4512 + 132.417i −0.00379784 + 0.00657805i
\(741\) 19603.1 0.971844
\(742\) 0 0
\(743\) 8166.99 0.403254 0.201627 0.979462i \(-0.435377\pi\)
0.201627 + 0.979462i \(0.435377\pi\)
\(744\) −9300.80 + 16109.5i −0.458312 + 0.793819i
\(745\) −4422.14 7659.38i −0.217470 0.376668i
\(746\) 12814.4 + 22195.2i 0.628914 + 1.08931i
\(747\) −2743.24 + 4751.42i −0.134364 + 0.232725i
\(748\) 523.715 0.0256001
\(749\) 0 0
\(750\) 7120.08 0.346651
\(751\) −8540.05 + 14791.8i −0.414954 + 0.718722i −0.995424 0.0955601i \(-0.969536\pi\)
0.580469 + 0.814282i \(0.302869\pi\)
\(752\) −4389.99 7603.68i −0.212881 0.368720i
\(753\) −7749.40 13422.4i −0.375038 0.649586i
\(754\) 13131.3 22744.2i 0.634238 1.09853i
\(755\) 12078.7 0.582239
\(756\) 0 0
\(757\) −16324.0 −0.783758 −0.391879 0.920017i \(-0.628175\pi\)
−0.391879 + 0.920017i \(0.628175\pi\)
\(758\) 1310.03 2269.03i 0.0627735 0.108727i
\(759\) 8028.43 + 13905.7i 0.383944 + 0.665011i
\(760\) −6868.04 11895.8i −0.327802 0.567770i
\(761\) 16183.1 28029.9i 0.770875 1.33520i −0.166208 0.986091i \(-0.553152\pi\)
0.937084 0.349105i \(-0.113514\pi\)
\(762\) −3665.66 −0.174269
\(763\) 0 0
\(764\) −1209.13 −0.0572576
\(765\) 93.1545 161.348i 0.00440262 0.00762557i
\(766\) 172.387 + 298.583i 0.00813131 + 0.0140838i
\(767\) −22382.7 38767.9i −1.05370 1.82507i
\(768\) 5601.31 9701.75i 0.263177 0.455836i
\(769\) −7948.44 −0.372728 −0.186364 0.982481i \(-0.559670\pi\)
−0.186364 + 0.982481i \(0.559670\pi\)
\(770\) 0 0
\(771\) 8302.35 0.387810
\(772\) 2266.76 3926.14i