Properties

Label 147.4.e.g
Level $147$
Weight $4$
Character orbit 147.e
Analytic conductor $8.673$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [147,4,Mod(67,147)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("147.67"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(147, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 147.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,3,-3,-1,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.67328077084\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 \zeta_{6} q^{2} + (3 \zeta_{6} - 3) q^{3} + (\zeta_{6} - 1) q^{4} - 18 \zeta_{6} q^{5} - 9 q^{6} + 21 q^{8} - 9 \zeta_{6} q^{9} + ( - 54 \zeta_{6} + 54) q^{10} + ( - 36 \zeta_{6} + 36) q^{11} - 3 \zeta_{6} q^{12} + \cdots - 324 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} - 3 q^{3} - q^{4} - 18 q^{5} - 18 q^{6} + 42 q^{8} - 9 q^{9} + 54 q^{10} + 36 q^{11} - 3 q^{12} + 68 q^{13} + 108 q^{15} + 71 q^{16} + 42 q^{17} + 27 q^{18} - 124 q^{19} + 36 q^{20} + 216 q^{22}+ \cdots - 648 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
0.500000 + 0.866025i
0.500000 0.866025i
1.50000 + 2.59808i −1.50000 + 2.59808i −0.500000 + 0.866025i −9.00000 15.5885i −9.00000 0 21.0000 −4.50000 7.79423i 27.0000 46.7654i
79.1 1.50000 2.59808i −1.50000 2.59808i −0.500000 0.866025i −9.00000 + 15.5885i −9.00000 0 21.0000 −4.50000 + 7.79423i 27.0000 + 46.7654i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 147.4.e.g 2
3.b odd 2 1 441.4.e.d 2
7.b odd 2 1 147.4.e.i 2
7.c even 3 1 147.4.a.c 1
7.c even 3 1 inner 147.4.e.g 2
7.d odd 6 1 21.4.a.a 1
7.d odd 6 1 147.4.e.i 2
21.c even 2 1 441.4.e.b 2
21.g even 6 1 63.4.a.c 1
21.g even 6 1 441.4.e.b 2
21.h odd 6 1 441.4.a.j 1
21.h odd 6 1 441.4.e.d 2
28.f even 6 1 336.4.a.f 1
28.g odd 6 1 2352.4.a.r 1
35.i odd 6 1 525.4.a.g 1
35.k even 12 2 525.4.d.c 2
56.j odd 6 1 1344.4.a.ba 1
56.m even 6 1 1344.4.a.n 1
84.j odd 6 1 1008.4.a.v 1
105.p even 6 1 1575.4.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.a.a 1 7.d odd 6 1
63.4.a.c 1 21.g even 6 1
147.4.a.c 1 7.c even 3 1
147.4.e.g 2 1.a even 1 1 trivial
147.4.e.g 2 7.c even 3 1 inner
147.4.e.i 2 7.b odd 2 1
147.4.e.i 2 7.d odd 6 1
336.4.a.f 1 28.f even 6 1
441.4.a.j 1 21.h odd 6 1
441.4.e.b 2 21.c even 2 1
441.4.e.b 2 21.g even 6 1
441.4.e.d 2 3.b odd 2 1
441.4.e.d 2 21.h odd 6 1
525.4.a.g 1 35.i odd 6 1
525.4.d.c 2 35.k even 12 2
1008.4.a.v 1 84.j odd 6 1
1344.4.a.n 1 56.m even 6 1
1344.4.a.ba 1 56.j odd 6 1
1575.4.a.b 1 105.p even 6 1
2352.4.a.r 1 28.g odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(147, [\chi])\):

\( T_{2}^{2} - 3T_{2} + 9 \) Copy content Toggle raw display
\( T_{5}^{2} + 18T_{5} + 324 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$3$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$5$ \( T^{2} + 18T + 324 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 36T + 1296 \) Copy content Toggle raw display
$13$ \( (T - 34)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 42T + 1764 \) Copy content Toggle raw display
$19$ \( T^{2} + 124T + 15376 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T - 102)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 160T + 25600 \) Copy content Toggle raw display
$37$ \( T^{2} + 398T + 158404 \) Copy content Toggle raw display
$41$ \( (T - 318)^{2} \) Copy content Toggle raw display
$43$ \( (T + 268)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 240T + 57600 \) Copy content Toggle raw display
$53$ \( T^{2} - 498T + 248004 \) Copy content Toggle raw display
$59$ \( T^{2} + 132T + 17424 \) Copy content Toggle raw display
$61$ \( T^{2} - 398T + 158404 \) Copy content Toggle raw display
$67$ \( T^{2} + 92T + 8464 \) Copy content Toggle raw display
$71$ \( (T + 720)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 502T + 252004 \) Copy content Toggle raw display
$79$ \( T^{2} - 1024 T + 1048576 \) Copy content Toggle raw display
$83$ \( (T - 204)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 354T + 125316 \) Copy content Toggle raw display
$97$ \( (T - 286)^{2} \) Copy content Toggle raw display
show more
show less