Properties

Label 147.4.e.a.67.1
Level $147$
Weight $4$
Character 147.67
Analytic conductor $8.673$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,4,Mod(67,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.67");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 147.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.67328077084\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 147.67
Dual form 147.4.e.a.79.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 - 3.46410i) q^{2} +(-1.50000 + 2.59808i) q^{3} +(-4.00000 + 6.92820i) q^{4} +(-9.00000 - 15.5885i) q^{5} +12.0000 q^{6} +(-4.50000 - 7.79423i) q^{9} +O(q^{10})\) \(q+(-2.00000 - 3.46410i) q^{2} +(-1.50000 + 2.59808i) q^{3} +(-4.00000 + 6.92820i) q^{4} +(-9.00000 - 15.5885i) q^{5} +12.0000 q^{6} +(-4.50000 - 7.79423i) q^{9} +(-36.0000 + 62.3538i) q^{10} +(25.0000 - 43.3013i) q^{11} +(-12.0000 - 20.7846i) q^{12} -36.0000 q^{13} +54.0000 q^{15} +(32.0000 + 55.4256i) q^{16} +(-63.0000 + 109.119i) q^{17} +(-18.0000 + 31.1769i) q^{18} +(36.0000 + 62.3538i) q^{19} +144.000 q^{20} -200.000 q^{22} +(-7.00000 - 12.1244i) q^{23} +(-99.5000 + 172.339i) q^{25} +(72.0000 + 124.708i) q^{26} +27.0000 q^{27} +158.000 q^{29} +(-108.000 - 187.061i) q^{30} +(18.0000 - 31.1769i) q^{31} +(128.000 - 221.703i) q^{32} +(75.0000 + 129.904i) q^{33} +504.000 q^{34} +72.0000 q^{36} +(81.0000 + 140.296i) q^{37} +(144.000 - 249.415i) q^{38} +(54.0000 - 93.5307i) q^{39} -270.000 q^{41} -324.000 q^{43} +(200.000 + 346.410i) q^{44} +(-81.0000 + 140.296i) q^{45} +(-28.0000 + 48.4974i) q^{46} +(36.0000 + 62.3538i) q^{47} -192.000 q^{48} +796.000 q^{50} +(-189.000 - 327.358i) q^{51} +(144.000 - 249.415i) q^{52} +(11.0000 - 19.0526i) q^{53} +(-54.0000 - 93.5307i) q^{54} -900.000 q^{55} -216.000 q^{57} +(-316.000 - 547.328i) q^{58} +(-234.000 + 405.300i) q^{59} +(-216.000 + 374.123i) q^{60} +(-396.000 - 685.892i) q^{61} -144.000 q^{62} -512.000 q^{64} +(324.000 + 561.184i) q^{65} +(300.000 - 519.615i) q^{66} +(-116.000 + 200.918i) q^{67} +(-504.000 - 872.954i) q^{68} +42.0000 q^{69} -734.000 q^{71} +(-90.0000 + 155.885i) q^{73} +(324.000 - 561.184i) q^{74} +(-298.500 - 517.017i) q^{75} -576.000 q^{76} -432.000 q^{78} +(-118.000 - 204.382i) q^{79} +(576.000 - 997.661i) q^{80} +(-40.5000 + 70.1481i) q^{81} +(540.000 + 935.307i) q^{82} +36.0000 q^{83} +2268.00 q^{85} +(648.000 + 1122.37i) q^{86} +(-237.000 + 410.496i) q^{87} +(-117.000 - 202.650i) q^{89} +648.000 q^{90} +112.000 q^{92} +(54.0000 + 93.5307i) q^{93} +(144.000 - 249.415i) q^{94} +(648.000 - 1122.37i) q^{95} +(384.000 + 665.108i) q^{96} +468.000 q^{97} -450.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} - 3 q^{3} - 8 q^{4} - 18 q^{5} + 24 q^{6} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{2} - 3 q^{3} - 8 q^{4} - 18 q^{5} + 24 q^{6} - 9 q^{9} - 72 q^{10} + 50 q^{11} - 24 q^{12} - 72 q^{13} + 108 q^{15} + 64 q^{16} - 126 q^{17} - 36 q^{18} + 72 q^{19} + 288 q^{20} - 400 q^{22} - 14 q^{23} - 199 q^{25} + 144 q^{26} + 54 q^{27} + 316 q^{29} - 216 q^{30} + 36 q^{31} + 256 q^{32} + 150 q^{33} + 1008 q^{34} + 144 q^{36} + 162 q^{37} + 288 q^{38} + 108 q^{39} - 540 q^{41} - 648 q^{43} + 400 q^{44} - 162 q^{45} - 56 q^{46} + 72 q^{47} - 384 q^{48} + 1592 q^{50} - 378 q^{51} + 288 q^{52} + 22 q^{53} - 108 q^{54} - 1800 q^{55} - 432 q^{57} - 632 q^{58} - 468 q^{59} - 432 q^{60} - 792 q^{61} - 288 q^{62} - 1024 q^{64} + 648 q^{65} + 600 q^{66} - 232 q^{67} - 1008 q^{68} + 84 q^{69} - 1468 q^{71} - 180 q^{73} + 648 q^{74} - 597 q^{75} - 1152 q^{76} - 864 q^{78} - 236 q^{79} + 1152 q^{80} - 81 q^{81} + 1080 q^{82} + 72 q^{83} + 4536 q^{85} + 1296 q^{86} - 474 q^{87} - 234 q^{89} + 1296 q^{90} + 224 q^{92} + 108 q^{93} + 288 q^{94} + 1296 q^{95} + 768 q^{96} + 936 q^{97} - 900 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 3.46410i −0.707107 1.22474i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(3\) −1.50000 + 2.59808i −0.288675 + 0.500000i
\(4\) −4.00000 + 6.92820i −0.500000 + 0.866025i
\(5\) −9.00000 15.5885i −0.804984 1.39427i −0.916302 0.400489i \(-0.868840\pi\)
0.111317 0.993785i \(-0.464493\pi\)
\(6\) 12.0000 0.816497
\(7\) 0 0
\(8\) 0 0
\(9\) −4.50000 7.79423i −0.166667 0.288675i
\(10\) −36.0000 + 62.3538i −1.13842 + 1.97180i
\(11\) 25.0000 43.3013i 0.685253 1.18689i −0.288104 0.957599i \(-0.593025\pi\)
0.973357 0.229294i \(-0.0736417\pi\)
\(12\) −12.0000 20.7846i −0.288675 0.500000i
\(13\) −36.0000 −0.768046 −0.384023 0.923323i \(-0.625462\pi\)
−0.384023 + 0.923323i \(0.625462\pi\)
\(14\) 0 0
\(15\) 54.0000 0.929516
\(16\) 32.0000 + 55.4256i 0.500000 + 0.866025i
\(17\) −63.0000 + 109.119i −0.898808 + 1.55678i −0.0697893 + 0.997562i \(0.522233\pi\)
−0.829019 + 0.559220i \(0.811101\pi\)
\(18\) −18.0000 + 31.1769i −0.235702 + 0.408248i
\(19\) 36.0000 + 62.3538i 0.434682 + 0.752892i 0.997270 0.0738459i \(-0.0235273\pi\)
−0.562587 + 0.826738i \(0.690194\pi\)
\(20\) 144.000 1.60997
\(21\) 0 0
\(22\) −200.000 −1.93819
\(23\) −7.00000 12.1244i −0.0634609 0.109918i 0.832549 0.553951i \(-0.186880\pi\)
−0.896010 + 0.444033i \(0.853547\pi\)
\(24\) 0 0
\(25\) −99.5000 + 172.339i −0.796000 + 1.37871i
\(26\) 72.0000 + 124.708i 0.543091 + 0.940661i
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 158.000 1.01172 0.505860 0.862616i \(-0.331175\pi\)
0.505860 + 0.862616i \(0.331175\pi\)
\(30\) −108.000 187.061i −0.657267 1.13842i
\(31\) 18.0000 31.1769i 0.104287 0.180630i −0.809160 0.587589i \(-0.800077\pi\)
0.913447 + 0.406958i \(0.133411\pi\)
\(32\) 128.000 221.703i 0.707107 1.22474i
\(33\) 75.0000 + 129.904i 0.395631 + 0.685253i
\(34\) 504.000 2.54221
\(35\) 0 0
\(36\) 72.0000 0.333333
\(37\) 81.0000 + 140.296i 0.359900 + 0.623366i 0.987944 0.154812i \(-0.0494773\pi\)
−0.628043 + 0.778178i \(0.716144\pi\)
\(38\) 144.000 249.415i 0.614734 1.06475i
\(39\) 54.0000 93.5307i 0.221716 0.384023i
\(40\) 0 0
\(41\) −270.000 −1.02846 −0.514231 0.857652i \(-0.671922\pi\)
−0.514231 + 0.857652i \(0.671922\pi\)
\(42\) 0 0
\(43\) −324.000 −1.14906 −0.574529 0.818484i \(-0.694815\pi\)
−0.574529 + 0.818484i \(0.694815\pi\)
\(44\) 200.000 + 346.410i 0.685253 + 1.18689i
\(45\) −81.0000 + 140.296i −0.268328 + 0.464758i
\(46\) −28.0000 + 48.4974i −0.0897473 + 0.155447i
\(47\) 36.0000 + 62.3538i 0.111726 + 0.193516i 0.916466 0.400112i \(-0.131029\pi\)
−0.804740 + 0.593627i \(0.797695\pi\)
\(48\) −192.000 −0.577350
\(49\) 0 0
\(50\) 796.000 2.25143
\(51\) −189.000 327.358i −0.518927 0.898808i
\(52\) 144.000 249.415i 0.384023 0.665148i
\(53\) 11.0000 19.0526i 0.0285088 0.0493787i −0.851419 0.524486i \(-0.824257\pi\)
0.879928 + 0.475107i \(0.157591\pi\)
\(54\) −54.0000 93.5307i −0.136083 0.235702i
\(55\) −900.000 −2.20647
\(56\) 0 0
\(57\) −216.000 −0.501928
\(58\) −316.000 547.328i −0.715394 1.23910i
\(59\) −234.000 + 405.300i −0.516342 + 0.894331i 0.483478 + 0.875357i \(0.339373\pi\)
−0.999820 + 0.0189746i \(0.993960\pi\)
\(60\) −216.000 + 374.123i −0.464758 + 0.804984i
\(61\) −396.000 685.892i −0.831190 1.43966i −0.897095 0.441838i \(-0.854327\pi\)
0.0659047 0.997826i \(-0.479007\pi\)
\(62\) −144.000 −0.294968
\(63\) 0 0
\(64\) −512.000 −1.00000
\(65\) 324.000 + 561.184i 0.618265 + 1.07087i
\(66\) 300.000 519.615i 0.559507 0.969094i
\(67\) −116.000 + 200.918i −0.211517 + 0.366359i −0.952190 0.305508i \(-0.901174\pi\)
0.740672 + 0.671866i \(0.234507\pi\)
\(68\) −504.000 872.954i −0.898808 1.55678i
\(69\) 42.0000 0.0732783
\(70\) 0 0
\(71\) −734.000 −1.22690 −0.613449 0.789734i \(-0.710218\pi\)
−0.613449 + 0.789734i \(0.710218\pi\)
\(72\) 0 0
\(73\) −90.0000 + 155.885i −0.144297 + 0.249930i −0.929111 0.369802i \(-0.879425\pi\)
0.784813 + 0.619732i \(0.212759\pi\)
\(74\) 324.000 561.184i 0.508976 0.881573i
\(75\) −298.500 517.017i −0.459571 0.796000i
\(76\) −576.000 −0.869365
\(77\) 0 0
\(78\) −432.000 −0.627107
\(79\) −118.000 204.382i −0.168051 0.291073i 0.769683 0.638426i \(-0.220414\pi\)
−0.937735 + 0.347353i \(0.887081\pi\)
\(80\) 576.000 997.661i 0.804984 1.39427i
\(81\) −40.5000 + 70.1481i −0.0555556 + 0.0962250i
\(82\) 540.000 + 935.307i 0.727232 + 1.25960i
\(83\) 36.0000 0.0476086 0.0238043 0.999717i \(-0.492422\pi\)
0.0238043 + 0.999717i \(0.492422\pi\)
\(84\) 0 0
\(85\) 2268.00 2.89411
\(86\) 648.000 + 1122.37i 0.812507 + 1.40730i
\(87\) −237.000 + 410.496i −0.292058 + 0.505860i
\(88\) 0 0
\(89\) −117.000 202.650i −0.139348 0.241358i 0.787902 0.615801i \(-0.211167\pi\)
−0.927250 + 0.374443i \(0.877834\pi\)
\(90\) 648.000 0.758947
\(91\) 0 0
\(92\) 112.000 0.126922
\(93\) 54.0000 + 93.5307i 0.0602101 + 0.104287i
\(94\) 144.000 249.415i 0.158005 0.273673i
\(95\) 648.000 1122.37i 0.699825 1.21213i
\(96\) 384.000 + 665.108i 0.408248 + 0.707107i
\(97\) 468.000 0.489878 0.244939 0.969538i \(-0.421232\pi\)
0.244939 + 0.969538i \(0.421232\pi\)
\(98\) 0 0
\(99\) −450.000 −0.456835
\(100\) −796.000 1378.71i −0.796000 1.37871i
\(101\) 333.000 576.773i 0.328067 0.568228i −0.654061 0.756441i \(-0.726936\pi\)
0.982128 + 0.188213i \(0.0602696\pi\)
\(102\) −756.000 + 1309.43i −0.733874 + 1.27111i
\(103\) 126.000 + 218.238i 0.120535 + 0.208773i 0.919979 0.391968i \(-0.128206\pi\)
−0.799444 + 0.600741i \(0.794872\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −88.0000 −0.0806351
\(107\) −335.000 580.237i −0.302670 0.524240i 0.674070 0.738668i \(-0.264545\pi\)
−0.976740 + 0.214428i \(0.931211\pi\)
\(108\) −108.000 + 187.061i −0.0962250 + 0.166667i
\(109\) −81.0000 + 140.296i −0.0711779 + 0.123284i −0.899418 0.437090i \(-0.856009\pi\)
0.828240 + 0.560374i \(0.189342\pi\)
\(110\) 1800.00 + 3117.69i 1.56021 + 2.70237i
\(111\) −486.000 −0.415577
\(112\) 0 0
\(113\) −1390.00 −1.15717 −0.578585 0.815622i \(-0.696395\pi\)
−0.578585 + 0.815622i \(0.696395\pi\)
\(114\) 432.000 + 748.246i 0.354917 + 0.614734i
\(115\) −126.000 + 218.238i −0.102170 + 0.176964i
\(116\) −632.000 + 1094.66i −0.505860 + 0.876175i
\(117\) 162.000 + 280.592i 0.128008 + 0.221716i
\(118\) 1872.00 1.46044
\(119\) 0 0
\(120\) 0 0
\(121\) −584.500 1012.38i −0.439144 0.760619i
\(122\) −1584.00 + 2743.57i −1.17548 + 2.03599i
\(123\) 405.000 701.481i 0.296891 0.514231i
\(124\) 144.000 + 249.415i 0.104287 + 0.180630i
\(125\) 1332.00 0.953102
\(126\) 0 0
\(127\) 916.000 0.640015 0.320007 0.947415i \(-0.396315\pi\)
0.320007 + 0.947415i \(0.396315\pi\)
\(128\) 0 0
\(129\) 486.000 841.777i 0.331705 0.574529i
\(130\) 1296.00 2244.74i 0.874359 1.51443i
\(131\) −1134.00 1964.15i −0.756321 1.30999i −0.944715 0.327893i \(-0.893662\pi\)
0.188394 0.982094i \(-0.439672\pi\)
\(132\) −1200.00 −0.791262
\(133\) 0 0
\(134\) 928.000 0.598261
\(135\) −243.000 420.888i −0.154919 0.268328i
\(136\) 0 0
\(137\) −403.000 + 698.016i −0.251318 + 0.435296i −0.963889 0.266304i \(-0.914197\pi\)
0.712571 + 0.701600i \(0.247531\pi\)
\(138\) −84.0000 145.492i −0.0518156 0.0897473i
\(139\) 2628.00 1.60363 0.801813 0.597575i \(-0.203869\pi\)
0.801813 + 0.597575i \(0.203869\pi\)
\(140\) 0 0
\(141\) −216.000 −0.129011
\(142\) 1468.00 + 2542.65i 0.867548 + 1.50264i
\(143\) −900.000 + 1558.85i −0.526306 + 0.911589i
\(144\) 288.000 498.831i 0.166667 0.288675i
\(145\) −1422.00 2462.98i −0.814418 1.41061i
\(146\) 720.000 0.408134
\(147\) 0 0
\(148\) −1296.00 −0.719801
\(149\) 1195.00 + 2069.80i 0.657035 + 1.13802i 0.981379 + 0.192079i \(0.0615230\pi\)
−0.324344 + 0.945939i \(0.605144\pi\)
\(150\) −1194.00 + 2068.07i −0.649931 + 1.12571i
\(151\) −1620.00 + 2805.92i −0.873071 + 1.51220i −0.0142676 + 0.999898i \(0.504542\pi\)
−0.858803 + 0.512305i \(0.828792\pi\)
\(152\) 0 0
\(153\) 1134.00 0.599206
\(154\) 0 0
\(155\) −648.000 −0.335798
\(156\) 432.000 + 748.246i 0.221716 + 0.384023i
\(157\) −1512.00 + 2618.86i −0.768603 + 1.33126i 0.169717 + 0.985493i \(0.445715\pi\)
−0.938320 + 0.345767i \(0.887619\pi\)
\(158\) −472.000 + 817.528i −0.237660 + 0.411639i
\(159\) 33.0000 + 57.1577i 0.0164596 + 0.0285088i
\(160\) −4608.00 −2.27684
\(161\) 0 0
\(162\) 324.000 0.157135
\(163\) 892.000 + 1544.99i 0.428631 + 0.742410i 0.996752 0.0805346i \(-0.0256628\pi\)
−0.568121 + 0.822945i \(0.692329\pi\)
\(164\) 1080.00 1870.61i 0.514231 0.890674i
\(165\) 1350.00 2338.27i 0.636954 1.10324i
\(166\) −72.0000 124.708i −0.0336644 0.0583084i
\(167\) −3024.00 −1.40122 −0.700611 0.713543i \(-0.747089\pi\)
−0.700611 + 0.713543i \(0.747089\pi\)
\(168\) 0 0
\(169\) −901.000 −0.410105
\(170\) −4536.00 7856.58i −2.04644 3.54454i
\(171\) 324.000 561.184i 0.144894 0.250964i
\(172\) 1296.00 2244.74i 0.574529 0.995114i
\(173\) −783.000 1356.20i −0.344106 0.596010i 0.641085 0.767470i \(-0.278485\pi\)
−0.985191 + 0.171461i \(0.945151\pi\)
\(174\) 1896.00 0.826065
\(175\) 0 0
\(176\) 3200.00 1.37051
\(177\) −702.000 1215.90i −0.298110 0.516342i
\(178\) −468.000 + 810.600i −0.197068 + 0.341332i
\(179\) −1901.00 + 3292.63i −0.793784 + 1.37487i 0.129824 + 0.991537i \(0.458559\pi\)
−0.923608 + 0.383338i \(0.874774\pi\)
\(180\) −648.000 1122.37i −0.268328 0.464758i
\(181\) −468.000 −0.192189 −0.0960944 0.995372i \(-0.530635\pi\)
−0.0960944 + 0.995372i \(0.530635\pi\)
\(182\) 0 0
\(183\) 2376.00 0.959776
\(184\) 0 0
\(185\) 1458.00 2525.33i 0.579429 1.00360i
\(186\) 216.000 374.123i 0.0851499 0.147484i
\(187\) 3150.00 + 5455.96i 1.23182 + 2.13358i
\(188\) −576.000 −0.223453
\(189\) 0 0
\(190\) −5184.00 −1.97940
\(191\) −241.000 417.424i −0.0912992 0.158135i 0.816759 0.576979i \(-0.195769\pi\)
−0.908058 + 0.418844i \(0.862435\pi\)
\(192\) 768.000 1330.22i 0.288675 0.500000i
\(193\) 405.000 701.481i 0.151049 0.261625i −0.780564 0.625076i \(-0.785068\pi\)
0.931614 + 0.363450i \(0.118401\pi\)
\(194\) −936.000 1621.20i −0.346396 0.599976i
\(195\) −1944.00 −0.713911
\(196\) 0 0
\(197\) −2462.00 −0.890407 −0.445204 0.895429i \(-0.646869\pi\)
−0.445204 + 0.895429i \(0.646869\pi\)
\(198\) 900.000 + 1558.85i 0.323031 + 0.559507i
\(199\) 2268.00 3928.29i 0.807911 1.39934i −0.106397 0.994324i \(-0.533932\pi\)
0.914308 0.405019i \(-0.132735\pi\)
\(200\) 0 0
\(201\) −348.000 602.754i −0.122120 0.211517i
\(202\) −2664.00 −0.927913
\(203\) 0 0
\(204\) 3024.00 1.03785
\(205\) 2430.00 + 4208.88i 0.827895 + 1.43396i
\(206\) 504.000 872.954i 0.170463 0.295250i
\(207\) −63.0000 + 109.119i −0.0211536 + 0.0366392i
\(208\) −1152.00 1995.32i −0.384023 0.665148i
\(209\) 3600.00 1.19147
\(210\) 0 0
\(211\) 2916.00 0.951402 0.475701 0.879607i \(-0.342195\pi\)
0.475701 + 0.879607i \(0.342195\pi\)
\(212\) 88.0000 + 152.420i 0.0285088 + 0.0493787i
\(213\) 1101.00 1906.99i 0.354175 0.613449i
\(214\) −1340.00 + 2320.95i −0.428040 + 0.741387i
\(215\) 2916.00 + 5050.66i 0.924975 + 1.60210i
\(216\) 0 0
\(217\) 0 0
\(218\) 648.000 0.201322
\(219\) −270.000 467.654i −0.0833101 0.144297i
\(220\) 3600.00 6235.38i 1.10324 1.91086i
\(221\) 2268.00 3928.29i 0.690327 1.19568i
\(222\) 972.000 + 1683.55i 0.293858 + 0.508976i
\(223\) −1080.00 −0.324315 −0.162157 0.986765i \(-0.551845\pi\)
−0.162157 + 0.986765i \(0.551845\pi\)
\(224\) 0 0
\(225\) 1791.00 0.530667
\(226\) 2780.00 + 4815.10i 0.818243 + 1.41724i
\(227\) 666.000 1153.55i 0.194731 0.337284i −0.752081 0.659070i \(-0.770950\pi\)
0.946812 + 0.321786i \(0.104283\pi\)
\(228\) 864.000 1496.49i 0.250964 0.434682i
\(229\) −810.000 1402.96i −0.233739 0.404848i 0.725166 0.688574i \(-0.241763\pi\)
−0.958906 + 0.283725i \(0.908430\pi\)
\(230\) 1008.00 0.288981
\(231\) 0 0
\(232\) 0 0
\(233\) −3359.00 5817.96i −0.944444 1.63582i −0.756861 0.653576i \(-0.773268\pi\)
−0.187583 0.982249i \(-0.560065\pi\)
\(234\) 648.000 1122.37i 0.181030 0.313554i
\(235\) 648.000 1122.37i 0.179876 0.311554i
\(236\) −1872.00 3242.40i −0.516342 0.894331i
\(237\) 708.000 0.194049
\(238\) 0 0
\(239\) −3578.00 −0.968375 −0.484187 0.874964i \(-0.660885\pi\)
−0.484187 + 0.874964i \(0.660885\pi\)
\(240\) 1728.00 + 2992.98i 0.464758 + 0.804984i
\(241\) 378.000 654.715i 0.101034 0.174995i −0.811077 0.584939i \(-0.801118\pi\)
0.912111 + 0.409944i \(0.134452\pi\)
\(242\) −2338.00 + 4049.53i −0.621043 + 1.07568i
\(243\) −121.500 210.444i −0.0320750 0.0555556i
\(244\) 6336.00 1.66238
\(245\) 0 0
\(246\) −3240.00 −0.839735
\(247\) −1296.00 2244.74i −0.333856 0.578256i
\(248\) 0 0
\(249\) −54.0000 + 93.5307i −0.0137434 + 0.0238043i
\(250\) −2664.00 4614.18i −0.673945 1.16731i
\(251\) −6516.00 −1.63859 −0.819295 0.573372i \(-0.805635\pi\)
−0.819295 + 0.573372i \(0.805635\pi\)
\(252\) 0 0
\(253\) −700.000 −0.173947
\(254\) −1832.00 3173.12i −0.452559 0.783855i
\(255\) −3402.00 + 5892.44i −0.835457 + 1.44705i
\(256\) −2048.00 + 3547.24i −0.500000 + 0.866025i
\(257\) 3015.00 + 5222.13i 0.731792 + 1.26750i 0.956117 + 0.292986i \(0.0946491\pi\)
−0.224325 + 0.974514i \(0.572018\pi\)
\(258\) −3888.00 −0.938203
\(259\) 0 0
\(260\) −5184.00 −1.23653
\(261\) −711.000 1231.49i −0.168620 0.292058i
\(262\) −4536.00 + 7856.58i −1.06960 + 1.85260i
\(263\) −295.000 + 510.955i −0.0691653 + 0.119798i −0.898534 0.438904i \(-0.855367\pi\)
0.829369 + 0.558702i \(0.188700\pi\)
\(264\) 0 0
\(265\) −396.000 −0.0917966
\(266\) 0 0
\(267\) 702.000 0.160905
\(268\) −928.000 1607.34i −0.211517 0.366359i
\(269\) 495.000 857.365i 0.112196 0.194329i −0.804459 0.594008i \(-0.797545\pi\)
0.916655 + 0.399679i \(0.130878\pi\)
\(270\) −972.000 + 1683.55i −0.219089 + 0.379473i
\(271\) 1710.00 + 2961.81i 0.383303 + 0.663900i 0.991532 0.129861i \(-0.0414532\pi\)
−0.608229 + 0.793761i \(0.708120\pi\)
\(272\) −8064.00 −1.79762
\(273\) 0 0
\(274\) 3224.00 0.710836
\(275\) 4975.00 + 8616.95i 1.09092 + 1.88953i
\(276\) −168.000 + 290.985i −0.0366392 + 0.0634609i
\(277\) 1367.00 2367.71i 0.296516 0.513582i −0.678820 0.734305i \(-0.737508\pi\)
0.975337 + 0.220723i \(0.0708417\pi\)
\(278\) −5256.00 9103.66i −1.13394 1.96403i
\(279\) −324.000 −0.0695246
\(280\) 0 0
\(281\) 598.000 0.126953 0.0634763 0.997983i \(-0.479781\pi\)
0.0634763 + 0.997983i \(0.479781\pi\)
\(282\) 432.000 + 748.246i 0.0912242 + 0.158005i
\(283\) −1800.00 + 3117.69i −0.378088 + 0.654868i −0.990784 0.135451i \(-0.956752\pi\)
0.612696 + 0.790319i \(0.290085\pi\)
\(284\) 2936.00 5085.30i 0.613449 1.06253i
\(285\) 1944.00 + 3367.11i 0.404044 + 0.699825i
\(286\) 7200.00 1.48862
\(287\) 0 0
\(288\) −2304.00 −0.471405
\(289\) −5481.50 9494.24i −1.11571 1.93247i
\(290\) −5688.00 + 9851.90i −1.15176 + 1.99491i
\(291\) −702.000 + 1215.90i −0.141416 + 0.244939i
\(292\) −720.000 1247.08i −0.144297 0.249930i
\(293\) 7902.00 1.57556 0.787781 0.615955i \(-0.211230\pi\)
0.787781 + 0.615955i \(0.211230\pi\)
\(294\) 0 0
\(295\) 8424.00 1.66259
\(296\) 0 0
\(297\) 675.000 1169.13i 0.131877 0.228418i
\(298\) 4780.00 8279.20i 0.929188 1.60940i
\(299\) 252.000 + 436.477i 0.0487409 + 0.0844218i
\(300\) 4776.00 0.919142
\(301\) 0 0
\(302\) 12960.0 2.46942
\(303\) 999.000 + 1730.32i 0.189409 + 0.328067i
\(304\) −2304.00 + 3990.65i −0.434682 + 0.752892i
\(305\) −7128.00 + 12346.1i −1.33819 + 2.31781i
\(306\) −2268.00 3928.29i −0.423702 0.733874i
\(307\) −10224.0 −1.90070 −0.950349 0.311185i \(-0.899274\pi\)
−0.950349 + 0.311185i \(0.899274\pi\)
\(308\) 0 0
\(309\) −756.000 −0.139182
\(310\) 1296.00 + 2244.74i 0.237445 + 0.411266i
\(311\) −1944.00 + 3367.11i −0.354451 + 0.613926i −0.987024 0.160574i \(-0.948665\pi\)
0.632573 + 0.774501i \(0.281999\pi\)
\(312\) 0 0
\(313\) −2556.00 4427.12i −0.461577 0.799475i 0.537463 0.843288i \(-0.319383\pi\)
−0.999040 + 0.0438124i \(0.986050\pi\)
\(314\) 12096.0 2.17394
\(315\) 0 0
\(316\) 1888.00 0.336102
\(317\) 5051.00 + 8748.59i 0.894929 + 1.55006i 0.833893 + 0.551927i \(0.186107\pi\)
0.0610361 + 0.998136i \(0.480560\pi\)
\(318\) 132.000 228.631i 0.0232773 0.0403175i
\(319\) 3950.00 6841.60i 0.693284 1.20080i
\(320\) 4608.00 + 7981.29i 0.804984 + 1.39427i
\(321\) 2010.00 0.349493
\(322\) 0 0
\(323\) −9072.00 −1.56279
\(324\) −324.000 561.184i −0.0555556 0.0962250i
\(325\) 3582.00 6204.21i 0.611365 1.05892i
\(326\) 3568.00 6179.96i 0.606176 1.04993i
\(327\) −243.000 420.888i −0.0410946 0.0711779i
\(328\) 0 0
\(329\) 0 0
\(330\) −10800.0 −1.80158
\(331\) −2754.00 4770.07i −0.457322 0.792105i 0.541497 0.840703i \(-0.317858\pi\)
−0.998818 + 0.0485983i \(0.984525\pi\)
\(332\) −144.000 + 249.415i −0.0238043 + 0.0412303i
\(333\) 729.000 1262.67i 0.119967 0.207789i
\(334\) 6048.00 + 10475.4i 0.990814 + 1.71614i
\(335\) 4176.00 0.681072
\(336\) 0 0
\(337\) −9234.00 −1.49261 −0.746303 0.665607i \(-0.768173\pi\)
−0.746303 + 0.665607i \(0.768173\pi\)
\(338\) 1802.00 + 3121.16i 0.289988 + 0.502274i
\(339\) 2085.00 3611.33i 0.334046 0.578585i
\(340\) −9072.00 + 15713.2i −1.44705 + 2.50637i
\(341\) −900.000 1558.85i −0.142926 0.247555i
\(342\) −2592.00 −0.409823
\(343\) 0 0
\(344\) 0 0
\(345\) −378.000 654.715i −0.0589879 0.102170i
\(346\) −3132.00 + 5424.78i −0.486640 + 0.842885i
\(347\) 3247.00 5623.97i 0.502329 0.870059i −0.497668 0.867368i \(-0.665810\pi\)
0.999996 0.00269115i \(-0.000856622\pi\)
\(348\) −1896.00 3283.97i −0.292058 0.505860i
\(349\) 10080.0 1.54605 0.773023 0.634378i \(-0.218744\pi\)
0.773023 + 0.634378i \(0.218744\pi\)
\(350\) 0 0
\(351\) −972.000 −0.147811
\(352\) −6400.00 11085.1i −0.969094 1.67852i
\(353\) 369.000 639.127i 0.0556371 0.0963662i −0.836865 0.547409i \(-0.815614\pi\)
0.892503 + 0.451042i \(0.148948\pi\)
\(354\) −2808.00 + 4863.60i −0.421592 + 0.730219i
\(355\) 6606.00 + 11441.9i 0.987634 + 1.71063i
\(356\) 1872.00 0.278696
\(357\) 0 0
\(358\) 15208.0 2.24516
\(359\) −97.0000 168.009i −0.0142603 0.0246996i 0.858807 0.512299i \(-0.171206\pi\)
−0.873068 + 0.487599i \(0.837873\pi\)
\(360\) 0 0
\(361\) 837.500 1450.59i 0.122102 0.211487i
\(362\) 936.000 + 1621.20i 0.135898 + 0.235382i
\(363\) 3507.00 0.507079
\(364\) 0 0
\(365\) 3240.00 0.464628
\(366\) −4752.00 8230.71i −0.678664 1.17548i
\(367\) 2376.00 4115.35i 0.337946 0.585340i −0.646100 0.763253i \(-0.723601\pi\)
0.984046 + 0.177913i \(0.0569345\pi\)
\(368\) 448.000 775.959i 0.0634609 0.109918i
\(369\) 1215.00 + 2104.44i 0.171410 + 0.296891i
\(370\) −11664.0 −1.63887
\(371\) 0 0
\(372\) −864.000 −0.120420
\(373\) 1153.00 + 1997.05i 0.160054 + 0.277221i 0.934888 0.354943i \(-0.115500\pi\)
−0.774834 + 0.632165i \(0.782167\pi\)
\(374\) 12600.0 21823.8i 1.74206 3.01734i
\(375\) −1998.00 + 3460.64i −0.275137 + 0.476551i
\(376\) 0 0
\(377\) −5688.00 −0.777047
\(378\) 0 0
\(379\) −7452.00 −1.00998 −0.504991 0.863124i \(-0.668504\pi\)
−0.504991 + 0.863124i \(0.668504\pi\)
\(380\) 5184.00 + 8978.95i 0.699825 + 1.21213i
\(381\) −1374.00 + 2379.84i −0.184756 + 0.320007i
\(382\) −964.000 + 1669.70i −0.129117 + 0.223636i
\(383\) 576.000 + 997.661i 0.0768465 + 0.133102i 0.901888 0.431970i \(-0.142182\pi\)
−0.825041 + 0.565073i \(0.808848\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −3240.00 −0.427232
\(387\) 1458.00 + 2525.33i 0.191510 + 0.331705i
\(388\) −1872.00 + 3242.40i −0.244939 + 0.424247i
\(389\) −947.000 + 1640.25i −0.123431 + 0.213789i −0.921119 0.389282i \(-0.872723\pi\)
0.797687 + 0.603071i \(0.206057\pi\)
\(390\) 3888.00 + 6734.21i 0.504812 + 0.874359i
\(391\) 1764.00 0.228157
\(392\) 0 0
\(393\) 6804.00 0.873324
\(394\) 4924.00 + 8528.62i 0.629613 + 1.09052i
\(395\) −2124.00 + 3678.88i −0.270557 + 0.468619i
\(396\) 1800.00 3117.69i 0.228418 0.395631i
\(397\) −4608.00 7981.29i −0.582541 1.00899i −0.995177 0.0980950i \(-0.968725\pi\)
0.412636 0.910896i \(-0.364608\pi\)
\(398\) −18144.0 −2.28512
\(399\) 0 0
\(400\) −12736.0 −1.59200
\(401\) 5825.00 + 10089.2i 0.725403 + 1.25643i 0.958808 + 0.284055i \(0.0916799\pi\)
−0.233405 + 0.972380i \(0.574987\pi\)
\(402\) −1392.00 + 2411.01i −0.172703 + 0.299131i
\(403\) −648.000 + 1122.37i −0.0800972 + 0.138732i
\(404\) 2664.00 + 4614.18i 0.328067 + 0.568228i
\(405\) 1458.00 0.178885
\(406\) 0 0
\(407\) 8100.00 0.986492
\(408\) 0 0
\(409\) 3762.00 6515.98i 0.454814 0.787761i −0.543863 0.839174i \(-0.683039\pi\)
0.998677 + 0.0514127i \(0.0163724\pi\)
\(410\) 9720.00 16835.5i 1.17082 2.02792i
\(411\) −1209.00 2094.05i −0.145099 0.251318i
\(412\) −2016.00 −0.241071
\(413\) 0 0
\(414\) 504.000 0.0598315
\(415\) −324.000 561.184i −0.0383242 0.0663794i
\(416\) −4608.00 + 7981.29i −0.543091 + 0.940661i
\(417\) −3942.00 + 6827.74i −0.462927 + 0.801813i
\(418\) −7200.00 12470.8i −0.842496 1.45925i
\(419\) −3852.00 −0.449123 −0.224561 0.974460i \(-0.572095\pi\)
−0.224561 + 0.974460i \(0.572095\pi\)
\(420\) 0 0
\(421\) 10402.0 1.20419 0.602093 0.798426i \(-0.294334\pi\)
0.602093 + 0.798426i \(0.294334\pi\)
\(422\) −5832.00 10101.3i −0.672742 1.16522i
\(423\) 324.000 561.184i 0.0372421 0.0645053i
\(424\) 0 0
\(425\) −12537.0 21714.7i −1.43090 2.47840i
\(426\) −8808.00 −1.00176
\(427\) 0 0
\(428\) 5360.00 0.605340
\(429\) −2700.00 4676.54i −0.303863 0.526306i
\(430\) 11664.0 20202.6i 1.30811 2.26572i
\(431\) 5195.00 8998.00i 0.580590 1.00561i −0.414819 0.909904i \(-0.636155\pi\)
0.995409 0.0957078i \(-0.0305114\pi\)
\(432\) 864.000 + 1496.49i 0.0962250 + 0.166667i
\(433\) 11232.0 1.24659 0.623297 0.781985i \(-0.285793\pi\)
0.623297 + 0.781985i \(0.285793\pi\)
\(434\) 0 0
\(435\) 8532.00 0.940409
\(436\) −648.000 1122.37i −0.0711779 0.123284i
\(437\) 504.000 872.954i 0.0551707 0.0955584i
\(438\) −1080.00 + 1870.61i −0.117818 + 0.204067i
\(439\) −7308.00 12657.8i −0.794514 1.37614i −0.923147 0.384447i \(-0.874392\pi\)
0.128633 0.991692i \(-0.458941\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −18144.0 −1.95254
\(443\) −5969.00 10338.6i −0.640171 1.10881i −0.985394 0.170288i \(-0.945530\pi\)
0.345223 0.938521i \(-0.387803\pi\)
\(444\) 1944.00 3367.11i 0.207789 0.359900i
\(445\) −2106.00 + 3647.70i −0.224346 + 0.388579i
\(446\) 2160.00 + 3741.23i 0.229325 + 0.397203i
\(447\) −7170.00 −0.758679
\(448\) 0 0
\(449\) 8186.00 0.860404 0.430202 0.902733i \(-0.358442\pi\)
0.430202 + 0.902733i \(0.358442\pi\)
\(450\) −3582.00 6204.21i −0.375238 0.649931i
\(451\) −6750.00 + 11691.3i −0.704756 + 1.22067i
\(452\) 5560.00 9630.20i 0.578585 1.00214i
\(453\) −4860.00 8417.77i −0.504068 0.873071i
\(454\) −5328.00 −0.550783
\(455\) 0 0
\(456\) 0 0
\(457\) −1053.00 1823.85i −0.107784 0.186687i 0.807088 0.590431i \(-0.201042\pi\)
−0.914872 + 0.403744i \(0.867709\pi\)
\(458\) −3240.00 + 5611.84i −0.330557 + 0.572542i
\(459\) −1701.00 + 2946.22i −0.172976 + 0.299603i
\(460\) −1008.00 1745.91i −0.102170 0.176964i
\(461\) 9486.00 0.958367 0.479183 0.877715i \(-0.340933\pi\)
0.479183 + 0.877715i \(0.340933\pi\)
\(462\) 0 0
\(463\) −12652.0 −1.26995 −0.634977 0.772531i \(-0.718990\pi\)
−0.634977 + 0.772531i \(0.718990\pi\)
\(464\) 5056.00 + 8757.25i 0.505860 + 0.876175i
\(465\) 972.000 1683.55i 0.0969364 0.167899i
\(466\) −13436.0 + 23271.8i −1.33565 + 2.31341i
\(467\) 1854.00 + 3211.22i 0.183711 + 0.318196i 0.943141 0.332392i \(-0.107856\pi\)
−0.759431 + 0.650588i \(0.774522\pi\)
\(468\) −2592.00 −0.256015
\(469\) 0 0
\(470\) −5184.00 −0.508766
\(471\) −4536.00 7856.58i −0.443753 0.768603i
\(472\) 0 0
\(473\) −8100.00 + 14029.6i −0.787396 + 1.36381i
\(474\) −1416.00 2452.58i −0.137213 0.237660i
\(475\) −14328.0 −1.38403
\(476\) 0 0
\(477\) −198.000 −0.0190059
\(478\) 7156.00 + 12394.6i 0.684744 + 1.18601i
\(479\) 4032.00 6983.63i 0.384607 0.666159i −0.607108 0.794620i \(-0.707670\pi\)
0.991715 + 0.128461i \(0.0410036\pi\)
\(480\) 6912.00 11971.9i 0.657267 1.13842i
\(481\) −2916.00 5050.66i −0.276420 0.478774i
\(482\) −3024.00 −0.285766
\(483\) 0 0
\(484\) 9352.00 0.878287
\(485\) −4212.00 7295.40i −0.394344 0.683025i
\(486\) −486.000 + 841.777i −0.0453609 + 0.0785674i
\(487\) 5832.00 10101.3i 0.542655 0.939907i −0.456095 0.889931i \(-0.650752\pi\)
0.998750 0.0499756i \(-0.0159143\pi\)
\(488\) 0 0
\(489\) −5352.00 −0.494940
\(490\) 0 0
\(491\) −9814.00 −0.902036 −0.451018 0.892515i \(-0.648939\pi\)
−0.451018 + 0.892515i \(0.648939\pi\)
\(492\) 3240.00 + 5611.84i 0.296891 + 0.514231i
\(493\) −9954.00 + 17240.8i −0.909342 + 1.57503i
\(494\) −5184.00 + 8978.95i −0.472144 + 0.817778i
\(495\) 4050.00 + 7014.81i 0.367745 + 0.636954i
\(496\) 2304.00 0.208574
\(497\) 0 0
\(498\) 432.000 0.0388723
\(499\) 7614.00 + 13187.8i 0.683065 + 1.18310i 0.974041 + 0.226373i \(0.0726868\pi\)
−0.290976 + 0.956730i \(0.593980\pi\)
\(500\) −5328.00 + 9228.37i −0.476551 + 0.825410i
\(501\) 4536.00 7856.58i 0.404498 0.700611i
\(502\) 13032.0 + 22572.1i 1.15866 + 2.00686i
\(503\) −11088.0 −0.982882 −0.491441 0.870911i \(-0.663530\pi\)
−0.491441 + 0.870911i \(0.663530\pi\)
\(504\) 0 0
\(505\) −11988.0 −1.05635
\(506\) 1400.00 + 2424.87i 0.122999 + 0.213041i
\(507\) 1351.50 2340.87i 0.118387 0.205052i
\(508\) −3664.00 + 6346.23i −0.320007 + 0.554269i
\(509\) 2907.00 + 5035.07i 0.253144 + 0.438459i 0.964390 0.264485i \(-0.0852019\pi\)
−0.711245 + 0.702944i \(0.751869\pi\)
\(510\) 27216.0 2.36303
\(511\) 0 0
\(512\) 16384.0 1.41421
\(513\) 972.000 + 1683.55i 0.0836547 + 0.144894i
\(514\) 12060.0 20888.5i 1.03491 1.79252i
\(515\) 2268.00 3928.29i 0.194058 0.336119i
\(516\) 3888.00 + 6734.21i 0.331705 + 0.574529i
\(517\) 3600.00 0.306243
\(518\) 0 0
\(519\) 4698.00 0.397340
\(520\) 0 0
\(521\) 5841.00 10116.9i 0.491169 0.850729i −0.508780 0.860897i \(-0.669903\pi\)
0.999948 + 0.0101677i \(0.00323655\pi\)
\(522\) −2844.00 + 4925.95i −0.238465 + 0.413033i
\(523\) 1494.00 + 2587.68i 0.124910 + 0.216351i 0.921698 0.387909i \(-0.126802\pi\)
−0.796788 + 0.604259i \(0.793469\pi\)
\(524\) 18144.0 1.51264
\(525\) 0 0
\(526\) 2360.00 0.195629
\(527\) 2268.00 + 3928.29i 0.187468 + 0.324704i
\(528\) −4800.00 + 8313.84i −0.395631 + 0.685253i
\(529\) 5985.50 10367.2i 0.491945 0.852074i
\(530\) 792.000 + 1371.78i 0.0649100 + 0.112427i
\(531\) 4212.00 0.344228
\(532\) 0 0
\(533\) 9720.00 0.789906
\(534\) −1404.00 2431.80i −0.113777 0.197068i
\(535\) −6030.00 + 10444.3i −0.487289 + 0.844009i
\(536\) 0 0
\(537\) −5703.00 9877.89i −0.458292 0.793784i
\(538\) −3960.00 −0.317338
\(539\) 0 0
\(540\) 3888.00 0.309839
\(541\) −3565.00 6174.76i −0.283311 0.490709i 0.688887 0.724869i \(-0.258100\pi\)
−0.972198 + 0.234159i \(0.924766\pi\)
\(542\) 6840.00 11847.2i 0.542072 0.938897i
\(543\) 702.000 1215.90i 0.0554801 0.0960944i
\(544\) 16128.0 + 27934.5i 1.27111 + 2.20162i
\(545\) 2916.00 0.229188
\(546\) 0 0
\(547\) −5488.00 −0.428976 −0.214488 0.976727i \(-0.568808\pi\)
−0.214488 + 0.976727i \(0.568808\pi\)
\(548\) −3224.00 5584.13i −0.251318 0.435296i
\(549\) −3564.00 + 6173.03i −0.277063 + 0.479888i
\(550\) 19900.0 34467.8i 1.54280 2.67220i
\(551\) 5688.00 + 9851.90i 0.439777 + 0.761716i
\(552\) 0 0
\(553\) 0 0
\(554\) −10936.0 −0.838675
\(555\) 4374.00 + 7575.99i 0.334533 + 0.579429i
\(556\) −10512.0 + 18207.3i −0.801813 + 1.38878i
\(557\) −2873.00 + 4976.18i −0.218551 + 0.378541i −0.954365 0.298642i \(-0.903466\pi\)
0.735814 + 0.677183i \(0.236800\pi\)
\(558\) 648.000 + 1122.37i 0.0491613 + 0.0851499i
\(559\) 11664.0 0.882531
\(560\) 0 0
\(561\) −18900.0 −1.42239
\(562\) −1196.00 2071.53i −0.0897691 0.155485i
\(563\) −6534.00 + 11317.2i −0.489121 + 0.847183i −0.999922 0.0125165i \(-0.996016\pi\)
0.510800 + 0.859699i \(0.329349\pi\)
\(564\) 864.000 1496.49i 0.0645053 0.111726i
\(565\) 12510.0 + 21668.0i 0.931504 + 1.61341i
\(566\) 14400.0 1.06939
\(567\) 0 0
\(568\) 0 0
\(569\) 565.000 + 978.609i 0.0416275 + 0.0721009i 0.886088 0.463516i \(-0.153412\pi\)
−0.844461 + 0.535617i \(0.820079\pi\)
\(570\) 7776.00 13468.4i 0.571405 0.989702i
\(571\) −8432.00 + 14604.7i −0.617983 + 1.07038i 0.371870 + 0.928285i \(0.378717\pi\)
−0.989853 + 0.142093i \(0.954617\pi\)
\(572\) −7200.00 12470.8i −0.526306 0.911589i
\(573\) 1446.00 0.105423
\(574\) 0 0
\(575\) 2786.00 0.202060
\(576\) 2304.00 + 3990.65i 0.166667 + 0.288675i
\(577\) 1044.00 1808.26i 0.0753246 0.130466i −0.825903 0.563813i \(-0.809334\pi\)
0.901227 + 0.433347i \(0.142667\pi\)
\(578\) −21926.0 + 37976.9i −1.57786 + 2.73293i
\(579\) 1215.00 + 2104.44i 0.0872084 + 0.151049i
\(580\) 22752.0 1.62884
\(581\) 0 0
\(582\) 5616.00 0.399984
\(583\) −550.000 952.628i −0.0390715 0.0676738i
\(584\) 0 0
\(585\) 2916.00 5050.66i 0.206088 0.356956i
\(586\) −15804.0 27373.3i −1.11409 1.92966i
\(587\) 10260.0 0.721423 0.360712 0.932677i \(-0.382534\pi\)
0.360712 + 0.932677i \(0.382534\pi\)
\(588\) 0 0
\(589\) 2592.00 0.181327
\(590\) −16848.0 29181.6i −1.17563 2.03625i
\(591\) 3693.00 6396.46i 0.257038 0.445204i
\(592\) −5184.00 + 8978.95i −0.359900 + 0.623366i
\(593\) −1791.00 3102.10i −0.124026 0.214820i 0.797326 0.603549i \(-0.206247\pi\)
−0.921352 + 0.388730i \(0.872914\pi\)
\(594\) −5400.00 −0.373005
\(595\) 0 0
\(596\) −19120.0 −1.31407
\(597\) 6804.00 + 11784.9i 0.466448 + 0.807911i
\(598\) 1008.00 1745.91i 0.0689301 0.119390i
\(599\) −3517.00 + 6091.62i −0.239901 + 0.415521i −0.960686 0.277638i \(-0.910448\pi\)
0.720785 + 0.693159i \(0.243782\pi\)
\(600\) 0 0
\(601\) −18072.0 −1.22658 −0.613288 0.789859i \(-0.710154\pi\)
−0.613288 + 0.789859i \(0.710154\pi\)
\(602\) 0 0
\(603\) 2088.00 0.141011
\(604\) −12960.0 22447.4i −0.873071 1.51220i
\(605\) −10521.0 + 18222.9i −0.707007 + 1.22457i
\(606\) 3996.00 6921.28i 0.267865 0.463956i
\(607\) −14292.0 24754.5i −0.955674 1.65528i −0.732817 0.680426i \(-0.761795\pi\)
−0.222857 0.974851i \(-0.571538\pi\)
\(608\) 18432.0 1.22947
\(609\) 0 0
\(610\) 57024.0 3.78497
\(611\) −1296.00 2244.74i −0.0858110 0.148629i
\(612\) −4536.00 + 7856.58i −0.299603 + 0.518927i
\(613\) 5455.00 9448.34i 0.359421 0.622536i −0.628443 0.777856i \(-0.716307\pi\)
0.987864 + 0.155320i \(0.0496407\pi\)
\(614\) 20448.0 + 35417.0i 1.34400 + 2.32787i
\(615\) −14580.0 −0.955971
\(616\) 0 0
\(617\) −5522.00 −0.360304 −0.180152 0.983639i \(-0.557659\pi\)
−0.180152 + 0.983639i \(0.557659\pi\)
\(618\) 1512.00 + 2618.86i 0.0984168 + 0.170463i
\(619\) −1206.00 + 2088.85i −0.0783089 + 0.135635i −0.902520 0.430647i \(-0.858285\pi\)
0.824211 + 0.566282i \(0.191619\pi\)
\(620\) 2592.00 4489.48i 0.167899 0.290809i
\(621\) −189.000 327.358i −0.0122131 0.0211536i
\(622\) 15552.0 1.00254
\(623\) 0 0
\(624\) 6912.00 0.443432
\(625\) 449.500 + 778.557i 0.0287680 + 0.0498276i
\(626\) −10224.0 + 17708.5i −0.652769 + 1.13063i
\(627\) −5400.00 + 9353.07i −0.343948 + 0.595735i
\(628\) −12096.0 20950.9i −0.768603 1.33126i
\(629\) −20412.0 −1.29393
\(630\) 0 0
\(631\) 24676.0 1.55679 0.778396 0.627773i \(-0.216034\pi\)
0.778396 + 0.627773i \(0.216034\pi\)
\(632\) 0 0
\(633\) −4374.00 + 7575.99i −0.274646 + 0.475701i
\(634\) 20204.0 34994.4i 1.26562 2.19212i
\(635\) −8244.00 14279.0i −0.515202 0.892356i
\(636\) −528.000 −0.0329191
\(637\) 0 0
\(638\) −31600.0 −1.96090
\(639\) 3303.00 + 5720.96i 0.204483 + 0.354175i
\(640\) 0 0
\(641\) 13741.0 23800.1i 0.846703 1.46653i −0.0374303 0.999299i \(-0.511917\pi\)
0.884134 0.467234i \(-0.154749\pi\)
\(642\) −4020.00 6962.84i −0.247129 0.428040i
\(643\) −22752.0 −1.39541 −0.697707 0.716383i \(-0.745796\pi\)
−0.697707 + 0.716383i \(0.745796\pi\)
\(644\) 0 0
\(645\) −17496.0 −1.06807
\(646\) 18144.0 + 31426.3i 1.10506 + 1.91401i
\(647\) −7416.00 + 12844.9i −0.450623 + 0.780502i −0.998425 0.0561063i \(-0.982131\pi\)
0.547802 + 0.836608i \(0.315465\pi\)
\(648\) 0 0
\(649\) 11700.0 + 20265.0i 0.707650 + 1.22569i
\(650\) −28656.0 −1.72920
\(651\) 0 0
\(652\) −14272.0 −0.857262
\(653\) −1411.00 2443.92i −0.0845585 0.146460i 0.820645 0.571439i \(-0.193615\pi\)
−0.905203 + 0.424979i \(0.860281\pi\)
\(654\) −972.000 + 1683.55i −0.0581165 + 0.100661i
\(655\) −20412.0 + 35354.6i −1.21765 + 2.10904i
\(656\) −8640.00 14964.9i −0.514231 0.890674i
\(657\) 1620.00 0.0961982
\(658\) 0 0
\(659\) −15826.0 −0.935498 −0.467749 0.883861i \(-0.654935\pi\)
−0.467749 + 0.883861i \(0.654935\pi\)
\(660\) 10800.0 + 18706.1i 0.636954 + 1.10324i
\(661\) 11916.0 20639.1i 0.701178 1.21448i −0.266875 0.963731i \(-0.585991\pi\)
0.968053 0.250745i \(-0.0806755\pi\)
\(662\) −11016.0 + 19080.3i −0.646751 + 1.12021i
\(663\) 6804.00 + 11784.9i 0.398560 + 0.690327i
\(664\) 0 0
\(665\) 0 0
\(666\) −5832.00 −0.339317
\(667\) −1106.00 1915.65i −0.0642046 0.111206i
\(668\) 12096.0 20950.9i 0.700611 1.21349i
\(669\) 1620.00 2805.92i 0.0936216 0.162157i
\(670\) −8352.00 14466.1i −0.481591 0.834140i
\(671\) −39600.0 −2.27830
\(672\) 0 0
\(673\) 13770.0 0.788699 0.394350 0.918961i \(-0.370970\pi\)
0.394350 + 0.918961i \(0.370970\pi\)
\(674\) 18468.0 + 31987.5i 1.05543 + 1.82806i
\(675\) −2686.50 + 4653.15i −0.153190 + 0.265333i
\(676\) 3604.00 6242.31i 0.205052 0.355161i
\(677\) −4167.00 7217.46i −0.236560 0.409733i 0.723165 0.690675i \(-0.242687\pi\)
−0.959725 + 0.280942i \(0.909353\pi\)
\(678\) −16680.0 −0.944825
\(679\) 0 0
\(680\) 0 0
\(681\) 1998.00 + 3460.64i 0.112428 + 0.194731i
\(682\) −3600.00 + 6235.38i −0.202128 + 0.350096i
\(683\) 9299.00 16106.3i 0.520961 0.902331i −0.478742 0.877956i \(-0.658907\pi\)
0.999703 0.0243752i \(-0.00775963\pi\)
\(684\) 2592.00 + 4489.48i 0.144894 + 0.250964i
\(685\) 14508.0 0.809229
\(686\) 0 0
\(687\) 4860.00 0.269899
\(688\) −10368.0 17957.9i −0.574529 0.995114i
\(689\) −396.000 + 685.892i −0.0218961 + 0.0379251i
\(690\) −1512.00 + 2618.86i −0.0834215 + 0.144490i
\(691\) −4482.00 7763.05i −0.246749 0.427381i 0.715873 0.698230i \(-0.246029\pi\)
−0.962622 + 0.270849i \(0.912696\pi\)
\(692\) 12528.0 0.688213
\(693\) 0 0
\(694\) −25976.0 −1.42080
\(695\) −23652.0 40966.5i −1.29089 2.23589i
\(696\) 0 0
\(697\) 17010.0 29462.2i 0.924390 1.60109i
\(698\) −20160.0 34918.1i −1.09322 1.89351i
\(699\) 20154.0 1.09055
\(700\) 0 0
\(701\) 3542.00 0.190841 0.0954205 0.995437i \(-0.469580\pi\)
0.0954205 + 0.995437i \(0.469580\pi\)
\(702\) 1944.00 + 3367.11i 0.104518 + 0.181030i
\(703\) −5832.00 + 10101.3i −0.312885 + 0.541932i
\(704\) −12800.0 + 22170.3i −0.685253 + 1.18689i
\(705\) 1944.00 + 3367.11i 0.103851 + 0.179876i
\(706\) −2952.00 −0.157365
\(707\) 0 0
\(708\) 11232.0 0.596221
\(709\) 243.000 + 420.888i 0.0128717 + 0.0222945i 0.872390 0.488811i \(-0.162569\pi\)
−0.859518 + 0.511106i \(0.829236\pi\)
\(710\) 26424.0 45767.7i 1.39673 2.41920i
\(711\) −1062.00 + 1839.44i −0.0560170 + 0.0970244i
\(712\) 0 0
\(713\) −504.000 −0.0264726
\(714\) 0 0
\(715\) 32400.0 1.69467
\(716\) −15208.0 26341.0i −0.793784 1.37487i
\(717\) 5367.00 9295.92i 0.279546 0.484187i
\(718\) −388.000 + 672.036i −0.0201672 + 0.0349306i
\(719\) 13464.0 + 23320.3i 0.698362 + 1.20960i 0.969034 + 0.246927i \(0.0794209\pi\)
−0.270672 + 0.962672i \(0.587246\pi\)
\(720\) −10368.0 −0.536656
\(721\) 0 0
\(722\) −6700.00 −0.345358
\(723\) 1134.00 + 1964.15i 0.0583318 + 0.101034i
\(724\) 1872.00 3242.40i 0.0960944 0.166440i
\(725\) −15721.0 + 27229.6i −0.805329 + 1.39487i
\(726\) −7014.00 12148.6i −0.358559 0.621043i
\(727\) 20628.0 1.05234 0.526169 0.850380i \(-0.323628\pi\)
0.526169 + 0.850380i \(0.323628\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) −6480.00 11223.7i −0.328542 0.569051i
\(731\) 20412.0 35354.6i 1.03278 1.78883i
\(732\) −9504.00 + 16461.4i −0.479888 + 0.831190i
\(733\) 4878.00 + 8448.94i 0.245802 + 0.425742i 0.962357 0.271789i \(-0.0876153\pi\)
−0.716555 + 0.697531i \(0.754282\pi\)
\(734\) −19008.0 −0.955856
\(735\) 0 0
\(736\) −3584.00 −0.179495
\(737\) 5800.00 + 10045.9i 0.289886 + 0.502097i
\(738\) 4860.00 8417.77i 0.242411 0.419868i
\(739\) −9532.00 + 16509.9i −0.474479 + 0.821822i −0.999573 0.0292221i \(-0.990697\pi\)
0.525094 + 0.851045i \(0.324030\pi\)
\(740\) 11664.0 + 20202.6i 0.579429 + 1.00360i
\(741\) 7776.00 0.385504
\(742\) 0 0
\(743\) −3766.00 −0.185950 −0.0929752 0.995668i \(-0.529638\pi\)
−0.0929752 + 0.995668i \(0.529638\pi\)
\(744\) 0 0
\(745\) 21510.0 37256.4i 1.05781 1.83217i
\(746\) 4612.00 7988.22i 0.226350 0.392050i
\(747\) −162.000 280.592i −0.00793477 0.0137434i
\(748\) −50400.0 −2.46365
\(749\) 0 0
\(750\) 15984.0 0.778204
\(751\) 5832.00 + 10101.3i 0.283372 + 0.490815i 0.972213 0.234097i \(-0.0752134\pi\)
−0.688841 + 0.724913i \(0.741880\pi\)
\(752\) −2304.00 + 3990.65i −0.111726 + 0.193516i
\(753\) 9774.00 16929.1i 0.473020 0.819295i
\(754\) 11376.0 + 19703.8i 0.549456 + 0.951685i
\(755\) 58320.0 2.81123
\(756\) 0 0
\(757\) −34182.0 −1.64117 −0.820585 0.571524i \(-0.806352\pi\)
−0.820585 + 0.571524i \(0.806352\pi\)
\(758\) 14904.0 + 25814.5i 0.714166 + 1.23697i
\(759\) 1050.00 1818.65i 0.0502142 0.0869736i
\(760\) 0 0
\(761\) 2367.00 + 4099.76i 0.112751 + 0.195291i 0.916879 0.399166i \(-0.130700\pi\)
−0.804127 + 0.594457i \(0.797367\pi\)
\(762\) 10992.0 0.522570
\(763\) 0 0
\(764\) 3856.00 0.182598
\(765\) −10206.0 17677.3i −0.482351 0.835457i
\(766\) 2304.00 3990.65i 0.108677 0.188235i
\(767\) 8424.00 14590.8i 0.396575 0.686888i
\(768\) −6144.00 10641.7i −0.288675 0.500000i
\(769\) −30240.0 −1.41805 −0.709026 0.705182i \(-0.750865\pi\)
−0.709026 + 0.705182i \(0.750865\pi\)
\(770\) 0 0
\(771\) −18090.0 −0.845001
\(772\) 3240.00 + 5611.84i 0.151049 + 0.261625i
\(773\) −13851.0 + 23990.6i −0.644484 + 1.11628i 0.339937 + 0.940448i \(0.389594\pi\)
−0.984421 + 0.175830i \(0.943739\pi\)